請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9267
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賈景山(Jean-San Chia) | |
dc.contributor.author | Hung-Wei Cheng | en |
dc.contributor.author | 鄭鴻偉 | zh_TW |
dc.date.accessioned | 2021-05-20T20:15:15Z | - |
dc.date.available | 2014-09-15 | |
dc.date.available | 2021-05-20T20:15:15Z | - |
dc.date.copyright | 2009-09-15 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-15 | |
dc.identifier.citation | Adler A, Litmanovitz I, Bauer S, Dolfin T. Aspirin treatment for neonatal infectious
endocarditis. Pediatr Cardiol. 2004 Sep- Oct;25(5):562-4. Ajdic D, McShan WM, McLaughlin RE, Savic G, Chang J, Carson MB, Primeaux C, Tian R, Kenton S, Jia H, Lin S, Qian Y, Li S, Zhu H, Najar F, Lai H, White J, Roe BA, Ferretti JJ. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14434-9. Anavekar NS, Tleyjeh IM, Anavekar NS, Mirzoyev Z, Steckelberg JM, Haddad C, Khandaker MH, Wilson WR, Chandrasekaran K, Baddour LM. Impact of prior antiplatelet therapy on risk of embolism in infective endocarditis. Clin Infect Dis. 2007 May 1;44(9):1180-6. Beachey EH, Stollerman GH. Toxic effects of streptococcal M protein on platelets and polymorphonuclear leukocytes in human blood. J Exp Med. 1971 Aug 1;134(2):351-65. Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, Balestrino D, Haagensen JA, Molin S, Prensier G, Arbeille B, Ghigo JM. Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol. 2004 Feb;51(3):659-74. Bensing BA, Lòpez JA, Sullam PM. The sterptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Ibalpha. Infect Immun. 2004 Nov;72(11):6528-37. Bizzini A, Beggah-Moller S, Moreillon P, Entenza J M. Lack of in vitro biofilm formation does not attenuate the virulence of Streptococcus gordonii in experimental endocarditis. FEMS Immunol Med Microbiol. 2006;48:419-423. Burnette-Curley D, Wells V, Viscount H, Munro CL, Fenno JC, Fives-Taylor P, Macrina FL. FimA, a major virulence factor associated with Streptococcus parasanguis endocarditis. Infect Immun. 1995 Dec;63(12):4669-74. Brissette JL, Russel M. Secretion and membrane integration of a filamentous phage-encoded morphogenetic protein. J Mol Biol. 1990 Feb 5;211(3):565-80. Chan KL, Dumesnil JG, Cujec B, Sanfilippo AJ, Jue J, Turek MA, Robinson TI, Moher D. A randomized trial of aspirin on the risk of embolic events in patients with infective endocarditis. J Am Coll Cardiol. 2003 Sep 3;42(5):775-80. Cheung AL, Eberhardt KJ, Chung E, Yeaman MR, Sullam PM, Ramos M, Bayer AS. Diminished virulence of a sar-/agr- mutant of Staphylococcus aureus in the rabbit model of endocarditis. J Clin Invest. 1994 Nov;94(5):1815-22. Cheung AL, Projan SJ. Cloning and sequencing of sarA of Staphylococcus aureus, a gene required for the expression of agr. J Bacteriol. 1994 Jul;176(13):4168-72. Darwin AJ. The phage-shock-protein response. Mol Microbiol. 2005 Aug;57(3):621-8. Darwin AJ, Miller VL. The psp locus of Yersinia enterocolitica is required for virulence and for growth in vitro when the Ysc type III secretion system is produced. Mol Microbiol. 2001 Jan;39(2):429-44. Dorsch MP, Lee JS, Lynch DR, Dunn SP, Rodgers JE, Schwartz T, Colby E, Montague D, Smyth SS. Aspirin resistance in patients with stable coronary artery disease with and without a history of myocardial infarction. Ann Pharmacother. 2007 May;41(5):737-41. Durack DT. Experimental bacterial endocarditis. IV. Structure and evolution of very early lesions. J Pathol. 1975 Feb;115(2):81-9 Erickson PR, Herzberg MC. Purification and partial characterization of a 65-kDa platelet aggregation-associated protein antigen from the surface of Streptococcus sanguis. J Biol Chem. 1990 Aug 25;265(24):14080-7. Eisen DP, Bayer AS. Aspirin use in infective endocarditis. Clin Infect Dis. 2008 May 1;46(9):1481-2. Fitzgerald JR, Loughman A, Keane F, Brennan M, Knobel M, Higgins J, Visai L, Speziale P, Cox D, Foster TJ. Fibronectin-binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the FcgammaRIIa receptor. Mol Microbiol. 2006 Jan;59(1):212-30. Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets. Nat Rev Microbiol. 2006 Jun;4(6):445-57. Ford I, Douglas CW, Cox D, Rees DG, Heath J, Preston FE. The role of immunoglobulin G and fibrinogen in platelet aggregation by Streptococcus sanguis. Br J Haematol. 1997 Jun;97(4):737-46 Ge X, Kitten T, Chen Z, Lee SP, Munro CL, Xu P. Identification of Streptococcus sanguinis genes required for biofilm formation and examination of their role in endocarditis virulence. Infect Immun. 2008 Jun;76(6):2551-9. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004 Feb;2(2):95-108. Herzberg MC, MacFarlane GD, Gong K, Armstrong NN, Witt AR, Erickson PR, Meyer MW. The platelet interactivity phenotype of Streptococcus sanguis influences the course of experimental endocarditis. Infect Immun. 1992 Nov;60(11):4809-18. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK, Molin S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 2000 Oct;146 ( Pt 10):2395-407. Kahn F, Mörgelin M, Shannon O, Norrby-Teglund A, Herwald H, Olin AI, Björck L. Antibodies against a surface protein of Streptococcus pyogenes promote a pathological inflammatory response. PLoS Pathog. 2008 Sep 12;4(9):e1000149 Kjeldsen SE, Kolloch RE, Leonetti G, Mallion JM, Zanchetti A, Elmfeldt D, Warnold I, Hansson L. Influence of gender and age on preventing cardiovascular disease by antihypertensive treatment and acetylsalicylic acid. The HOT study. Hypertension Optimal Treatment. J Hypertens. 2000 May;18(5):629-42. Kupferwasser LI, Yeaman MR, Shapiro SM, Nast CC, Sullam PM, Filler SG, Bayer AS. Acetylsalicylic acid reduces vegetation bacterial density, hematogenous bacterial dissemination, and frequency of embolic events in experimental Staphylococcus aureus endocarditis through antiplatelet and antibacterial effects. Circulation. 1999 Jun 1;99(21):2791-7. Lévesque CM, Mair RW, Perry JA, Lau PC, Li YH, Cvitkovitch DG. Systemic inactivation and phenotypic characterization of two-component systems in expression of Streptococcus mutans virulence properties. Lett Appl Microbiol. 2007 Oct;45(4):398-404. Levison ME, Carrizosa J, Tanphaichitra D, Schick PK, Rubin W. Effect of aspirin on thrombogenesis and on production of experimental aortic valvular Streptococcus viridans endocarditis in rabbits. Blood. 1977 Apr;49(4):645-50. Mason PJ, Jacobs AK, Freedman JE. Aspirin resistance and atherothrombotic disease. J Am Coll Cardiol. 2005 Sep 20;46(6):986-93. Merino N, Toledo-Arana A, Vergara-Irigaray M, Valle J, Solano C, Calvo E, Lopez JA, Foster TJ, Penadés JR, Lasa I. Protein A-mediated multicellular behavior in Staphylococcus aureus. J Bacteriol. 2009 Feb;191(3):832-43. Moreillon P, Que YA. Infective endocarditis. Lancet. 2004 Jan 10;363(9403):139-49. Murray TS, Egan M, Kazmierczak BI. Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr Opin Pediatr. 2007 Feb;19(1):83-8. Li YH, Tang N, Aspiras MB, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG. A Quorum-Sensing Signaling System Essential for Genetic Competence in Streptococcus mutans Is Involved in Biofilm Formation. J Bacteriol. 2002 May;184(10):2699-708 Lucchini S, Liu H, Jin Q, Hinton JC, Yu J. Transcriptional adaptation of Shigella flexneri during infection of macrophages and epithelial cells: insights into the strategies of a cytosolic bacterial pathogen. Infect Immun. 2005 Jan;73(1):88-102. Model P, Jovanovic G, Dworkin J. The Escherichia coli phage-shock-protein (psp) operon. Mol Microbiol. 1997 Apr;24(2):255-61 Nicolau DP, Freeman CD, Nightingale CH, Quintiliani R, Coe CJ, Maderazo EG, Cooper BW. Reduction of bacterial titers by low-dose aspirin in experimental aortic valve endocarditis. Infect Immun. 1993 Apr;61(4):1593-5. Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol. 2003;57:677-701 Pietrocola G, Schubert A, Visai L, Torti M, Fitzgerald JR, Foster TJ, Reinscheid DJ, Speziale P. FbsA, a fibrinogen-binding protein from Streptococcus agalactiae, mediates platelet aggregation. Blood. 2005 Feb 1;105(3):1052-9. Plummer C, Wu H, Kerrigan SW, Meade G, Cox D, Ian Douglas CW. A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb. Br J Haematol. 2005 Apr;129(1):101-9. Qi F, Merritt J, Lux R, Shi W. Inactivation of the ciaH Gene in Streptococcus mutans diminishes mutacin production and competence development, alters sucrose-dependent biofilm formation, and reduces stress tolerance. Infect Immun. 2004 Aug;72(8):4895-9. Que YA, Haefliger JA, Piroth L, François P, Widmer E, Entenza JM, Sinha B, Herrmann M, Francioli P, Vaudaux P, Moreillon P. Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J Exp Med. 2005 May 16;201(10):1627-35. Rivera J, Vannakambadi G, Höök M, Speziale P. Fibrinogen-binding proteins of Gram-positive bacteria. Thromb Haemost. 2007 Sep;98(3):503-11. Saravia-Otten P, Müller HP, Arvidson S. Transcription of Staphylococcus aureus fibronectin binding protein genes is negatively regulated by agr and an agr-independent mechanism. J Bacteriol. 1997 Sep;179(17):5259-63. Shannon O, Hertzén E, Norrby-Teglund A, Mörgelin M, Sjöbring U, Björck L. Severe streptococcal infection is associated with M protein-induced platelet activation and thrombus formation. Mol Microbiol. 2007 Sep;65(5):1147-57. Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem. 2000;69:183-215. Sullam PM, Jarvis GA, Valone FH. Role of immunoglobulin G in platelet aggregation by viridans group streptococci. Infect Immun. 1988 Nov;56(11):2907-11. Sullam PM, Bayer AS, Foss WM, Cheung AL. Diminished platelet binding in vitro by Staphylococcus aureus is associated with reduced virulence in a rabbit model of infective endocarditis. Infect Immun. 1996 Dec;64(12):4915-21. van der Laan M, Urbanus ML, Ten Hagen-Jongman CM, Nouwen N, Oudega B, Harms N, Driessen AJ, Luirink J. A conserved function of YidC in the biogenesis of respiratory chain complexes. Proc Natl Acad Sci U S A. 2003 May 13;100(10):5801-6. Viscount HB, Munro CL, Burnette-Curley D, Peterson DL, Macrina FL. Immunization with FimA protects against Streptococcus parasanguis endocarditis in rats. Infect Immun. 1997 Mar;65(3):994-1002. West AH, Stock AM. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci. 2001 Jun;26(6):369-76. Yajima A, Takahashi Y, Konishi K. Identification of platelet receptors for the Streptococcus gordonii DL1 sialic acid-binding adhesin. Microbiol Immunol. 2005;49(8):795-800. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9267 | - |
dc.description.abstract | 轉糖鏈球菌(Streptococcus mutans)主要存在於人體口腔中,是造成齲齒的主要病原菌。而當轉糖鏈球菌藉由口腔傷口進入血流,造成暫時性的菌血症,存在於血流中的細菌黏附到受損的心臟瓣膜上,形成贅疣(vegetation)引發感染性心內膜炎(infective endocarditis)。然而在以往的研究中,血小板在感染性心內膜炎中扮演甚麼角色並不清楚。本實驗發現在缺乏血小板的血漿中,細菌生物膜的形成會明顯被抑制,而當血小板存在時卻可以幫助細菌生物膜的形成。當外加入不同的血小板活化抑制劑也可以明顯觀察到細菌生物膜形成的減少,此外,當給與感染性心內膜炎大鼠抗凝血劑阿斯匹靈後,也可以有效干擾細菌體內生物膜的形成。這些結果暗示了血小板的活化對於細菌在血漿中形成生物膜是重要的。而進一步將血小板與細菌進行黏附,發現在人類免疫球蛋白存在下轉糖鏈球菌才能有效與血小板結合,顯示轉糖鏈球菌可能利用人類免疫球蛋白與血小板黏附並活化血小板有助其體內生物膜的形成。除了宿主因子與細菌的交互作用外,細菌本身是利用怎樣的調控機制也是值得研究,在本實驗室奇玄學長研究中發現一個response regulator的缺失可以影響轉糖鏈球菌體內生物膜的形成,而在microarray中也發現pspC 基因會明顯的被response regulator所調控。利用染色質免疫沉澱法與膠體電泳阻滯實驗也發現此response regulator可能直接調控pspC基因。而在pspC基因有所缺失的菌株中也可以明顯觀察到體外與體內生物膜形成的缺失。然而,測試多種細菌與宿主因子結合的實驗,發現野生株與PspC突變株與宿主因子結合並沒有明顯差異。顯示PspC在轉糖鏈球菌體內生物膜形成扮演重要角色,卻不影響轉糖鏈球菌與宿主因子的結合。 | zh_TW |
dc.description.abstract | Streptococcus mutans is one of the principal causative agents of caries and an opportunistic pathogen of infective endocarditis (IE). Bacteremia is caused by S. mutans through the oral trauma and the circulating bacteria can adhere to the damaged valve to form a compact structure, vegetation (fibrin-platelet bacterial biofilm). However, the role of platelet is controversial in the pathogenesis of IE. In this study, plasma without platelets could inhibit the bacterial biofilm formation but enhance biofilm formation in the addition of platelets, which suggested platelets play an important role in the in vivo biofilm formation. After the addition of platelet activation inhibitors, the bacterial biofilm was reduced. When one of the platelet activation inhibitor, Aspirin, was applied to the IE rat model, the bacterial biofilm could be disturbed and lower bacterial load was obtained from the vegetation. These results suggest the activation of platelets is important in the pathogenesis of IE. To further dissect the interaction between platelets, plasma factors and bacteria, purified platelets are incubated with different plasma ingredients. Human immunoglobulin is discovered to essentially involve in the adherence of bacteria on the platelets. Except for the interaction of bacteria and platelets, the regulatory mechanism in the pathogenesis of IE is also studied. In our lab previous study, the defect in response regulator 11 can lead to the defect in IE biofilm formation and pspC gene is supposedly regulated by response regulator 11 in the microarray data. Chromatin immunoprecipitation and electrophoretic motility shift assay are performed in this study and further confirm response regulator 11 may directly regulate pspC gene. The deletion in pspC gene has defect in the in vitro and in vivo biofilm formation and this defect can be restored in the pspC gene complementation strain. However, no significant differences are obtained in the interaction of bacteria and host factors between PspC mutant and wildtype GS5. These results suggest the role of PspC protein may involve in the in vivo bacterial biofilm formation but not the interaction with host factors. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:15:15Z (GMT). No. of bitstreams: 1 ntu-98-R96445102-1.pdf: 2075410 bytes, checksum: e5e5b6cf83e8d67967e1161475a4196b (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 中文摘要………………………………………………………...….……1
英文摘要……………………………………………………………........2 目錄………………………………………………………………….…...3 圖表目錄………………………………………………………………....7 第一章 緒論…………… ……………………………………………...8 一、 轉糖鏈球菌(Streptococcus mutans)的介紹 ……………….8 二、 感染性心內膜炎 ……………….……………………………...8 三、 Two component regulatory systems ……………………………9 四、 細菌毒力因子與感染性心內膜炎的發生……………………10 1. 細菌表面黏附因子……………………………………………..10 2. 細菌生物膜形成因子…………………………………………..10 五、 血小板與細菌間的交互作用………………………….….…...11 六、 血小板與感染性心內膜炎的發生…………………….………12 七、 研究目的與實驗設計………………………………….………13 第二章 實驗材料與方法……………………………………….………14 一、 Streptococcus mutans 的轉形作用………………….………….14 二、 生物膜形成能力測定…………………………………….…….14 三、 人類血小板懸浮液(platelet suspension)的製備………….……14 四、 體外生物膜形成模式的建立…………………………….…….15 五、 細菌黏附活化血小板試驗…………………………….……….15 六、 模擬體內生物膜形成之體外模式……………………….…….16 七、 實驗性心內膜炎之老鼠模型的建立…………………….….....16 八、 細菌處理與感染老鼠之方法……………………………….….17 九、 抗凝血藥物阿斯匹靈(Aspirin)給與感染性心內膜炎大鼠之方 法……………………………………………………….……….17 十、 以抗體anti-CD42d 染感染性心內膜炎贅生物中血小板之方 法……………………………………….....…………………….17 十一、 染色質免疫沉澱技術…………………….……………….17 十二、 膠體電泳阻滯實驗……....………………………………..19 十三、 全血殺菌能力試驗(whole blood killing assay) …...….….19 十四、 細菌與血漿中纖維蛋白原結合試驗………………….….20 十五、 細菌與血小板的結合試驗………………………….…….20 第三章 結果……………………………………………………….…..22 第一部分:血小板參與轉糖鏈球菌所引發感染性心內膜炎中生物膜形 成………………………………………………………………………...22 一、 血小板對於血漿中轉糖鏈球菌形成生物膜的重要性..……...22 二、 血小板的活化對於轉糖鏈球菌生物膜的形成…………….…22 三、 活化的血小板本身而非血小板活化後所釋放的因子對於轉糖 鏈球菌於血漿中形成生物膜是重要的…………………....….22 四、 血小板活化抑制劑Aspirin 對於感染性心內膜炎大鼠中細菌生 物膜的形成………………………………………………….…23 五、 血小板抑制劑影響細菌與活化血小板的黏附…………….…23 六、 感染性心內膜炎體內細菌生物膜與血小板的交互作用….…24 第二部分:Response regulator 11 藉由調控pspC 基因來影響感 染性心內膜炎中,轉糖鏈球菌生物膜的形成……….………...25 一、 利用染色質免疫沉澱法(Chromatin immunoprecipitation)研究 response regulator 11 在細菌體內是否能直接調控pspC 基因的 表現………………..………………………………...…...….…25 二、 膠體電泳阻滯實驗(electrophoretic motility shift assay) 研究 response regulator 11 是否可與pspC 前可能的啟動子區位結 合…………………….…………………………………......….26 三、 利用共軛焦螢光顯微鏡觀察富含血小板血漿中Wi ld-type GS5、rr11 mutant、pspC mutant 與pspC complementation strain 生物膜形成的差異.……....……………………………..…….26 四、 利用共軛焦螢光顯微鏡觀察感染性心內膜炎大鼠贅疣中野生株 GS5、rr11 mutant、pspC mutant 與pspC complementation strain 生物膜形成的差異…………………..…………...……..27 五、 檢測野生株GS5 和pspC mutant 與宿主因子結合之差….…27 六、 檢測野生株GS5 和pspC mutant 在生物體內及全血中生存能 力……………………………………………………………….28 第四章 討論………………..……………….…………………………29 一、血小板參與轉糖鏈球菌引起之感染性心內膜炎中生物膜之形 成………………………………………………………………...29 二、PspC 蛋白表現的缺失影響轉糖鏈球菌體內生物膜的形成….32 第五章 參考文獻………………………………………….…………..35 | |
dc.language.iso | zh-TW | |
dc.title | 大鼠實驗性心內膜炎模式中轉糖鏈球菌形成生物模之機制 | zh_TW |
dc.title | Mechanism of Streptococcus mutans biofilm formation in the rat model of experimental endocarditis | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄧述諄(Shu-Chun Teng),黃德富(Tur-Fu Huang),李建國(Chien-Kuo Lee) | |
dc.subject.keyword | 轉糖鏈球菌,感染性心內膜炎,生物膜, | zh_TW |
dc.subject.keyword | Streptococcus mutans,infective endocarditis,biofilm, | en |
dc.relation.page | 53 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-07-15 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 2.03 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。