Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92694
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝馬利歐zh_TW
dc.contributor.advisorMario Hofmannen
dc.contributor.author布娜zh_TW
dc.contributor.authorPoonam Subhash Borhadeen
dc.date.accessioned2024-06-07T16:05:37Z-
dc.date.available2024-06-08-
dc.date.copyright2024-06-07-
dc.date.issued2024-
dc.date.submitted2024-03-28-
dc.identifier.citation1. Ma, B., et al., Degradation-by-design: how chemical functionalization enhances the biodegradability and safety of 2D materials. Chemical Society Reviews, 2020. 49(17): p. 6224-6247.
2. Tan, C., et al., Recent advances in ultrathin two-dimensional nanomaterials. Chemical reviews, 2017. 117(9): p. 6225-6331.
3. Long, M., et al., Progress, challenges, and opportunities for 2D material based photodetectors. Advanced Functional Materials, 2019. 29(19): p. 1803807.
4. Duesberg G.S., Heterojunctions in 2D semiconductors: A perfect match. Nature Materials, 13 (2014). 1075-1076
5. Chen, W. and W. Bottoms. Heterogeneous integration roadmap. in 2017 International Conference on Electronics Packaging (ICEP). 2017. IEEE.
6. Rueckes, T., et al., Carbon nanotube-based nonvolatile random access memory for molecular computing. science, 2000. 289(5476): p. 94-97.
7. Avouris, P., Molecular electronics with carbon nanotubes. Accounts of chemical research, 2002. 35(12): p. 1026-1034.
8. Stevenson, J. and A. Gundlach, The application of photolithography to the fabrication of microcircuits. Journal of Physics E: Scientific Instruments, 1986. 19(9): p. 654.
9. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
10. Sengupta, R., et al., A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Progress in polymer science, 2011. 36(5): p. 638-670.
11. Zhao, S., et al., Functionally graded graphene reinforced composite structures: A review. Engineering Structures, 2020. 210: p. 110339.
12. Rodgers, P., Nanoscience and technology: a collection of reviews from nature journals. 2009: World Scientific.
13. Xin, G.,Yao T., Sun H., Scott S.M., Shao D., Wang G., Lian J., Highly thermally conductive and mechanically strong graphene fibers, Science, 349 (2015) 1083-1087
14. Meric, I., et al., Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature nanotechnology, 2008. 3(11): p. 654-659.
15. Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature nanotechnology, 2011. 6(3): p. 147-150.
16. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 2005. 102(30): p. 10451-10453.
17. Christopher, J.W., B.B. Goldberg, and A.K. Swan, Long tailed trions in monolayer MoS2: Temperature dependent asymmetry and resulting red-shift of trion photoluminescence spectra. Scientific reports, 2017. 7(1): p. 14062.
18. Tegenkamp, C., J. Aprojanz, and J. Baringhaus, Electronic transport in graphene nanoribbons, in Graphene Nanoribbons. 2019, IOP Publishing Bristol, UK. p. 6-1-6-28.
19. Cai, J., et al., Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 2010. 466(7305): p. 470-473.
20. Ruffieux, P., et al., On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature, 2016. 531(7595): p. 489-492.
21. Chen, C., et al., Single-band negative differential resistance in metallic armchair MoS2 nanoribbons. Journal of Physics D: Applied Physics, 2017. 50(46): p. 465302.
22. Zhai, M.-X. and X.-F. Wang, Atomistic switch of giant magnetoresistance and spin thermopower in graphene-like nanoribbons. Scientific Reports, 2016. 6(1): p. 36762.
23. Yagmurcukardes, M., et al., Nanoribbons: From fundamentals to state-of-the-art applications. Applied Physics Reviews, 2016. 3(4).
24. Nicks, J., et al., Metal–organic framework nanosheets: programmable 2D materials for catalysis, sensing, electronics, and separation applications. Advanced Functional Materials, 2021. 31(42): p. 2103723.
25. Prakash, A., et al., Understanding contact gating in Schottky barrier transistors from 2D channels. Scientific reports, 2017. 7(1): p. 12596.
26. Schulman, D.S., A.J. Arnold, and S. Das, Contact engineering for 2D materials and devices. Chemical Society Reviews, 2018. 47(9): p. 3037-3058.
27. Nnem, L.N., B.M. Lonla, and J. Mbihi, Review of a multipurpose duty-cycle modulation technology in electrical and electronics engineering. Journal of Electrical Engineering, Electronics, Control and Computer Science, 2018. 4(2): p. 9-18.
28. Radamson, H.H., et al., Miniaturization of CMOS. Micromachines, 2019. 10(5): p. 293.
29. Kappera, R., et al., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nature materials, 2014. 13(12): p. 1128-1134.
30. Bhandari, S., et al. Imaging electron motion in a few layer MoS2 device. in Journal of Physics: Conference Series. 2017. IOP Publishing.
31. Bampoulis, P., et al., Defect dominated charge transport and fermi level pinning in MoS2/metal contacts. ACS applied materials & interfaces, 2017. 9(22): p. 19278-19286.
32. Chen, S.H., et al., 2D Material Enabled Offset‐Patterning with Atomic Resolution. Advanced Functional Materials, 2020. 30(40): p. 2004370.
33. Salahuddin, S., K. Ni, and S. Datta, The era of hyper-scaling in electronics. Nature Electronics, 2018. 1(8): p. 442-450.
34. Liu, Y., et al., Promises and prospects of two-dimensional transistors. Nature, 2021. 591(7848): p. 43-53.
35. Wang, L., et al., One-dimensional electrical contact to a two-dimensional material. Science, 2013. 342(6158): p. 614-617.
36. Li, X., et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. science, 2009. 324(5932): p. 1312-1314.
37. Abramova, V., A.S. Slesarev, and J.M. Tour, Meniscus-Mask Lithography for fabrication of narrow nanowires. Nano letters, 2015. 15(5): p. 2933-2937.
38. Gurarslan, A., et al., Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS nano, 2014. 8(11):p. 11522-11528
39. Wei, T., et al., Two dimensional semiconducting materials for ultimately scaled transistors. iScience, 2022. 25(10): p. 105160.
40. Jin, S., M.V. Fischetti, and T.-W. Tang, Modeling of surface-roughness scattering in ultrathin-body SOI MOSFETs. IEEE Transactions on Electron Devices, 2007. 54(9): p. 2191-2203.
41. Arutchelvan, G., et al., Impact of device scaling on the electrical properties of MoS2 field-effect transistors. Scientific reports, 2021. 11(1): p. 1-11.
42. Liu, H., A.T. Neal, and P.D. Ye, Channel length scaling of MoS2 MOSFETs. ACS nano, 2012. 6(10): p. 8563-8569.
43. Xu, W. and T.-W. Lee, Recent progress in fabrication techniques of graphene nanoribbons. Materials Horizons, 2016. 3(3): p. 186-207.
44. Lemme, M.C., et al., 2D materials for future heterogeneous electronics. Nature communications, 2022. 13(1): p. 1392.
45. Arutchelvan, G., et al., Impact of device scaling on the electrical properties of MoS2 field-effect transistors. Scientific reports, 2021. 11(1): p. 1-11.
46. Li, X., et al., Chemically derived, ultrasmooth graphene nanoribbon semiconductors. science, 2008. 319(5867): p. 1229-1232.
47. Geng, Z., et al., Graphene nanoribbons for electronic devices. Annalen der Physik, 2017. 529(11): p. 1700033.
48. Clark, R., et al., Perspective: New process technologies required for future devices and scaling. APL Materials, 2018. 6(5).
49. Pan, Y. and K. Xu, Recent Progress in Nano-electronic Devices Based on EBL and IBL. Current Nanoscience, 2020. 16(2): p. 157-169.
50. Park, J.-H., et al., Effective characterization of polymer residues on two-dimensional materials by Raman spectroscopy. Nanotechnology, 2015. 26(48): p. 485701.
51. Tennant, D.M., Progress and issues in e-beam and other top down nanolithography. Journal of Vacuum Science & Technology A, 2013. 31(5).
52. Lin, H., et al., A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nature Photonics, 2019. 13(4): p. 270-276.
53. Cupo, A., et al., Periodic arrays of phosphorene nanopores as antidot lattices with tunable properties. ACS nano, 2017. 11(7): p. 7494-7507.
54. Wu, Y., et al., 200 GHz maximum oscillation frequency in CVD graphene radio frequency transistors. ACS applied materials & interfaces, 2016. 8(39): p. 25645-25649.
55. Ye, Y., et al., A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells. Nanoscale, 2011. 3(4): p. 1477-1481.
56. Pak, Y., et al., Large‐Area Fabrication of Periodic Sub‐15 nm‐Width Single‐Layer Graphene Nanorings. Advanced Materials, 2013. 25(2): p. 199-204.
57. Liang, X., et al., Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano letters, 2010. 10(7): p. 2454-2460.
58. Lin, K.-T., et al., Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nature communications, 2020. 11(1): p. 1389.
59. Guo, Y., et al., Additive manufacturing of patterned 2D semiconductor through recyclable masked growth. Proceedings of the National Academy of Sciences, 2019. 116(9): p. 3437-3442.
60. Zhang, C., et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nature communications, 2019. 10(1): p. 1795.
61. Kelly, A.G., et al., All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science, 2017. 356(6333): p. 69-73.
62. Stanford, M.G., et al., Tungsten Diselenide Patterning and Nanoribbon Formation by Gas‐Assisted Focused‐Helium‐Ion‐Beam‐Induced Etching. Small Methods, 2017. 1(4): p. 1600060.
63. Liu, X., et al., Scanning Probe Nanopatterning and Layer‐by‐Layer Thinning of Black Phosphorus. Advanced Materials, 2017. 29(1): p. 1604121.
64. Rani, E. and L.S. Wong, High‐Resolution Scanning Probe Nanolithography of 2D Materials: Novel Nanostructures. Advanced Materials Technologies, 2019. 4(7): p. 1900181.
65. Son, J.G., et al., Sub‐10 nm Graphene Nanoribbon Array Field‐Effect Transistors Fabricated by Block Copolymer Lithography. Advanced Materials, 2013. 25(34): p. 4723-4728.
66. Han, G.G., et al., Photoluminescent arrays of nanopatterned monolayer MoS2. Advanced functional materials, 2017. 27(45): p. 1703688.
67. Abbas, A.N., et al., Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography. ACS nano, 2014. 8(2): p. 1538-1546.
68. Shin, Y.-S., et al., High-mobility graphene nanoribbons prepared using polystyrene dip-pen nanolithography. Journal of the American Chemical Society, 2011. 133(15): p. 5623-5625.
69. Tapaszto, L., et al., Nat. Nanotechnol. Nat. Nanotechnol, 2008. 3(397).
70. Yu, W.J., et al., Synthesis of edge-closed graphene ribbons with enhanced conductivity. Acs Nano, 2010. 4(9): p. 5480-5486.
71. Sprinkle, M., et al., Rubio^ Roy. M., Zhang, B., Wu, X., Berger, C., de Heer, WA, Scalable templated growth of graphene nanoribbons on SiC. Nat Nanotechnol, 2010. 5: p. 727.
72. Martin-Fernandez, I.i., D. Wang, and Y. Zhang, Direct growth of graphene nanoribbons for large-scale device fabrication. Nano letters, 2012. 12(12): p. 6175-6179.
73. Kato, T. and R. Hatakeyama, Site-and alignment-controlled growth of graphene nanoribbons from nickel nanobars. Nature nanotechnology, 2012. 7(10): p. 651-656.
74. Jacobberger, R.M., et al., Direct oriented growth of armchair graphene nanoribbons on germanium. Nature communications, 2015. 6(1): p. 8006.
75. Ago, H., et al., Lattice-oriented catalytic growth of graphene nanoribbons on heteroepitaxial nickel films. ACS nano, 2013. 7(12): p. 10825-10833.
76. Sokolov, A.N., et al., Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition. Nature communications, 2013. 4(1): p. 2402.
77. Kosynkin, D., A. Higginbotham, and A. Sinitskii, JR 90 Lomeda, A. Dimiev, BK Price and JM Tour. Nature, 2009. 458: p. 872.
78. Liu, G., et al., Epitaxial graphene nanoribbon array fabrication using BCP-assisted nanolithography. ACS nano, 2012. 6(8): p. 6786-6792.
79. Wang, X. and H. Dai, Etching and narrowing of graphene from the edges. Nature chemistry, 2010. 2(8): p. 661-665.
80. Xie, G., et al., Graphene edge lithography. Nano letters, 2012. 12(9): p. 4642-4646.
81. Abramova, V., A.S. Slesarev, and J.M. Tour, Meniscus-mask lithography for narrow graphene nanoribbons. ACS nano, 2013. 7(8): p. 6894-6898.
82. Safron, N.S., et al., Barrier‐guided growth of micro‐and nano‐structured graphene. Advanced Materials, 2012. 24(8): p. 1041-1045.
83. Kang, C.G., et al., Characteristics of CVD graphene nanoribbon formed by a ZnO nanowire hardmask. Nanotechnology, 2011. 22(29): p. 295201.
84. Xu, W., et al., Rapid fabrication of designable large‐scale aligned graphene nanoribbons by electro‐hydrodynamic Nanowire Lithography. Advanced Materials, 2014. 26(21): p. 3459-3464.
85. Wong, A.K.-K., Resolution enhancement techniques in optical lithography. Vol. 47. 2001: SPIE press.
86. Hsieh, Y.P., Y.J. Chiu, and M. Hofmann, Enhancing CVD graphene''s inter-grain connectivity by a graphite promoter. Nanoscale, 2015. 7(46): p. 19403-7.
87. Jung, W.-Y., et al. Patterning with amorphous carbon spacer for expanding the resolution limit of current lithography tool. in Optical Microlithography XX. 2007. Spie.
88. Bencher, C., et al. 22nm half-pitch patterning by CVD spacer self alignment double patterning (SADP). in Optical Microlithography XXI. 2008. SPIE.
89. Flanders, D. and N. Efremow, Generation of< 50 nm period gratings using edge defined techniques. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 1983. 1(4): p. 1105-1108.
90. Hyatt, M., et al. Anti-spacer double patterning. in Advances in Patterning Materials and Processes XXXI. 2014. SPIE.
91. Jeong, E., et al. Double patterning in lithography for 65nm node with oxidation process. in Optical Microlithography XXI. 2008. SPIE.
92. Ban, Y. and D.Z. Pan, Self-aligned double-patterning layout decomposition for two-dimensional random metals for sub-10-nm node design. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2015. 14(1): p. 011004-011004.
93. Smeltzer, W., Oxidation of aluminum in the temperature range 400–600 C. Journal of the electrochemical society, 1956. 103(4): p. 209.
94. Charlesby, A., Ionic current and film growth of thin oxide layers on aluminium. Proceedings of the Physical Society. Section B, 1953. 66(4): p. 317.
95. Hart, S.M., D.K. Smith, and D.D. Allred. Retardation of the oxidation of aluminum thin films in low-oxygen and cryogenic environments. in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation IV. 2020. SPIE.
96. Hamada, M., et al., Hall-effect mobility enhancement of sputtered MoS2 film by sulfurization even through Al2O3 passivation film simultaneously preventing oxidation. Japanese Journal of Applied Physics, 2020. 59(10): p. 105501.
97. Nguyen, H.-T., et al., Edge-trimmed nanogaps in 2D Materials for robust, scalable, and tunable lateral tunnel junctions. Nanomaterials, 2021. 11(4): p. 981.
98. Beebe, J.M., et al., Transition from direct tunneling to field emission in metal-molecule-metal junctions. Physical review letters, 2006. 97(2): p. 026801.
99. Lundgren, P. and M. Andersson, Temperature dependence confirmation of tunneling through 2–6 nm silicon dioxide. Solid-State Electronics, 1996. 39(8): p. 1143-1147.
100. Choi, M.S., et al., Recent Progress in 1D Contacts for 2D‐Material‐Based Devices. Advanced Materials, 2022. 34(39): p. 2202408.
101. Shetty, N., et al., Scalable Fabrication of Edge Contacts to 2D Materials: Implications for Quantum Resistance Metrology and 2D Electronics. ACS Applied Nano Materials, 2023. 6(7): p. 6292-6298.
102. Nguyen, H.T., et al., 2D Material‐Enabled Optical Rectennas with Ultrastrong Light‐Electron Coupling. Small, 2022. 18(37): p. 2202199.
103. Ryu, S., et al., Raman spectroscopy of lithographically patterned graphene nanoribbons. ACS nano, 2011. 5(5): p. 4123-4130.
104. Cançado, L., et al., Anisotropy of the Raman spectra of nanographite ribbons. Physical review letters, 2004. 93(4): p. 047403.
105. Grüneis, A., et al., Inhomogeneous optical absorption around the K point in graphite and carbon nanotubes. Physical Review B, 2003. 67(16): p. 165402.
106. Lee, J.E., et al., Optical separation of mechanical strain from charge doping in graphene. Nat Commun, 2012. 3: p. 1024.
107. Chang, K.-W., et al., Increasing the doping efficiency by surface energy control for ultra-transparent graphene conductors. Scientific reports, 2017. 7(1): p. 9052.
108. Banerjee, S.K., et al., Bilayer pseudospin field-effect transistor (BiSFET): A proposed new logic device. IEEE Electron Device Letters, 2008. 30(2): p. 158-160.
109. König, E., P. Coleman, and A.M. Tsvelik, Spin magnetometry as a probe of stripe superconductivity in twisted bilayer graphene. Physical Review B, 2020. 102(10): p. 104514.
110. Yankowitz, M., et al., Tuning superconductivity in twisted bilayer graphene. Science, 2019. 363(6431): p. 1059-1064.
111. Liang, X. and S. Wi, Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons. ACS nano, 2012. 6(11): p. 9700-9710.
112. Singh, M., et al., Chemical vapor deposition merges MoS 2 grains into high-quality and centimeter-scale films on Si/SiO 2. RSC advances, 2022. 12(10): p. 5990-5996.
113. Yao, Y.-C., et al., Nitrogen Pretreatment of Growth Substrates for Vacancy-Saturated MoS2. ACS Applied Materials & Interfaces, 2023.
114. Mootheri, V., et al., Understanding ambipolar transport in MoS2 field effect transistors: the substrate is the key. Nanotechnology, 2021. 32(13): p. 135202.
115. Chen, Z., et al., Synthesis of graphene nanoribbons by ambient-pressure chemical vapor deposition and device integration. Journal of the American Chemical Society, 2016. 138(47): p. 15488-15496.
116. Bennett, P.B., et al., Bottom-up graphene nanoribbon field-effect transistors. Applied Physics Letters, 2013. 103(25).
117. Wang, B., et al., High-k gate dielectrics for emerging flexible and stretchable electronics. Chemical reviews, 2018. 118(11): p. 5690-5754.
118. Huang, J.-K., et al., High-κ perovskite membranes as insulators for two-dimensional transistors. Nature, 2022. 605(7909): p. 262-267.
119. Yang, S., et al., Gate Dielectrics Integration for 2D Electronics: Challenges, Advances, and Outlook. Advanced Materials, 2023. 35(18): p. 2207901.
120. Liu, D., et al., Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation. Nature communications, 2019. 10(1): p. 1188.
121. Illarionov, Y.Y., et al., Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nature Electronics, 2019. 2(6): p. 230-235.
122. Kot, M., et al., Room-Temperature Atomic-Layer-Deposited Al(2) O(3) Improves the Efficiency of Perovskite Solar Cells over Time. ChemSusChem, 2018. 11(20): p. 3640-3648.
123. Suk, J.W., et al., Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS nano, 2011. 5(9): p. 6916-6924.
124. Zhu, C., B.J. Cho, and M.F.J.C.V.D. Li, Atomic Layer Deposited High‐κ Films and Their Role in Metal‐Insulator‐Metal Capacitors for Si RF/Analog Integrated Circuit Applications. 2006. 12(2‐3): p. 165-171.
125. George, S.M.J.C.r., Atomic layer deposition: an overview. 2010. 110(1): p. 111-131.
126. Banerjee, P., et al., Nanotubular metal–insulator–metal capacitor arrays for energy storage. 2009. 4(5): p. 292-296.
127. Malek, G.A., et al., Atomic layer deposition of Al-doped ZnO/Al2O3 double layers on vertically aligned carbon nanofiber arrays. 2014. 6(9): p. 6865-6871.
128. Johnson, R.W., A. Hultqvist, and S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications. Materials today, 2014. 17(5): p. 236-246.
129. Lim, J.W., J.K. Mun, and S.J. Yun, Improved stability of electrical properties of nitrogen-added Al2O3 films grown by PEALD as gate dielectric. Materials Research Bulletin, 2016. 83: p. 597-602.
130. Rontu, V., et al., Elastic and fracture properties of free-standing amorphous ALD Al2O3 thin films measured with bulge test. Materials Research Express, 2018. 5(4): p. 046411.
131. Borhade, P.S., et al., Self-Expansion Based Multi-Patterning for 2D Materials Fabrication beyond the Lithographical Limit. Small, 2023.
132. Kumar, V., et al., Estimation of number of graphene layers using different methods: a focused review. Materials, 2021. 14(16): p. 4590.
133. Ali, R., et al., Thermo-optical properties of thin-film TiO2–Al2O3 bilayers fabricated by atomic layer deposition. Nanomaterials, 2015. 5(2): p. 792-803.
134. Garces, N., et al., Epitaxial graphene surface preparation for atomic layer deposition of Al2O3. Journal of Applied Physics, 2011. 109(12).
135. Nguyen, Y., et al., Characterizing carrier transport in nanostructured materials by force-resolved microprobing. Scientific Reports, 2020. 10(1): p. 14177.
136. Acharya, J., et al., Probing the dielectric properties of ultrathin Al/Al2O3/Al trilayers fabricated using in situ sputtering and atomic layer deposition. 2018. 10(3): p. 3112-3120.
137. Xuan, Y., H.-C. Lin, and D.Y. Peide, Simplified Surface Preparation for GaAs Passivation Using Atomic Layer-Deposited High-$\\kappa $ Dielectrics. IEEE Transactions on electron devices, 2007. 54(8): p. 1811-1817.
138. Tang, Z., et al., Electrical measurements of voltage stressed Al2O3/GaAs MOSFET. Microelectronics Reliability, 2007. 47(12): p. 2082-2087.
139. Giambra, M.A., et al., Graphene field-effect transistors employing different thin oxide films: A comparative study. ACS omega, 2019. 4(1): p. 2256-2260.
140. Huang, T.-J., et al., Investigating the Device Performance Variation of a Buried Locally Gated Al/Al2O3 Graphene Field-Effect Transistor Process. Applied Sciences, 2023. 13(12): p. 7201.
141. Kim, S., et al., Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Applied Physics Letters, 2009. 94(6).
142. Li, W., et al., Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nature Electronics, 2019. 2(12): p. 563-571.
143. Zheng, L., et al., Improvement of Al2O3 films on graphene grown by atomic layer deposition with pre-H2O treatment. ACS applied materials & interfaces, 2014. 6(10): p. 7014-7019.
144. Schilirò, E., et al., Recent advances in seeded and seed-layer-free atomic layer deposition of high-K dielectrics on graphene for electronics. C, 2019. 5(3): p. 53.
145. Zhang, Y., et al., Direct growth of high-quality Al2O3 dielectric on graphene layers by low-temperature H2O-based ALD. Journal of Physics D: Applied Physics, 2014. 47(5): p. 055106.
146. Yang, X., et al. Characterization of Al2O3 gate dielectric for graphene electronics on flexible substrates. in 2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications. 2016. IEEE.
147. Choi, A., et al., Residue-free photolithographic patterning of graphene. Chemical Engineering Journal, 2022. 429: p. 132504.
148. Kang, M.H., et al., Mechanical robustness of graphene on flexible transparent substrates. ACS Applied Materials & Interfaces, 2016. 8(34): p. 22506-22515.
149. Bruna, M., et al., Doping dependence of the Raman spectrum of defected graphene. Acs Nano, 2014. 8(7): p. 7432-7441.
150. Perevalov, T. and V. Gritsenko. Electronic structure of oxygen vacancy and poly-vacancy in α-and γ-Al 2 O 3. in 2010 27th International Conference on Microelectronics Proceedings. 2010. IEEE.
151. Yang, H., et al., An Al2O3 gating substrate for the greater performance of field effect transistors based on two-dimensional materials. Nanomaterials, 2017. 7(10): p. 286.
152. Habibpour, O., et al. High gain graphene field effect transistors for wideband amplifiers. in 2014 44th European Microwave Conference. 2014. IEEE.
153. Snure, M., et al., Two-dimensional BN buffer for plasma enhanced atomic layer deposition of Al2O3 gate dielectrics on graphene field effect transistors. Scientific Reports, 2020. 10(1): p. 14699.
154. Fisichella, G., et al., Interface electrical properties of Al2O3 thin films on graphene obtained by atomic layer deposition with an in situ seedlike layer. ACS Applied Materials & Interfaces, 2017. 9(8): p. 7761-7771.
155. Yang, X., et al. Test structures for evaluating Al 2 O 3 dielectrics for graphene field effect transistors on flexible substrates. in 2018 IEEE International Conference on Microelectronic Test Structures (ICMTS). 2018. IEEE.
156. Yu, T., et al., Raman mapping investigation of graphene on transparent flexible substrate: The strain effect. The Journal of Physical Chemistry C, 2008. 112(33): p. 12602-12605.
157. Hempel, M., et al., A novel class of strain gauges based on layered percolative films of 2D materials. Nano letters, 2012. 12(11): p. 5714-5718.
158. Mohiuddin, T., et al., Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Physical Review B, 2009. 79(20): p. 205433.
159. Wang, Y.-Y., et al., Two-dimensional mechano-thermoelectric heterojunctions for self-powered strain sensors. 2021. 21(16): p. 6990-6997.
160. Bae, S.-H., et al., Graphene-based transparent strain sensor. Carbon, 2013. 51: p. 236-242.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92694-
dc.description.abstract本論文包括兩個主要目標。第一部分的目標為推動奈米尺度下的二維材料裝置的製成過程、材料選擇、以及表徵分析,並且突破光刻顯影的限制。二維材料被認為是高縮放裝置中矽電晶體通道的有前途的繼承者,促使對於要了解它們在奈米尺度下的行為的廣泛研究。目前的研究被侷限於直接圖案化的方法,進而限制其解析度以及引入缺陷。本論文呈現一個自膨脹多重圖案化過程,展現其能夠以低複雜度大規模的製造出具有前所未有的精密度的二維材料特徵的淺力。該過程結合了心軸的光刻顯影以及自下而上的自膨脹,得到低了光刻顯影極限一個數量級的解析度。自膨脹雙圖案化(SEDP)過程的深入表徵分析揭露了透過自我限制和溫度控制的氧化過程對臨界尺寸進行奈米級的精準控制。結果證實 SEDP 過程可以保留二維材料的品質和型態,這一點已得到高解析度顯微鏡和光譜學的證實。此創新方法為研究用於未來電子裝置的高性能、超大規模二維材料元件開闢了新途徑。第二部分探討了為基於二維材料的晶體通道形成高性能閘所面臨的挑戰,其困難來自於要沉積具有足夠質量以及可控厚度的電介質。本論文通過展示凡德瓦整合的一個獨立的 Al2O3 介電膜提出了一種解決方案,將其作為一種簡單、可擴展且功能強大的閘介電層。我們開發了一種用於非結晶特氧化鋁層的濕轉移法,其等效氧化物厚度(EOT)在單納米範圍內可做微調。電學表徵分析證實了電介質的高崩潰電場和低漏電性質。與二維材料電晶體的整合顯示了高性能。電介膜的晶圓大小均勻性使其能大規模的成為具有良好穩健性和長期穩定度的柔性裝置。這項研究顯著地有助於解決基於二維材料的電子元件所面臨的挑戰並為了提高元件性能和靈活性提供了實用的解決方案。zh_TW
dc.description.abstractThe dissertation comprises two primary objectives. In the first part, the goal is to advance the fabrication process, material selection, and characterization of nanoscale devices made from 2D materials, surpassing the limitations of lithography. 2D materials are considered as promising alternatives to silicon channel transistors in ultimately scaled devices, significant research efforts are needed to understand their behavior at the nanoscale. Current research has been constrained by direct patterning approaches, limiting resolution and introducing defects. The dissertation presents a self-expansion-based multi-patterning approach, showcasing its potential for the fabrication of 2D material features with low complexity and unprecedented precision at a large scale. The method involves combining lithographical patterning of a mandrel with bottom-up self-expansion process, achieving pattern resolution one order of the magnitude below the lithographic limits. In-depth characterization of the self-expansion double patterning (SEDP) process reveals nanometer-precision manipulation of critical dimensions through a self-aligned and temperature-controlled surface oxidation process. Results demonstrates that the SEDP process can restore the morphology and quality of 2D materials, as confirmed by optical spectroscopy and high-resolution microscopy. This innovative approach opens new routes for research in high-performance, ultra-scaled 2D material devices based next generation future electronics. The second part of the dissertation addresses the challenge of forming a high-performance gate terminal for 2D materials-based transistors, given difficulties in depositing a dielectric with sufficient quality and controllable thickness. The dissertation proposes a solution by demonstrating the van-der-Waals integration of a free-standing Al2O3 dielectric membrane, presenting it as a facile, scalable, and powerful gate dielectric. A process is developed for the wet transfer of an amorphous alumina layer with a finely adjustable equivalent oxide thickness (EOT) in the single nanometer range. Electrical characterization confirms the high breakdown field and low leakage of the dielectric. Integration into 2D materials transistors reveals high performance. The wafer-scale uniformity of the dielectric membrane allows the formation of large-scale flexible devices with good robustness and long-term stability. This research significantly contributes to addressing challenges in 2D materials-based electronics and offers practical solutions for enhancing device performance and flexibilityen
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-07T16:05:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-06-07T16:05:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCertificate of Dissertation Approval from the Oral Defense Committee……………………..I
Acknowledgement……………………………………………………………………………II
Abstract (Chinese Version)…………………………………………………………………...IV
Abstract (English Version)…………………………………………………………………..V
List of Contents………………………………………………………………………………VI
List of Figures………………………………………………………………………………..IX
List of Tables……………………………………………………………………………….XIV
Chapter 1. Introduction……………………………………………………………………..1
1.1 Two-dimensional (2D) materials………………………………………………..1
1.2 Graphene………………………………………………………………………...3
1.3 Molybdenum disulfide (MoS2)………………………………………………….6
1.4 2D material Nanoribbons………………………………………………………..8
1.5 Background…………………………………………………………………….10
1.6 Challenges of 2D materials in the electronic applications……………………..13
1.7 Opportunities of 2D materials in future electronics……………………………15
1.8 Thesis Overview………………………………………………………………..16
Chapter 2. Experiments……………………………………………………………………19
2.1 Synthesis of 2D materials………………………………………………………20
2.2 Supporting Layer Deposition………………………………………………….........22
2.3 Etching metal substrate………………………………………………………..........23
2.4 Dry Etch Plasma Treatment………………………………………………………...25
2.5 Photolithography…………………………………………………………………...29
2.6 Fabrication of Graphene Nanoribbon (GNR) field-effect transistor (FET) device...30
2.7 Transfer process of GNR on TEM grid…………………………………………….32
2.8 Fabrication of MoS2 Nanosheet field-effect transistor (FET) device……………....33
2.9 Transfer process of MoS2 nanosheet on Si/SiO2 substrate………………………....35
2.10 Atomic layer deposition (ALD) for growth of dielectric membrane……………...35
2.11 Fabrication of top-gate graphene FET on flexible PET substrate………………...37
2.12 Raman Spectroscopy……………………………………………………………...39
2.13 Atomic Force Microscopy (AFM)………………………………………………..41
2.14 Scanning Electron Microscopy (SEM)…………………………………………...41
2.15 Transmission Electron Microscopy (TEM)………………………………………43
Chapter 3. Self-expansion based multi-patterning for 2D materials fabrication beyond the lithographical limit…………………………………………………………………………….45
3.1 Introduction………………………………………………………………………...45
3.2 Experiments………………………………………………………………………...49
3.3 Result and Discussion……………………………………………………………...50
3.4 Conclusion………………………………………………………………………….66
Chapter 4. Transferrable alumina membranes as high-performance dielectric for flexible 2D materials devices……………………………………………………………………………….67
4.1 Introduction………………………………………………………………………………….67
4.2 Experiments…………………………………………………………………………………69
4.2.1 ALD growth of Al2O3…………………………………………………….69
4.2.2 Fabrication of top-gate graphene FET on flexible PET substrate………..69
4.2.3 Material Characterization………………………………………………...70
4.2.4 Electrical transport measurements………………………………………..71
4.3 Results and Discussion…………………………………………………………………….71
4.4 Conclusion………………………………………………………………………………….82
Chapter 5. Conclusion and Outlook…………………………………………………………84
References ……………………………………………………………………………………..86
Publications and conferences…………………………………………………………………..103
-
dc.language.isoen-
dc.subject二維材料超大規模奈米片電晶體zh_TW
dc.subject多重圖案化zh_TW
dc.subject自膨脹雙圖案化(SEDP)zh_TW
dc.subject氧化鋁介電膜zh_TW
dc.subject柔性裝置zh_TW
dc.subjectalumina dielectric membraneen
dc.subject2D materials ultrascaled nanosheet transistorsen
dc.subjectmulti-patterningen
dc.subjectflexible devicesen
dc.subjectself-expansion double patterning (SEDP)en
dc.title基於超尺度二維材料的先進電子元件zh_TW
dc.titleUltra-scaled 2D materials based advanced electronic devicesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.coadvisor謝雅萍zh_TW
dc.contributor.coadvisorYa-Ping Hsiehen
dc.contributor.oralexamcommittee陳永芳;梁啟德;丁初稷zh_TW
dc.contributor.oralexamcommitteeYang-Fang Chen;Che-Te Liang;Chu-Ji Tingen
dc.subject.keyword二維材料超大規模奈米片電晶體,多重圖案化,自膨脹雙圖案化(SEDP),氧化鋁介電膜,柔性裝置,zh_TW
dc.subject.keyword2D materials ultrascaled nanosheet transistors,multi-patterning,self-expansion double patterning (SEDP),alumina dielectric membrane,flexible devices,en
dc.relation.page104-
dc.identifier.doi10.6342/NTU202400825-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-03-29-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf3.63 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved