Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92673
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor簡韶逸zh_TW
dc.contributor.advisorShao-Yi Chienen
dc.contributor.author陳昱愷zh_TW
dc.contributor.authorYu-Kai Chenen
dc.date.accessioned2024-06-04T16:05:23Z-
dc.date.available2024-06-05-
dc.date.copyright2024-06-04-
dc.date.issued2024-
dc.date.submitted2024-05-28-
dc.identifier.citation[1] B. moore81. (2014) Reconstructed orientations (camera-centric coordinates).[Online]. Available: https://commons.wikimedia.org/w/index.php?curid=37007186 vii, 23
[2] ——. (2014) Reconstructed orientations (world-centric coordinates). [Online]. Available: https://commons.wikimedia.org/w/index.php?curid=37007185 vii,23
[3] Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, andX. Wang, “Bytetrack: Multi-object tracking by associating every detection box,” in Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv,Israel, October 23–27, 2022, Proceedings, Part XXII. Springer, 2022, pp.1–21. x, 3, 15, 22, 30, 37, 38, 40, 41, 54, 55, 56, 62
[4] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Doll´ar, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer, 2014, pp. 740–755. 3
[5] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal visual object classes challenge: A retrospective,” International journal of computer vision, vol. 111, pp. 98–136, 2015. 3
[6] S. Shao, Z. Zhao, B. Li, T. Xiao, G. Yu, X. Zhang, and J. Sun, “Crowdhuman: A benchmark for detecting human in a crowd,” arXiv preprint arXiv:1805.00123, 2018. 3, 56
[7] A. Milan, L. Leal-Taix´e, I. Reid, S. Roth, and K. Schindler, “MOT16: A benchmark for multi-object tracking,” arXiv:1603.00831 [cs], Mar. 2016, arXiv: 1603.00831. [Online]. Available: http://arxiv.org/abs/1603.00831 3, 34
[8] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou, Y. Chai, B. Caine et al., “Scalability in perception for autonomous driving: Waymo open dataset,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 2446–2454. 3
[9] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision benchmark suite,” in 2012 IEEE conference on computer vision and pattern recognition. IEEE, 2012, pp. 3354–3361. 3
[10] Y. Du, Y. Song, B. Yang, and Y. Zhao, “Strongsort: Make deepsort great again,” arXiv preprint arXiv:2202.13514, 2022. 3, 13, 22
[11] N. Aharon, R. Orfaig, and B.-Z. Bobrovsky, “Bot-sort: Robust associations multi-pedestrian tracking,” arXiv preprint arXiv:2206.14651, 2022. 3, 13
[12] Z. Zheng, L. Zheng, and Y. Yang, “Unlabeled samples generated by gan improve the person re-identification baseline in vitro,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 3754–3762. 3, 25, 35
[13] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable person re-identification: A benchmark,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1116–1124. 3, 35
[14] L.Wei, S. Zhang,W. Gao, and Q. Tian, “Person transfer gan to bridge domain gap for person re-identification,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 79–88. 3
[15] H. Liu, Y. Tian, Y. Yang, L. Pang, and T. Huang, “Deep relative distance learning: Tell the difference between similar vehicles,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2167–2175. 3
[16] X. Liu, W. Liu, T. Mei, and H. Ma, “A deep learning-based approach to progressive vehicle re-identification for urban surveillance,” in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14. Springer, 2016, pp. 869–884. 3
[17] L. Pang, Y. Wang, Y.-Z. Song, T. Huang, and Y. Tian, “Cross-domain adversarial feature learning for sketch re-identification,” in Proceedings of the 26th ACM international conference on Multimedia, 2018, pp. 609–617. 3
[18] H. Luo, Y. Gu, X. Liao, S. Lai, and W. Jiang, “Bag of tricks and a strong baseline for deep person re-identification,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, 2019, pp. 0–0. 3, 13, 33, 35, 37, 56
[19] L. He, X. Liao, W. Liu, X. Liu, P. Cheng, and T. Mei, “Fastreid: A pytorch toolbox for general instance re-identification,” arXiv preprint arXiv:2006.02631, 2020. 3, 13, 35, 37
[20] P. Kohl, A. Specker, A. Schumann, and J. Beyerer, “The mta dataset for multitarget multi-camera pedestrian tracking by weighted distance aggregation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 1042–1043. 4, 12, 14
[21] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance measures and a data set for multi-target, multi-camera tracking,” in Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II. Springer, 2016, pp. 17–35. 4, 12, 14, 34, 35
[22] X. Han, Q. You, C. Wang, Z. Zhang, P. Chu, H. Hu, J. Wang, and Z. Liu, “Mmptrack: Large-scale densely annotated multi-camera multiple people tracking benchmark,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 4860–4869. 4, 12, 14
[23] T. Chavdarova, P. Baqu´e, S. Bouquet, A. Maksai, C. Jose, T. Bagautdinov, L. Lettry, P. Fua, L. Van Gool, and F. Fleuret, “Wildtrack: A multi-camera hd dataset for dense unscripted pedestrian detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 5030–5039. 4, 12, 14
[24] W. Chen, L. Cao, X. Chen, and K. Huang, “An equalized global graph modelbased approach for multicamera object tracking,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 27, no. 11, pp. 2367–2381, 2016. 4, 12
[25] Y. Hou, Z.Wang, S.Wang, and L. Zheng, “Adaptive affinity for associations in multi-target multi-camera tracking,” IEEE Transactions on Image Processing, vol. 31, pp. 612–622, 2021. 6, 47
[26] C.-T. Chu and J.-N. Hwang, “Fully unsupervised learning of camera link models for tracking humans across nonoverlapping cameras,” IEEE transactions on circuits and systems for video technology, vol. 24, no. 6, pp. 979–994, 2014. 6, 47
[27] K. G. Quach, P. Nguyen, H. Le, T.-D. Truong, C. N. Duong, M.-T. Tran, and K. Luu, “Dyglip: A dynamic graph model with link prediction for accurate multi-camera multiple object tracking,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 13 784– 13 793. 7, 13, 48
[28] X. Zhang and E. Izquierdo, “Real-time multi-target multi-camera tracking with spatial-temporal information,” in 2019 IEEE Visual Communications and Image Processing (VCIP). IEEE, 2019, pp. 1–4. 7, 48
[29] C.-H. Kuo, C. Huang, and R. Nevatia, “Inter-camera association of multitarget tracks by on-line learned appearance affinity models,” in Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part I 11. Citeseer, 2010, pp. 383–396. 12, 14
[30] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multiple object tracking using k-shortest paths optimization,” IEEE transactions on pattern analysis and machine intelligence, vol. 33, no. 9, pp. 1806–1819, 2011. 12
[31] S. Zhang, E. Staudt, T. Faltemier, and A. K. Roy-Chowdhury, “A camera network tracking (camnet) dataset and performance baseline,” in 2015 IEEE Winter Conference on Applications of Computer Vision. IEEE, 2015, pp. 365–372. 12, 14
[32] Z. Tang, M. Naphade, M.-Y. Liu, X. Yang, S. Birchfield, S. Wang, R. Kumar, D. Anastasiu, and J.-N. Hwang, “Cityflow: A city-scale benchmark for multitarget multi-camera vehicle tracking and re-identification,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 8797–8806. 12, 13, 14, 21, 35
[33] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua, “Multicamera people tracking with a probabilistic occupancy map,” IEEE transactions on pattern analysis and machine intelligence, vol. 30, no. 2, pp. 267–282, 2007. 12
[34] T. D’Orazio, M. Leo, N. Mosca, P. Spagnolo, and P. L. Mazzeo, “A semiautomatic system for ground truth generation of soccer video sequences,” in 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance. IEEE, 2009, pp. 559–564. 12
[35] C. De Vleeschouwer, F. Chen, D. Delannay, C. Parisot, C. Chaudy, E. Martrou, A. Cavallaro et al., “Distributed video acquisition and annotation for sportevent summarization,” NEM summit, vol. 8, no. 10.1016, 2008. 12
[36] J. Per, V. S. Kenk, M. Kristan, S. Kovacic et al., “Dana36: A multi-camera image dataset for object identification in surveillance scenarios,” in 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance. IEEE, 2012, pp. 64–69. 12
[37] E. Bochinski, V. Eiselein, and T. Sikora, “Training a convolutional neural network for multi-class object detection using solely virtual world data,” in 2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2016, pp. 278–285. 12
[38] X. Alameda-Pineda, J. Staiano, R. Subramanian, L. Batrinca, E. Ricci, B. Lepri, O. Lanz, and N. Sebe, “Salsa: A novel dataset for multimodal group behavior analysis,” IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 8, pp. 1707–1720, 2015. 12
[39] J. Ferryman and A. Shahrokni, “Pets2009: Dataset and challenge,” in 2009 Twelfth IEEE international workshop on performance evaluation of tracking and surveillance. IEEE, 2009, pp. 1–6. 12
[40] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable bagof- freebies sets new state-of-the-art for real-time object detectors,” arXiv preprint arXiv:2207.02696, 2022. 13, 24
[41] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series in 2021,” arXiv preprint arXiv:2107.08430, 2021. 13, 37, 41, 54, 56
[42] A. Specker, L. Florin, M. Cormier, and J. Beyerer, “Improving multi-target multi-camera tracking by track refinement and completion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 3199–3209. 13, 28, 47
[43] K.-S. Yang, Y.-K. Chen, T.-S. Chen, C.-T. Liu, and S.-Y. Chien, “Tracklet-refined multi-camera tracking based on balanced cross-domain re-identification for vehicles,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 3983–3992. 13, 28, 41, 47
[44] Y. He, J. Han,W. Yu, X. Hong, X.Wei, and Y. Gong, “City-scale multi-camera vehicle tracking by semantic attribute parsing and cross-camera tracklet matching,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 576–577. 13, 47
[45] H.-M. Hsu, T.-W. Huang, G. Wang, J. Cai, Z. Lei, and J.-N. Hwang, “Multicamera tracking of vehicles based on deep features re-id and trajectory-based camera link models.” in CVPR Workshops, 2019, pp. 416–424. 13, 47
[46] N. Jiang, S. Bai, Y. Xu, C. Xing, Z. Zhou, and W. Wu, “Online inter-camera trajectory association exploiting person re-identification and camera topology,” in Proceedings of the 26th ACM international conference on Multimedia, 2018, pp. 1457–1465. 13, 48
[47] M. Bredereck, X. Jiang, M. K¨orner, and J. Denzler, “Data association for multi-object tracking-by-detection in multi-camera networks,” in 2012 Sixth International Conference on Distributed Smart Cameras (ICDSC). IEEE, 2012, pp. 1–6. 13, 47
[48] Y. Lee, J. Hwang, and Z. Fang, “Combined estimation of camera link models for human tracking across nonoverlapping cameras,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp. 2254–2258. 13, 28, 41, 47
[49] C.-W. Wu, C.-T. Liu, W.-C. Tu, Y. Tsao, Y.-C. F. Wang, and S.-Y. Chien, “Space-time guided association learning for unsupervised person re-identification,” in 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020, pp. 2261–2265. 13, 28, 47
[50] H. Yao, Z. Duan, Z. Xie, J. Chen, X. Wu, D. Xu, and Y. Gao, “City-scale multi-camera vehicle tracking based on space-time-appearance features,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 3310–3318. 13, 26
[51] C. Liu, Y. Zhang, H. Luo, J. Tang, W. Chen, X. Xu, F. Wang, H. Li, and Y.-D. Shen, “City-scale multi-camera vehicle tracking guided by crossroad zones,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 4129–4137. 13, 26
[52] P. Ren, K. Lu, Y. Yang, Y. Yang, G. Sun, W. Wang, G. Wang, J. Cao, Z. Zhao, and W. Liu, “Multi-camera vehicle tracking system based on spatial-temporal filtering,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 4213–4219. 13, 26
[53] D. M. Nguyen, R. Henschel, B. Rosenhahn, D. Sonntag, and P. Swoboda, “Lmgp: Lifted multicut meets geometry projections for multi-camera multiobject tracking,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 8866–8875. 13, 47
[54] D. A. Reynolds et al., “Gaussian mixture models.” Encyclopedia of biometrics, vol. 741, no. 659-663, 2009. 15, 32
[55] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on pattern analysis and machine intelligence, vol. 22, no. 11, pp. 1330–1334, 2000. 21
[56] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778. 33, 36, 41, 56
[57] S. Paisitkriangkrai, C. Shen, and A. Van Den Hengel, “Learning to rank in person re-identification with metric ensembles,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1846–1855. 33
[58] M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, and S. C. Hoi, “Deep learning for person re-identification: A survey and outlook,” IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 6, pp. 2872–2893, 2021. 33
[59] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking performance: the clear mot metrics,” EURASIP Journal on Image and Video Processing, vol. 2008, pp. 1–10, 2008. 34
[60] J. Luiten, A. Osep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taix´e, and B. Leibe, “Hota: A higher order metric for evaluating multi-object tracking,” International journal of computer vision, vol. 129, pp. 548–578, 2021. 34
[61] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 4510– 4520. 36
[62] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 1314–1324. 36
[63] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines for efficient cnn architecture design,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 116–131. 36
[64] X. Pan, P. Luo, J. Shi, and X. Tang, “Two at once: Enhancing learning and generalization capacities via ibn-net,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 464–479. 36
[65] S. Xie, R. Girshick, P. Doll´ar, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1492–1500. 36
[66] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun, T. He, J. Mueller, R. Manmatha et al., “Resnest: Split-attention networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 2736–2746. 36
[67] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, “Repvgg: Making vgg-style convnets great again,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 13 733–13 742. 36
[68] Y. Zhang, C.Wang, X.Wang,W. Zeng, andW. Liu, “Fairmot: On the fairness of detection and re-identification in multiple object tracking,” International Journal of Computer Vision, vol. 129, pp. 3069–3087, 2021. 38, 40, 54
[69] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime tracking,” in 2016 IEEE international conference on image processing (ICIP). IEEE, 2016, pp. 3464–3468. 38, 54
[70] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a deep association metric,” in 2017 IEEE international conference on image processing (ICIP). IEEE, 2017, pp. 3645–3649. 38, 54
[71] C. Long, A. Haizhou, Z. Zijie, and S. Chong, “Real-time multiple people tracking with deeply learned candidate selection and person re-identification,” in ICME, 2018. 38
[72] J. Cao, X. Weng, R. Khirodkar, J. Pang, and K. Kitani, “Observationcentric sort: Rethinking sort for robust multi-object tracking,” arXiv preprint arXiv:2203.14360, 2022. 38
[73] Y. Guo, Z. Liu, H. Luo, H. Pu, and J. Tan, “Multi-person multi-camera tracking for live stream videos based on improved motion model and matching cascade,” Neurocomputing, vol. 492, pp. 561–571, 2022. 48
[74] C.-T. Liu. (2022) Learning efficient and effective person re-identification in multi-camera tracking system and beyond. [Online]. Available: https://hdl.handle.net/11296/pfk967 48
[75] C.-W. Wu. (2019) Unsupervised person re-identification in multi-camera tracking. [Online]. Available: https://hdl.handle.net/11296/skmpa9 48
[76] S. Yang, F. Ding, P. Li, and S. Hu, “Distributed multi-camera multi-target association for real-time tracking,” Scientific Reports, vol. 12, no. 1, p. 11052, 2022. 48
[77] G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam, 1995. 51
[78] Jeffbass. imagezmq: Transporting opencv images. [Online]. Available: https://github.com/jeffbass/imagezmq 52, 60
[79] Z. Wang, L. Zheng, Y. Liu, Y. Li, and S. Wang, “Towards real-time multiobject tracking,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16. Springer, 2020, pp. 107–122. 54
[80] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint arXiv:1804.02767, 2018. 54
[81] A. Ess, B. Leibe, K. Schindler, , and L. van Gool, “A mobile vision system for robust multi-person tracking,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR’08). IEEE Press, June 2008. 56
[82] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 3213–3223. 56
[83] NVIDIA. Tensorrt. [Online]. Available: https://developer.nvidia.com/tensorrt 68
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92673-
dc.description.abstract近年來,攝影機被廣泛的應用於大規模的監控系統中,提供了像是路徑規劃和行為分析等功能,其中多相機多目標追蹤演算法扮演著重要角色並逐漸受到各界的關注。然而,大部分現有的資料集因為資源考量而規模受到限制,其他的則是僅適用於特定目的,因此這領域長期缺乏適當的資料集而研究發展緩慢。
在本篇論文中,我們提出了一個新的人物資料集名為NTU-MTMC。此資料集具有大規模、真實戶外環境及非演員等特點,同時也包含許多具有挑戰性的場景,像是頻繁的遮擋、劇烈的光影變化和雜亂的背景。特別的是,此資料集中出現行人和自行車手兩種追蹤目標,他們截然不同的移動模式增加了跨相機追蹤的難度。此外,我們提出了一個基礎的線外系統架構搭配上我們設計的兩階段匹配策略及自適應時間函數。最後,我們透過實驗證明此資料集對相關領域有正向的影響,也驗證了我們提出的架構的可行性及效能。
此外,我們還建立了可以高效處理多相機資料的線上系統。與其他傳統系統相比,我們採用分散式架構,由多個中端裝置組成系統。每個中端裝置會同時處理多個相機中的資料並且只傳輸必要資料給彼此來獲得全區的資訊,這種架構可以節省傳輸頻寬並提高系統的靈活性,同時規模也不再受限於單一伺服器的能力。最後,我們透過模擬結果證明了這種分散式系統架構的在實際應用中的可行性,同時也展示出我們系統的準確性及計算效率。
zh_TW
dc.description.abstractCamera sensors are widely utilized around the world and integrated into large-scale and complex surveillance systems, empowering individuals to manage the information for diverse applications, such as route planning and behavior analysis.
Multi-target multi-camera tracking (MTMCT) plays a pivotal role in these applications and has received increasing attention from both academia and industry.
However, the development of person-based MTMCT grows slow due to the lack of proper datasets.
The scale of most existing MTMCT datasets is limited by high data collection and annotation cost, while others are targeting to specific and limited purposes.

In this thesis, we propose a new person-based dataset, NTU-MTMC, which contains several advantageous properties: large-scale, outdoor, real-world, and featuring non-acting individuals.
NTU-MTMC consists of challenging scenes, which cause heavy occlusion, severe light variations and noisy backgrounds.
Notably, different from other datasets, individuals in this dataset exist in two primary statuses: pedestrians and bicyclists, resulting in completely different transition time distributions and increasing the complexity in inter-camera association.
On top of that, we propose a baseline framework for this dataset by adopting a two-stage matching strategy and adaptive time window function.
Extensive experiments show the great impact of NTU-MTMC on related tasks and validate the effectiveness of ourproposed baseline framework.

In addition, we present an online MTMCT system that can efficiently process real-world multi-camera data.
Different from other conventional online frameworks which transmit all data to a central server, our system adopts a decentralized approach, consisting of multiple mid-end gateways.
Each gateway concurrently processes several streaming cameras and their sub-tasks of MTMCT, and transmits processed data among themselves.
Such distributed structure helps to save communication bandwidth and enhances the scalability and flexibility, while the scale of system is no longer limited to the throughput of the central server.
Experiment results demonstrate the feasibility of this structure and show the efficiency and effectiveness of our system in real-time operation for practical applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-04T16:05:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-06-04T16:05:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAbstract i
List of Figures v
List of Tables xi
1 Introduction 1
1.1 Large-scale MTMCT Dataset . . . . . . . . . . . . . . . . . . . . 3
1.2 Distributed Real-time MTMCT System . . . . . . . . . . . . . . 6
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 NTUMTMC: A Dataset for Multi-Target Multi-Camera Tracking 11
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 MTMCT Algorithms . . . . . . . . . . . . . . . . . . . . 13
2.2 Proposed Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Dataset Overview . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Camera Calibration . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Data Annotation . . . . . . . . . . . . . . . . . . . . . . 22
2.2.4 Baseline Framework . . . . . . . . . . . . . . . . . . . . 25
2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Sub-tasks Experiments . . . . . . . . . . . . . . . . . . . 35
2.3.3 MTMCT Experiments . . . . . . . . . . . . . . . . . . . 41
3 Distributed Real-time Multi-Target Multi-Camera Tracking System 45
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.1 Offline MTMCT System . . . . . . . . . . . . . . . . . . 47
3.1.2 Online MTMCT System . . . . . . . . . . . . . . . . . . 48
3.2 Proposed System . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.1 System Architecture . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Person Detection and Single Camera Tracking Design . . 53
3.2.3 Inter-Camera Tracking Design . . . . . . . . . . . . . . . 57
3.2.4 Performance Improvement . . . . . . . . . . . . . . . . . 62
3.2.5 Latency Improvement . . . . . . . . . . . . . . . . . . . 67
3.2.6 Overall Performance . . . . . . . . . . . . . . . . . . . . 68
4 Conclusion 71
Reference 73
-
dc.language.isoen-
dc.subject多相機追蹤zh_TW
dc.subject即時多相機系統zh_TW
dc.subject分散式多相機系統zh_TW
dc.subject多相機追蹤資料集zh_TW
dc.subject多相機追蹤系統zh_TW
dc.subjectMulti-Target Multi-Camera Trackingen
dc.subjectMulti-Target Multi-Camera Tracking Systemen
dc.subjectReal-Time Multi-Camera Systemen
dc.subjectDistributed Multi-Camera Systemen
dc.subjectMulti-Target Multi-Camera Tracking Dataseten
dc.title用於多相機追蹤之資料集與分散式即時系統zh_TW
dc.titleMulti-Target Multi-Camera Tracking Dataset and Distributed Real-Time Systemen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳祝嵩;曹昱;莊永裕;鄭文皇zh_TW
dc.contributor.oralexamcommitteeChu-Song Chen;Yu Tsao;Yung-Yu Chuang;Wen-Huang Chengen
dc.subject.keyword多相機追蹤,多相機追蹤資料集,分散式多相機系統,即時多相機系統,多相機追蹤系統,zh_TW
dc.subject.keywordMulti-Target Multi-Camera Tracking,Multi-Target Multi-Camera Tracking Dataset,Distributed Multi-Camera System,Real-Time Multi-Camera System,Multi-Target Multi-Camera Tracking System,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202401005-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-05-28-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2025-05-26-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf5.89 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved