請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92683完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭漢豪 | zh_TW |
| dc.contributor.advisor | Hon-Ho Kwok | en |
| dc.contributor.author | 陳捷 | zh_TW |
| dc.contributor.author | Chieh Chen | en |
| dc.date.accessioned | 2024-06-04T16:08:44Z | - |
| dc.date.available | 2024-06-05 | - |
| dc.date.copyright | 2024-06-04 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-05-30 | - |
| dc.identifier.citation | Anselin, Luc (2009). “Thirty years of spatial econometrics”. In: Papers in Regional Science 89(1), pp. 3–25. url: https://doi.org/10.1111/j.1435-5957.2010. 00279.x.
Blume, Lawrence E. et al. (2015). “Linear Social Interactions Models”. In: Journal of Political Economy 123(2), pp. 444–496. doi: 10.1086/679496. eprint: https: //doi.org/10.1086/679496. url: https://doi.org/10.1086/679496. Bonaldi, Pietro, Ali Hortaçsu, and Jakub Kastl (Aug. 2015). An Empirical Analysis of Funding Costs Spillovers in the EURO-zone with Application to Systemic Risk. NBER Working Papers 21462. National Bureau of Economic Research, Inc. url: https://ideas.repec.org/p/nbr/nberwo/21462.html. Caimo, Alberto and Nial Friel (2011). “Bayesian inference for exponential ran- dom graph models”. In: Social Networks 33(1), pp. 41–55. issn: 0378-8733. doi: https://doi.org/10.1016/j.socnet.2010.09.004. url: https: //www.sciencedirect.com/science/article/pii/S0378873310000493. Caimo, Alberto and Nial Friel (2014). Bergm: Bayesian Exponential Random Graphs in R. arXiv: 1201.2770 [stat.CO]. Caner, Mehmet and Hao Helen Zhang (2014). “Adaptive Elastic Net for Generalized Methods of Moments”. In: Journal of Business & Economic Statistics 32(1). PMID: 24570579, pp. 30–47. doi: 10.1080/07350015.2013.836104. eprint: https://doi.org/10.1080/07350015.2013.836104. url: https://doi.org/ 10.1080/07350015.2013.836104. de Paula, Áureo, Imran Rasul, and Pedro Souza (2023). Identifying Network Ties from Panel Data: Theory and an Application to Tax Competition. arXiv: 1910. 07452 [econ.EM]. url: https://arxiv.org/abs/1910.07452. Geyer, Charles J. and Elizabeth A. Thompson (1992). “Constrained Monte Carlo Maximum Likelihood for Dependent Data”. In: Journal of the Royal Statistical Society. Series B (Methodological) 54(3), pp. 657–699. issn: 00359246. url: http://www.jstor.org/stable/2345852 (visited on 01/06/2024). Goldsmith-Pinkham, Paul and Guido W. Imbens (2013). “Social Networks and the Identification of Peer Effects”. In: Journal of Business & Economic Statistics 31(3), pp. 253–264. doi: 10.1080/07350015.2013.801251. eprint: https: //doi.org/10.1080/07350015.2013.801251. url: https://doi.org/10.1080/07350015.2013.801251. Handcock, Mark S. (2003). “Assessing Degeneracy in Statistical Models of Social Networks”. CSSS Working Paper no. 39. Handcock, Mark S. et al. (2023). ergm: Fit, Simulate and Diagnose Exponential Family Models for Networks. R package version 4.5.0. The Statnet Project (https://statnet.org). url: https://CRAN.R-project.org/package=ergm. Hsieh, Chih-Sheng and Hans van Kippersluis (2018). “Smoking initiation: Peers and personality”. In: Quantitative Economics 9(2), pp. 825–863. doi: https: //doi.org/10.3982/QE615. eprint: https://onlinelibrary.wiley.com/doi/ pdf/10.3982/QE615. url: https://onlinelibrary.wiley.com/doi/abs/10.3982/QE615. Hunter, David R., Steven M. Goodreau, and Mark S. Handcock (2013). “ergm.userterms: A Template Package for Extending statnet”. In: Journal of Statistical Software 52(2), pp. 1–25. doi: 10.18637/jss.v052.i02. url: https://www.jstatsoft. org/index.php/jss/article/view/v052i02. Hunter, David R., Mark S. Handcock, et al. (2008). “ergm: A Package to Fit, Sim- ulate and Diagnose Exponential-Family Models for Networks”. In: Journal of Statistical Software 24(3), pp. 1–29. doi: 10.18637/jss.v024.i03. url: https:www.jstatsoft.org/index.php/jss/article/view/v024i03. Krisztin, Tamás and Philipp Piribauer (2022). “A Bayesian approach for estima- tion of weight matrices in spatial autoregressive models”. In: Spatial Economic Analysis 18 (1), pp. 44–63. doi: https://doi.org/10.1080/17421772.2022.2095426. Lam, Clifford and Pedro C.L. Souza (2020). “Estimation and Selection of Spatial Weight Matrix in a Spatial Lag Model”. In: Journal of Business & Economic Statistics 38(3), pp. 693–710. doi: 10.1080/07350015.2019.1569526. eprint: https://doi.org/10.1080/07350015.2019.1569526. url: https://doi. org/10.1080/07350015.2019.1569526. Lee, Lung-fei (2003). “Best Spatial Two-Stage Least Square Estimators for a Spa- tial Autoregressive Model with Autoregressive Disturbances”. In: Econometric Reviews 22(4), pp. 307–335. Lee, Lung-fei (2004). “Asymptotic Distributions of Quasi-Maximum Likelihood Es- timators for Spatial Autoregressive Models”. In: Econometrica 72(6), pp. 1899– 1925. url: http://www.jstor.org/stable/3598772. LeSage, James and R. Kelley Pace (2009). Introduction to Spatial Econometrics. Taylor & Francis Group. isbn: 978‐1‐4200‐6424‐7. Madigan, David and Adrian E. Raftery (1994). “Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam’s Window”. In: Journal of the American Statistical Association 89(428), pp. 1535–1546. issn: 01621459. url: http://www.jstor.org/stable/2291017 (visited on 06/08/2023). Manresa, Elena (2016). Estimating the Structure of Social Interactions Using Panel Data. Manuscript. Manski, Charles F. (July 1993). “Identification of Endogenous Social Effects: The Reflection Problem”. In: The Review of Economic Studies 60(3), pp. 531–542. issn: 0034-6527. doi: 10.2307/2298123. eprint: https://academic.oup.com/ restud/article-pdf/60/3/531/4468725/60-3-531.pdf. url: https: //doi.org/10.2307/2298123. Meinshausen, Nicolai and Peter Bühlmann (2006). “High-dimensional graphs and variable selection with the Lasso”. In: The Annals of Statistics 34(3), pp. 1436– 1462. doi: 10.1214/009053606000000281. url: https://doi.org/10.1214/ 009053606000000281. Mele, Angelo (2017). “A Structural Model of Dense Network Formation”. In: Econo- metrica 85(3), pp. 825–850. doi: https://doi.org/10.3982/ECTA10400. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.3982/ECTA10400. url: https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA10400. Neal, Radford M. (2011). “MCMC using Hamiltonian dynamics”. In: Handbook of Markov Chain Monte Carlo. Ed. by Steve Brooks et al. Chapman and Hall/CRC. isbn: 9780429138508. doi: https://doi.org/10.48550/arXiv.1206.1901. Ord, Keith (1975). “Estimation Methods for Models of Spatial Interaction”. In: Jour- nal of the American Statistical Association 70(349), pp. 120–126. url: https: //doi.org/10.2307/2285387. Pakman, Ari and Liam Paninski (2015). Auxiliary-variable Exact Hamiltonian Monte Carlo Samplers for Binary Distributions. arXiv: 1311.2166 [stat.CO]. Rinaldo, Alessandro, Stephen E. Fienberg, and Yi Zhou (2009). “On the geometry of discrete exponential families with application to exponential random graph models”. In: Electronic Journal of Statistics 3(none), pp. 446–484. doi: 10. 1214/08-EJS350. url: https://doi.org/10.1214/08-EJS350. Ritter, Christian and Martin A. Tanner (1992). “Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler”. In: Journal of the American Statistical Association 87(419), pp. 861–868. issn: 01621459. url: http://www. jstor.org/stable/2290225 (visited on 01/07/2024). Robins, Garry et al. (2007). “An introduction to exponential random graph (p*) models for social networks”. In: Social Networks 29(2). Special Section: Advances in Exponential Random Graph (p*) Models, pp. 173–191. issn: 0378-8733. doi: https://doi.org/10.1016/j.socnet.2006.08.002. url: https://www. sciencedirect.com/science/article/pii/S0378873306000372. Rose, Christiern D. (Oct. 2017). “Identification of peer effects through social net- works using variance restrictions”. In: The Econometrics Journal 20(3), S47– S60. issn: 1368-4221. doi: 10.1111/ectj.12101. eprint: https://academic. oup.com/ectj/article-pdf/20/3/S47/28311585/ectj0s47.pdf. url: https://doi.org/10.1111/ectj.12101. Smirnov, Oleg and Luc Anselin (2001). “Fast maximum likelihood estimation of very large spatial autoregressive models: A characteristic polynomial approach”. English (US). In: Computational Statistics and Data Analysis 35(3), pp. 301–319. issn: 0167-9473. doi: 10.1016/S0167-9473(00)00018-9. Strauss, David and Michael Ikeda (1990). “Pseudolikelihood Estimation for So- cial Networks”. In: Journal of the American Statistical Association 85(409), pp. 204–212. doi: 10.1080/01621459.1990.10475327. eprint: https://www. tandfonline.com/doi/pdf/10.1080/01621459.1990.10475327. url: https: //www.tandfonline.com/doi/abs/10.1080/01621459.1990.10475327. Watts, Duncan J. and Steven H. Strogatz (1998). “Collective dynamics of ‘small- world’ networks”. In: Nature( 393), pp. 440–442. doi: https://doi.org/10. 1038/30918. Yuan, Ming and Yi Lin (Mar. 2007). “Model selection and estimation in the Gaussian graphical model”. In: Biometrika 94(1), pp. 19–35. issn: 0006-3444. doi: 10. 1093/biomet/asm018. eprint: https://academic.oup.com/biomet/article- pdf/94/1/19/617853/asm018.pdf. url: https://doi.org/10.1093/biomet/ asm018. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92683 | - |
| dc.description.abstract | 我們在空間自我回歸模型(Spatial Autoregressive Model)的框架下引入了貝氏方法來估計其中的未知網絡。本文以指數隨機圖模型(Exponential Random Graph Model)作爲貝氏方法下的先驗分佈。這種作法有兩個主要優點:首先,這種方法是常見高維度統計方法(High-dimensional Methods)的自然延伸;其次,這種方法使計量經濟學家有很大的靈活度將先驗知識或信念納入網絡形成過程中。通過模擬研究,我們展示了這種方法能夠良好地估計未知網絡連接和網絡的高階特徵。 | zh_TW |
| dc.description.abstract | We introduced a Bayesian method for estimating unknown networks in the context of Spatial Autoregressive Model models by introducing a network formation model, Exponential Random Graph Model in this paper, as a prior distribution. This method brings two main advantages: first, this method is a natural extension to common high-dimensional methods; second, this method enables the econometrician to incorporate prior knowledge or belief about the network formation process with great flexibility. Via simulation studies, we demonstrated this approach is practical in recovering unknown networks ties and higher-order characteristics of the network. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-04T16:08:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-06-04T16:08:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 英文摘要 iii 中文摘要 iv 1 Introduction 1 2 Model Setup 3 2.1 Exponential Random Graph Model (ERGM) Prior ..........5 3 Distribution Specifications 8 3.1 Priors: Spatial Autoregressive Model(SAR) ..............9 3.2 Priors:ERGM ..............................9 3.3 Panel Data ................................10 4 Sampling Procedure 10 4.1 Sample Posterior β and σ2 ........................11 4.2 Sample Posterior λ ............................11 4.3 Sample Posterior W ...........................12 4.4 Sample Posterior θ ............................12 5 Simulation Study 13 5.1 Basic ERGM ...............................14 5.2 Sampson's Monk: Directed Network ..................18 5.3 Zachary's Karate Club: Undirected Network ..............21 6 Discussion 23 Acronyms 28 References 28 A Derivation of Posteriors 35 A.1 Posterior Density of λ ..........................35 A.2 Posterior Density of β ..........................35 A.3 Posterior Density of σ2 ..........................35 A.4 Posterior Probability of W........................36 A.5 Posterior Density of θ ..........................36 B Efficient Sampling of Posterior W 36 C Implementation Details 38 | - |
| dc.language.iso | en | - |
| dc.subject | 未知網絡 | zh_TW |
| dc.subject | 空間自我回歸模型 | zh_TW |
| dc.subject | 蒙地卡羅馬可夫鏈 | zh_TW |
| dc.subject | 指數隨機圖模型 | zh_TW |
| dc.subject | 貝氏方法 | zh_TW |
| dc.subject | Bayesian | en |
| dc.subject | Exponential Random Graph Model | en |
| dc.subject | Markov Chain Monte Carlo | en |
| dc.subject | Unknown Network | en |
| dc.subject | Spatial Autoregressive Model | en |
| dc.title | 以貝氏方法估計空間自我回歸模型中之未知網絡 | zh_TW |
| dc.title | A Bayesian Approach to the Problem of Unknown Networks in Spatial Autoregressive Models | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝志昇;劉祝安 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Sheng Hsieh;Chu-An Liu | en |
| dc.subject.keyword | 空間自我回歸模型,未知網絡,貝氏方法,指數隨機圖模型,蒙地卡羅馬可夫鏈, | zh_TW |
| dc.subject.keyword | Spatial Autoregressive Model,Unknown Network,Bayesian,Exponential Random Graph Model,Markov Chain Monte Carlo, | en |
| dc.relation.page | 39 | - |
| dc.identifier.doi | 10.6342/NTU202401039 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-05-30 | - |
| dc.contributor.author-college | 社會科學院 | - |
| dc.contributor.author-dept | 經濟學系 | - |
| 顯示於系所單位: | 經濟學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
