Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92693
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭大智zh_TW
dc.contributor.advisorTa-Chih Hsiaoen
dc.contributor.author蘇奕翰zh_TW
dc.contributor.authorYi-Han Suen
dc.date.accessioned2024-06-05T16:08:20Z-
dc.date.available2024-06-06-
dc.date.copyright2024-06-05-
dc.date.issued2024-
dc.date.submitted2024-06-05-
dc.identifier.citationAndreae, M. O., & Gelencsér, A. (2006). Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmospheric Chemistry and Physics, 6(10), 3131-3148. https://doi.org/10.5194/acp-6-3131-2006
Barreira, L. M. F., Helin, A., Aurela, M., Teinilä, K., Friman, M., Kangas, L., Niemi, J. V., Portin, H., Kousa, A., & Pirjola, L. (2021). In-depth characterization of submicron particulate matter inter-annual variations at a street canyon site in northern Europe. Atmospheric Chemistry and Physics, 21(8), 6297-6314. https://doi.org/10.5194/acp-21-6297-2021
Beddows, D. C. S., Dall''osto, M., & Harrison, R. M. (2010). An enhanced procedure for the merging of atmospheric particle size distribution data measured using electrical mobility and time-of-flight analysers. Aerosol Science and Technology, 44(11), 930-938. https://doi.org/10.1080/02786826.2010.502159
Benedetti, A., Reid, J. S., Knippertz, P., Marsham, J. H., Di Giuseppe, F., Rémy, S., Basart, S., Boucher, O., Brooks, I. M., Menut, L., Mona, L., Laj, P., Pappalardo, G., Wiedensohler, A., Baklanov, A., Brooks, M., Colarco, P. R., Cuevas, E., da Silva, A., . . . Terradellas, E. (2018). Status and future of numerical atmospheric aerosol prediction with a focus on data requirements. Atmospheric Chemistry and Physics, 18(14), 10615-10643. https://doi.org/10.5194/acp-18-10615-2018
Bian, Y., Zhao, C., Xu, W., Zhao, G., Tao, J., & Kuang, Y. (2017). Development and validation of a CCD-laser aerosol detective system for measuring the ambient aerosol phase function. Atmospheric measurement techniques, 10(6), 2313-2322. https://doi.org/10.5194/amt-10-2313-2017
Bohren, C. F., & Huffman, D. R. (2008). Absorption and scattering of light by small particles. John Wiley & Sons.
Buonanno, G., Dell''Isola, M., Stabile, L., & Viola, A. (2009). Uncertainty budget of the SMPS–APS system in the measurement of PM1, PM2.5, and PM10. Aerosol Science and Technology, 43(11), 1130-1141. https://doi.org/10.1080/02786820903204078
Calvo, A. I., Alves, C., Castro, A., Pont, V., Vicente, A. M., & Fraile, R. (2013). Research on aerosol sources and chemical composition: past, current and emerging issues. Atmospheric Research, 120, 1-28. https://doi.org/10.1016/j.atmosres.2012.09.021
Cao, J.-j., Wang, Q.-y., Chow, J. C., Watson, J. G., Tie, X.-x., Shen, Z.-x., Wang, P., & An, Z.-s. (2012). Impacts of aerosol compositions on visibility impairment in Xi''an, China. Atmospheric Environment, 59, 559-566. https://doi.org/10.1016/j.atmosenv.2012.05.036
Cappa, C. D., Kolesar, K. R., Zhang, X., Atkinson, D. B., Pekour, M. S., Zaveri, R. A., Zelenyuk, A., & Zhang, Q. (2016). Understanding the optical properties of ambient sub- and supermicron particulate matter: results from the CARES 2010 field study in northern California. Atmospheric Chemistry and Physics, 16(10), 6511-6535. https://doi.org/10.5194/acp-16-6511-2016
Chen, C., Zhang, H., Li, H., Wu, N., & Zhang, Q. (2020). Chemical characteristics and source apportionment of ambient PM1.0 and PM2.5 in a polluted city in North China plain. Atmospheric Environment, 242, 117867. https://doi.org/10.1016/j.atmosenv.2020.117867
Chen, D., Zhao, Y., Zhang, J., Yu, H., & Yu, X. (2020). Characterization and source apportionment of aerosol light scattering in a typical polluted city in the Yangtze River Delta, China. Atmospheric Chemistry and Physics, 20(17), 10193-10210. https://doi.org/10.5194/acp-20-10193-2020
Chen, J., Yin, J., Zang, L., Zhang, T., & Zhao, M. (2019). Stacking machine learning model for estimating hourly PM2.5 in China based on Himawari 8 aerosol optical depth data. Science of the Total Environment, 697, 134021. https://doi.org/10.1016/j.scitotenv.2019.134021
Cheng, Y. F., Wiedensohler, A., Eichler, H., Su, H., Gnauk, T., Brüggemann, E., Herrmann, H., Heintzenberg, J., Slanina, J., & Tuch, T. (2008). Aerosol optical properties and related chemical apportionment at Xinken in Pearl River Delta of China. Atmospheric Environment, 42(25), 6351-6372. https://doi.org/10.1016/j.atmosenv.2008.02.034
Chow, J. C., Lowenthal, D. H., Chen, L. W., Wang, X., & Watson, J. G. (2015). Mass reconstruction methods for PM2.5: a review. Air Quality, Atmosphere & Health, 8(3), 243-263. https://doi.org/10.1007/s11869-015-0338-3
DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., & Jimenez, J. L. (2004). Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. part 1: theory. Aerosol Science and Technology, 38(12), 1185-1205. https://doi.org/10.1080/027868290903907
Dedrick, J. L., Saliba, G., Williams, A. S., Russell, L. M., & Lubin, D. (2022). Retrieval of the sea spray aerosol mode from submicron particle size distributions and supermicron scattering during LASIC. Atmospheric measurement techniques, 15(14), 4171-4194. https://doi.org/10.5194/amt-15-4171-2022
Dibb, J. E., Talbot, R. W., Scheuer, E. M., Seid, G., Avery, M. A., & Singh, H. B. (2003). Aerosol chemical composition in Asian continental outflow during the TRACE-P campaign: comparison with PEM-West B. Journal of Geophysical Research: Atmospheres, 108(D21). https://doi.org/10.1029/2002JD003111
Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D., Deuzé, J. L., Ducos, F., Sinyuk, A., & Lopatin, A. (2011). Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmospheric measurement techniques, 4(5), 975-1018. https://doi.org/10.5194/amt-4-975-2011
Espinosa, W. R., Martins, J. V., Remer, L. A., Dubovik, O., Lapyonok, T., Fuertes, D., Puthukkudy, A., Orozco, D., Ziemba, L., Thornhill, K. L., & Levy, R. (2019). Retrievals of aerosol size distribution, spherical fraction, and complex refractive index from airborne in situ angular light scattering and absorption measurements. Journal of Geophysical Research: Atmospheres, 124(14), 7997-8024. https://doi.org/10.1029/2018JD030009
Feng, Y., Ramanathan, V., & Kotamarthi, V. R. (2013). Brown carbon: a significant atmospheric absorber of solar radiation? Atmospheric Chemistry and Physics, 13(17), 8607-8621. https://doi.org/10.5194/acp-13-8607-2013
Hand, J. L., & Kreidenweis, S. M. (2002). A new method for retrieving particle refractive index and effective density from aerosol size distribution data. Aerosol Science and Technology, 36(10), 1012-1026. https://doi.org/10.1080/02786820290092276
Hand, J. L., & Malm, W. C. (2007). Review of the IMPROVE equation for estimating ambient light extinction coefficients. Journal of the Air & Waste Management Association.
He, Q., Bluvshtein, N., Segev, L., Meidan, D., Flores, J. M., Brown, S. S., Brune, W., & Rudich, Y. (2018). Evolution of the complex refractive index of secondary organic aerosols during atmospheric aging. Environmental science & technology, 52(6), 3456-3465. https://doi.org/10.1021/acs.est.7b05742
Huang, Y., Liu, C., Yao, B., Yin, Y., & Bi, L. (2020). Scattering matrices of mineral dust aerosols: a refinement of the refractive index impact. Atmospheric Chemistry and Physics, 20(5), 2865-2876. https://doi.org/10.5194/acp-20-2865-2020
Jiang, Y., Xin, J., Wang, Y., Tang, G., Zhao, Y., Jia, D., Zhao, D., Wang, M., Dai, L., & Wang, L. (2021). The thermodynamic structures of the planetary boundary layer dominated by synoptic circulations and the regular effect on air pollution in Beijing. Atmospheric Chemistry and Physics, 21(8), 6111-6128. https://doi.org/10.5194/acp-21-6111-2021
Kassianov, E., Barnard, J., Pekour, M., Berg, L. K., Shilling, J., Flynn, C., Mei, F., & Jefferson, A. (2014). Simultaneous retrieval of effective refractive index and density from size distribution and light-scattering data: weakly absorbing aerosol. Atmospheric measurement techniques, 7(10), 3247-3261. https://doi.org/10.5194/amt-7-3247-2014
Khlystov, A., Stanier, C., & Pandis, S. N. (2004). An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Science and Technology, 38(sup1), 229-238. https://doi.org/10.1080/02786820390229543
Kirchstetter, T. W., Novakov, T., & Hobbs, P. V. (2004). Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. Journal of Geophysical Research: Atmospheres, 109(D21). https://doi.org/10.1029/2004JD004999
Kulkarni, P., Baron, P. A., & Willeke, K. (2011). Aerosol measurement: principles, techniques, and applications. John Wiley & Sons.
Kwon, H. S., Ryu, M. H., & Carlsten, C. (2020). Ultrafine particles: unique physicochemical properties relevant to health and disease. Experimental & molecular medicine, 52(3), 318-328. https://doi.org/10.1038/s12276-020-0405-1
Li, L., Dubovik, O., Derimian, Y., Schuster, G. L., Lapyonok, T., Litvinov, P., Ducos, F., Fuertes, D., Chen, C., & Li, Z. (2019). Retrieval of aerosol components directly from satellite and ground-based measurements. Atmospheric Chemistry and Physics, 19(21), 13409-13443. https://doi.org/10.5194/acp-19-13409-2019
Li, Z., Wei, Y., Zhang, Y., Xie, Y., Li, L., Li, K., Ma, Y., Sun, X., Zhao, W., & Gu, X. (2018). Retrieval of atmospheric fine particulate density based on merging particle size distribution measurements: multi‐instrument observation and quality control at shouxian. Journal of Geophysical Research: Atmospheres, 123(21), 12474-12488. https://doi.org/10.1029/2018jd028956
Liu, A., Wang, H., Cui, Y., Shen, L., Yin, Y., Wu, Z., Guo, S., Shi, S., Chen, K., Zhu, B., Wang, J., & Kong, X. (2020). Characteristics of aerosol during a severe haze-fog episode in the yangtze river delta: particle size distribution, chemical composition, and optical properties. Atmosphere, 11(1), 56. https://doi.org/10.3390/atmos11010056
Liu, C., Chung, C. E., Yin, Y., & Schnaiter, M. (2018). The absorption Angstrom exponent of black carbon: from numerical aspects. Atmospheric Chemistry and Physics, 18(9), 6259-6273. https://doi.org/10.5194/acp-18-6259-2018
Liu, C., Chung, C. E., Yin, Y., & Schnaiter, M. (2018). The absorption Ångström exponent of black carbon: from numerical aspects. Atmospheric Chemistry and Physics, 18(9), 6259-6273. https://doi.org/10.5194/acp-18-6259-2018
Liu, X., Turner, J. R., Hand, J. L., Schichtel, B. A., & Martin, R. V. (2022). A global‐scale mineral dust equation. Journal of Geophysical Research: Atmospheres, 127(18), e2022JD036937. https://doi.org/10.1029/2022JD036937
Maring, H., Savoie, D. L., Izaguirre, M. A., Custals, L., & Reid, J. S. (2003). Mineral dust aerosol size distribution change during atmospheric transport. Journal of Geophysical Research: Atmospheres, 108(D19). https://doi.org/10.1029/2002JD002536
Michel Flores, J., Bar-Or, R. Z., Bluvshtein, N., Abo-Riziq, A., Kostinski, A., Borrmann, S., Koren, I., Koren, I., & Rudich, Y. (2012). Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties. Atmospheric Chemistry and Physics, 12(12), 5511-5521. https://doi.org/10.5194/acp-12-5511-2012
Nakao, S., Tang, P., Tang, X., Clark, C. H., Qi, L., Seo, E., Asa-Awuku, A., & Cocker, D. (2013). Density and elemental ratios of secondary organic aerosol: application of a density prediction method. Atmospheric Environment, 68, 273-277. https://doi.org/10.1016/j.atmosenv.2012.11.006
Ni, X., Pan, Y., Shao, P., Tian, S., Zong, Z., Gu, M., Liu, B., Liu, J., Cao, J., Sun, Q., Wang, Y., & Jiang, C. (2021). Size distribution and formation processes of aerosol water-soluble organic carbon during winter and summer in urban Beijing. Atmospheric Environment, 244, 117983. https://doi.org/10.1016/j.atmosenv.2020.117983
Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., & Sugimoto, N. (2013). Recommendations for reporting "black carbon" measurements. Atmospheric Chemistry and Physics, 13(16), 8365-8379. https://doi.org/10.5194/acp-13-8365-2013
Schmid, O., Karg, E., Hagen, D. E., Whitefield, P. D., & Ferron, G. A. (2007). On the effective density of non-spherical particles as derived from combined measurements of aerodynamic and mobility equivalent size. Journal of Aerosol Science, 38(4), 431-443. https://doi.org/10.1016/j.jaerosci.2007.01.002
Schuster, G. L., Dubovik, O., Holben, B. N., & Clothiaux, E. E. (2005). Inferring black carbon content and specific absorption from Aerosol Robotic Network (AERONET) aerosol retrievals. Journal of Geophysical Research: Atmospheres, 110(D10). https://doi.org/10.1029/2004JD004548
Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
Shamjad, P. M., Satish, R. V., Thamban, N. M., Rastogi, N., & Tripathi, S. N. (2018). Absorbing refractive index and direct radiative forcing of atmospheric brown carbon over Gangetic Plain. ACS Earth and Space Chemistry, 2(1), 31-37. https://doi.org/10.1021/acsearthspacechem.7b00074
Sinyuk, A., Torres, O., & Dubovik, O. (2003). Combined use of satellite and surface observations to infer the imaginary part of refractive index of Saharan dust. Geophysical Research Letters, 30(2). https://doi.org/10.1029/2002GL016189
Tang, M., Chan, C. K., Li, Y. J., Su, H., Ma, Q., Wu, Z., Zhang, G., Wang, Z., Ge, M., Hu, M., He, H., & Wang, X. (2019). A review of experimental techniques for aerosol hygroscopicity studies. Atmospheric Chemistry and Physics, 19(19), 12631-12686. https://doi.org/10.5194/acp-19-12631-2019
Tao, J., Zhang, L., Gao, J., Wang, H., Chai, F., & Wang, S. (2015). Aerosol chemical composition and light scattering during a winter season in Beijing. Atmospheric Environment, 110, 36-44. https://doi.org/10.1016/j.atmosenv.2015.03.037
Tao, J., Zhang, Z., Wu, Y., Zhang, L., Wu, Z., Cheng, P., Li, M., Chen, L., Zhang, R., & Cao, J. (2019). Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China. Atmospheric Chemistry and Physics, 19(13), 8471-8490. https://doi.org/10.5194/acp-19-8471-2019
Valenzuela, A., Reid, J. P., Bzdek, B. R., & Orr‐Ewing, A. J. (2018). Accuracy required in measurements of refractive index and hygroscopic response to reduce uncertainties in estimates of aerosol radiative forcing efficiency. Journal of Geophysical Research: Atmospheres, 123(12), 6469-6486. https://doi.org/10.1029/2018JD028365
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., & Bright, J. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods, 17(3), 261-272. https://doi.org/10.1038/s41592-019-0686-2
Vouitsis, I., Portugal, J., Kontses, A., Karlsson, H. L., Faria, M., Elihn, K., Juarez-Facio, A. T., Amato, F., Pina, B., & Samaras, Z. (2023). Transport-related airborne nanoparticles: sources, different aerosol modes, and their toxicity. Atmospheric Environment, 301, 119698. https://doi.org/10.1016/j.atmosenv.2023.119698
Wagner, R., Ajtai, T., Kandler, K., Lieke, K., Linke, C., Müller, T., Schnaiter, M., & Vragel, M. (2012). Complex refractive indices of Saharan dust samples at visible and near UV wavelengths: a laboratory study. Atmospheric Chemistry and Physics, 12(5), 2491-2512. https://doi.org/10.5194/acp-12-2491-2012
Wang, H., An, J., Shen, L., Zhu, B., Pan, C., Liu, Z., Liu, X., Duan, Q., Liu, X., & Wang, Y. (2014). Mechanism for the formation and microphysical characteristics of submicron aerosol during heavy haze pollution episode in the Yangtze River Delta, China. Science of the Total Environment, 490, 501-508. https://doi.org/10.1016/j.scitotenv.2014.05.009
Wang, H., Zhu, B., Shen, L., Xu, H., An, J., Xue, G., & Cao, J. (2015). Water-soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China: size-fractionated, seasonal variations and sources. Atmospheric Environment, 123, 370-379. https://doi.org/10.1016/j.atmosenv.2015.05.070
Wang, S., Crumeyrolle, S., Zhao, W., Xu, X., Fang, B., Derimian, Y., Chen, C., Chen, W., Zhang, W., Huang, Y., Deng, X., & Tong, Y. (2021). Real-time retrieval of aerosol chemical composition using effective density and the imaginary part of complex refractive index. Atmospheric Environment, 245, 117959. https://doi.org/10.1016/j.atmosenv.2020.117959
Wang, W., Lin, Y., Yang, H., Ling, W., Liu, L., Zhang, W., Lu, D., Liu, Q., & Jiang, G. (2022). Internal exposure and distribution of airborne fine particles in the human body: methodology, current understandings, and research needs. Environmental science & technology, 56(11), 6857-6869. https://doi.org/10.1021/acs.est.1c07051
Wiedensohler, A., Wiesner, A., Weinhold, K., Birmili, W., Hermann, M., Merkel, M., Müller, T., Pfeifer, S., Schmidt, A., & Tuch, T. (2018). Mobility particle size spectrometers: calibration procedures and measurement uncertainties. Aerosol Science and Technology, 52(2), 146-164. https://doi.org/10.1080/02786826.2017.1387229
Wu, T., & Boor, B. E. (2021). Urban aerosol size distributions: a global perspective. Atmospheric Chemistry and Physics, 21(11), 8883-8914. https://doi.org/10.5194/acp-21-8883-2021
Xie, Y., Liu, Z., Wen, T., Huang, X., Liu, J., Tang, G., Yang, Y., Li, X., Shen, R., Hu, B., & Wang, Y. (2019). Characteristics of chemical composition and seasonal variations of PM2.5 in Shijiazhuang, China: Impact of primary emissions and secondary formation. Science of the Total Environment, 677, 215-229. https://doi.org/10.1016/j.scitotenv.2019.04.300
Yang, G., Ren, G., Zhang, P., Xue, X., Tysa, S. K., Jia, W., Qin, Y., Zheng, X., & Zhang, S. (2021). PM2.5 influence on urban heat island (UHI) effect in Beijing and the possible mechanisms. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD035227. https://doi.org/10.1029/2021jd035227
Zhang, Y., Li, Z., Sun, Y., Lv, Y., & Xie, Y. (2018). Estimation of atmospheric columnar organic matter (OM) mass concentration from remote sensing measurements of aerosol spectral refractive indices. Atmospheric Environment, 179, 107-117. https://doi.org/10.1016/j.atmosenv.2018.02.010
Zhao, P., Du, X., Su, J., Ding, J., & Dong, Q. (2020). Aerosol hygroscopicity based on size-resolved chemical compositions in Beijing. Science of the Total Environment, 716, 137074. https://doi.org/10.1016/j.scitotenv.2020.137074
Zou, J., Liu, Z., Hu, B., Huang, X., Wen, T., Ji, D., Liu, J., Yang, Y., Yao, Q., & Wang, Y. (2018). Aerosol chemical compositions in the North China Plain and the impact on the visibility in Beijing and Tianjin. Atmospheric Research, 201, 235-246. https://doi.org/10.1016/j.atmosres.2017.09.014
Zou, J., Yang, S., Hu, B., Liu, Z., Gao, W., Xu, H., Du, C., Wei, J., Ma, Y., Ji, D., & Wang, Y. (2019). A closure study of aerosol optical properties as a function of RH using a κ-AMS-BC-Mie model in Beijing, China. Atmospheric Environment, 197, 1-13. https://doi.org/10.1016/j.atmosenv.2018.10.015
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92693-
dc.description.abstract微粒粒徑分佈(PSD)對於理解氣膠對環境以及人體健康的影響非常重要。有鑑於此,本研究在臺灣臺中地區架設IMPACT移動監測站以掃描電移動度分徑儀(SMPS)和氣動粒徑分析儀(APS)測量奈米至微米大小氣膠的PSD。然而全面理解氣膠各項性質涉及完整且廣泛的微粒粒徑分佈,故本研究建立融合技術將不同測量原理所量測的微粒粒徑分佈結合。此外,雖然氣膠的分徑化學組成也非常重要,但分徑成分的測量方法多為繁瑣且具有挑戰性。即使不進行分徑,而只測量整體的氣膠化學成分也仍有一定的限制。因此,本研究提出並測試數種微粒粒徑分佈融合方法後,以長時間觀測數據推定分徑氣膠化學組成的狀態,同時提出改善以光學量測反演氣膠化學成分的演算法。
本研究對於融合微粒粒徑分佈的數值方法進行相關討論並探討各方法的限制。在考慮到兩種不同的融合技術相關數值方法以及修正APS計數效率的影響後,最終有四種不同的融合結果。此外,將整合質量濃度量測結果至資料融合過程中,並使用適應函數進行評估,開發出優化版本的流程,且該版本也產出四種結果。融合結果顯示,在考慮到數量、表面積和體積濃度並在優化流程中套用APS修正後的演算法有最佳的表現。
本研究整合微粒粒徑分佈並經由化學物種分類所定義的物種主導時期,可以獲取分徑化學成分的概況。雖然結果顯示各化學成分的粒徑分佈與過去觀測研究類似,但此方法仍無法提供高時間解析度的分徑化學資訊,且也無法進行正確的量化分析,僅能提供定性描述。儘管有以上的限制,但其仍然具有反演分徑化學成分的潛力,且可避免複雜且繁瑣的分徑採樣過程。
此外,為反演高時間解析度之氣膠化學成分,本研究遂犧牲粒徑解析,另以光學量測訊號搭配融合後之粒徑分布進行反演。此方法涉及多種技術的結合:以測量數據模擬氣膠折射率、以融合技術計算有效密度、以體積平均混合(VAM)模型製作參數查找表以及建構不同目的之參數組合。當假設各成分質量濃度總和相等於所測得PM2.5質量濃度時,使用不同最佳化條件則得出四種不同結果,而另外四種結果則是另假設各成分質量濃度總和低於所測得PM2.5質量濃度。雖然所有反演結果對於黑碳(BC)質量濃度的估算都十分準確,但其他氣膠化學組成則不然。導致這些差異的因素可能源於1.光學折射率與微粒密度的不確定性;2.計算效能有限;3.模擬與實際折射率的差異;4.有效密度與物質密度不一致的趨勢。未來的研究應著重於改善各化學成分參數的估算、增加計算資源並以更廣泛的實驗數據驗證,或可進一步優化此演算法。
zh_TW
dc.description.abstractThe importance of Particle Size Distribution (PSD) is emphasized due to its significant role in understanding aerosol impacts on the environment and health. The IMPACT mobile monitoring station was established to measure the submicron and supermicron PSDs using a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS), respectively. Merging techniques of PSDs measured by different aerosol sizers based on different principles are crucial for comprehending aerosol properties. On the other hand, while chemical composition in aerosols is important, size-resolved measurement is challenging and cumbersome. Even without considering size-resolved measurements, there are still inherent limitations. This study proposes and tests several PSD data merging schemes, captures the general profile of size-resolved chemical composition utilizing the long-term measurement data, and refines method for retrieving chemical composition.
The research compares numerical methods for the merging process, discussing the limitations of various approaches. Four distinct merged results were obtained by employing two different numerical algorithms and considering the correction of low counting efficiency for the overlapping sizing range by SMPS and APS. Additionally, mass concentrations were integrated into this merging process using a fitness function, leading to an enhanced procedure and the production of another four refined results. The merging results demonstrated that the algorithm considering number, surface, and volume concentration with an APS correction curve in the enhanced workflow exhibited the best performance.
The profile of size-resolved chemical composition is created by integrating PSD data with the dominant periods, which are determined by classifying chemical species. While it roughly describes the PSD of various species and aligns with previous measurement research, it still fails to provide high temporal resolution data and cannot quantify the results. Despite these limitations, the proposed approach demonstrates the potential for retrieving size-resolved chemical composition and avoids the complex and cumbersome process of size-resolved sampling.
Additionally, to retrieve high temporal resolution aerosol chemical compositions, this study sacrifices size resolution, instead using optical measurement data combined with merged PSD for retrieval. The method involves the combination of techniques: simulating aerosol refractive index with measured data, calculating effective density through a merging process, creating look-up table with the Volume Average Mixing (VAM) model, and constructing parameter combinations for various purposes. Under the assumption that the sum of mass concentration equals the PM2.5 mass concentration, four results were obtained using different optimal conditions. Another four results were derived under a contrasting condition where the sum of mass concentration was lower than the PM2.5 mass concentration.
While all results provided accurate estimations for Black Carbon (BC) mass concentration, the results of other aerosol composition were less convincing. Several factors may contribute to these discrepancies, including inaccuracies in species parameters (refractive index and density), limited computing power, discrepancies between simulated and actual refractive index values, or unexpected trends between effective density and material density. Future research should focus on addressing these challenges by improving parameter estimations of each chemical composition, increasing computational resources, and further optimizing this algorithm.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-05T16:08:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-06-05T16:08:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iv
Contents vii
List of Figures ix
List of Figures SI x
List of Tables xi
Abbrevation List xii
Chapter 1 Introduction 1
Chapter 2 Methods 8
2.1 Study Site and Instrumentation 8
2.1.1 Instrumentation and Measurement Techniques 8
2.1.2 Quality Assurance (QA) and Quality Control (QC) 11
2.1.3 Collection of Meteorological and Environmental Data 12
2.2 Data Integration and PSD Merging Techniques 13
2.2.1 Merging Principle 13
2.2.2 Basic Workflow 15
2.2.3 Enhanced Workflow 19
2.3 Chemical Composition Analysis 23
2.3.1 PM2.5 Reconstruction 23
2.3.2 Dominant Period of Chemical Composition 25
2.4 Retrieval of Chemical Composition Mass Concentration 27
2.4.1 Simulation of Refractive Index 28
2.4.2 Retrieval of Aerosol Chemical Compositions with Merit Function 29
2.4.3 The Variation of Parameters in Merit Function 31
2.4.4 Considerations for Total Mass Lower Than PM2.5 34
Chapter 3 Results and Discussion 35
3.1 Campaign Overview 35
3.2 The Analysis of Optimized Merging Results 40
3.2.1 Comparison with BAM and IGAC 40
3.2.2 Comparison with NEPH 3563 and AE33 46
3.2.3 Particle Size Distribution: the Optimize Merging Result 47
3.3 The Size-resolved Chemical Composition Analysis 51
3.4 Retrieval of Mass Concentration for Major Chemical Components 56
3.4.1 Evaluating Merit Functions for Mass Concentration Retrieval 57
3.4.2 Exploring the Inequality Function in Mass Concentration Retrieval 63
3.4.3 Addressing Limitations and Proposing Future Improvements 67
Chapter 4 Conclusion 74
Suggestion 78
Reference 79
Supplemental Information 87
口試委員意見回覆 91
-
dc.language.isoen-
dc.subject氣膠光學性質zh_TW
dc.subject微粒粒徑分佈zh_TW
dc.subject質量濃度反演zh_TW
dc.subject分徑化學成分zh_TW
dc.subject粒徑融合技術zh_TW
dc.subjectMerging Techniquesen
dc.subjectSize-resolved Chemical Compositionen
dc.subjectMass Concentration Retrievalen
dc.subjectAerosol Optical Propertiesen
dc.subjectParticle Size Distributionen
dc.title粒徑分布融合技術與反演化學組成zh_TW
dc.titleEnhancing Aerosol Characterization: Merging Particle Size Distributions and Retrieving Chemical Compositionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張木彬;陳正平;席行正zh_TW
dc.contributor.oralexamcommitteeMoo-Been Chang;Jen-Ping Chen;Hsing-Cheng Hsien
dc.subject.keyword微粒粒徑分佈,氣膠光學性質,粒徑融合技術,分徑化學成分,質量濃度反演,zh_TW
dc.subject.keywordParticle Size Distribution,Aerosol Optical Properties,Merging Techniques,Size-resolved Chemical Composition,Mass Concentration Retrieval,en
dc.relation.page94-
dc.identifier.doi10.6342/NTU202401013-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-06-05-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf7.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved