請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92656完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳昭宏 | zh_TW |
| dc.contributor.advisor | Jau-Horng Chen | en |
| dc.contributor.author | 徐碩亨 | zh_TW |
| dc.contributor.author | Shuo-Heng Xu | en |
| dc.date.accessioned | 2024-05-30T16:06:38Z | - |
| dc.date.available | 2024-05-31 | - |
| dc.date.copyright | 2024-05-30 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-05-29 | - |
| dc.identifier.citation | [1] L. R. Kahn, “Single-sideband transmission by envelope elimination and restoration,” Proc. IRE, vol. 40, no. 7, pp. 803-806, Jul. 1952
[2] John Wood, Behavioral Modeling and Linearization of RF Power Amplifiers, Artech, 2014. [3] “3GPP TS 38.104 5G NR Base Station (BS) radio transmission and reception” 2023 [4] N. Rostomyan, J. A. Jayamon, and P. M. Asbeck, “15 GHz Doherty power amplifier with RF predistortion linearizer in CMOS SOI,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1339–1348, Mar. 2018. [5] C.-W. Chang, J.-H. Chen, and J. Staudinger, “A multiphase digital pulsewidth modulated polar transmitter architecture with reactive combiner for improved efficiency,” IEEE Trans. Microw. Theory Tech., vol. 67, no. 3, pp. 1107–1114, Mar. 2019. [6] R. Giofrè, P. Colantonio, and F. Giannini, “A design approach for two stages GaN MMIC PAs with high efficiency and excellent linearity,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 1, pp. 46–48, Jan. 2016. [7] R. Giofrè and P. Colantonio, “A high efficiency and low distortion 6 W GaN MMIC Doherty amplifier for 7 GHz radio links,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 1, pp. 70–72, Jan. 2017. [8] W. Hallberg, M. Özen, D. Gustafsson, K. Buisman, and C. Fager, “A Doherty power amplifier design method for improved efficiency and linearity,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4491–4504, Dec. 2016. [9] X. Fang, A. Chung, and S. Boumaiza, “Linearity-enhanced Doherty power amplifier using output combining network with predefined AM–PM characteristics,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 1, pp. 195–204, Jan. 2019. [10] A. Grebennikov, “High-efficiency class-E power amplifier with shunt capacitance and shunt filter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 1, pp. 12-22, Jan. 2016. [11] M. Thian and V. F. Fusco, “Analysis and design of class-E3F2 and transmission-line class-E3F2 power amplifiers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 5, pp. 902–912, May 2011 [12] Q.-Y. Guo, X. Y. Zhang, J.-X. Xu, Y. C. Li, and Q. Xue, “Bandpass class-F power amplifier based on multifunction hybrid cavity microstrip filter,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 7, pp. 742–746, Jul. 2017. [13] J. N. Kitchen, I. Deligoz, S. Kiaei, and B. Bakkaloglu, “Polar SiGe class E and F amplifiers using switch-mode supply modulation,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 5, pp. 845–856, May 2007. [14] K. Cho and R. Gharpurey, “An efficient class-G stage for switching RF power amplifier applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66, no. 4, pp. 597–601, Apr. 2019. [15] T. Johnson and S. P. Stapleton, “RF class-D amplification with band-pass sigma-delta modulation drive signals,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, pp. 2507–2520, Dec. 2006. [16] J.-C. Park, J.-G. Yook, B. H. Park, N. Jeon, K.-S. Seo, D. Kim, W.-S. Lee, and C.-S. Yoo, “Hybrid current-mode class-S power amplifier with GaN schottky diode using chip-on-board technique for 955 MHz LTE signal,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4168–4178, Dec. 2013. [17] C. Hartmann, K. Blau, and M. A. Hein, “An integrated SiGe HBT pulselength modulator for class-S power amplifiers in the UHF range,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, pp. 62–69, Jan. 2011. [18] T. Ulversoy, “Software defined radio: Challenges and opportunities,” IEEE Commun. Surveys Tuts., vol. 12, no. 4, pp. 531–550, 4th Quart., 2010. [19] A. B. Arfi, M. Jouzdani, M. Helaoui, and F. M. Ghannouchi, “A novel high-pass delta–sigma modulator-based digital-IF transmitter with enhanced performance for SDR applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66, no. 11, pp. 1795–1799, Nov. 2019. [20] M. T. Pasha, M. F. U. Haque, J. Ahmad, and T. Johansson, “A modified all digital polar PWM transmitter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 2, pp. 758–768, Feb. 2018. [21] H. Chireix, “High power outphasing modulation,” Proc. IRE, vol. 23, no. 11, pp. 1370-1392, Nov. 1935. [22] D. Rudolph, “Out-of-band emissions of digital transmissions using Kahn EER technique,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 8, pp. 1979–1983, Aug. 2002. [23] A. Aref, T. Hone, and R. Negra, “A study of the impact of delay mismatch on linearity of outphasing transmitters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 1, pp. 254–262, Jan. 2015. [24] T. Hwang, K. Azadet, R. S. Wilson, and J. Lin, “Nonlinearity modeling of a Chireix outphasing power amplifier,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 12, pp. 2898–2907, Dec. 2015. [25] J. Hur, H. Kim, O. Lee, K.-W Kim, K Lim, F. Bien, “An Amplitude and Phase Mismatches Calibration Technique for the LINC Transmitter With Unbalanced Phase Control,” IEEE Trans. Veh. Technol., vol.60, no.9, pp.4184-4193, 2011. [26] J. H. Qureshi et al., “A 90-W peak power GaN outphasing amplifier with optimum input signal conditioning,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 8, pp. 1925–1935, Aug. 2009. [27] Y. Wang, “An improved Kahn transmitter architecture based on delta-sigma modulation,” IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2003, pp. 1327–1330. [28] M. Nielsen and T. Larsen, “A transmitter architecture based on delta-sigma modulation and switch-mode power amplification,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 8, pp. 735–739, Aug. 2007. [29] J.-H. Chen, H.-S. Yang, and Y.-J. E. Chen, “A multi-level pulse-modulated polar transmitter using digital pulse-width modulation,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 295-297, May 2010. [30] S. Chi, P. Singerl and C. Vogal, “Efficiency optimization for burst mode multilevel radio frequency transmitters,” IEEE Trans. Circuits Syst. I Reg. Papers, vol. 60, no. 7, pp. 1901-1911, Jul. 2013. [31] H. Enzinger and C. Vogel, “Analytical description of multilevel carrier-based PWM of arbitrary bounded input signals,” Proc. ISCAS, pp. 1030-1033, Jun. 2014. [32] Q. Zhu, R. Ma, C. Duan, K. H. Teo, and K. Parsons, “A 5-level discrete-time power encoder with measured coding efficiency of 70% for 20-MHz LTE digital transmitter,” IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2014, pp. 1–3. [33] F. Yao, Q. Zhou, and Z. Wei, “A novel multilevel RF-PWM method with active-harmonic elimination for all-digital transmitters,” IEEE Trans. Microw. Theory and Techn., vol. 66, no. 7, pp. 3360-3373, July 2018. [34] K. Hausmair, S. Chi, P. Singerl, and C. Vogel, “Aliasing-free digital pulse-width modulation for burst-mode RF transmitters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 2, pp. 415-427, Feb. 2013. [35] S.-C. Lin, S.-H. Xu, Y.-H. Chen, C.-W. Chang, Y.-J. E. Chen and J.-H. Chen, “Gibbs-phenomenon-reduced digital PWM for power amplifiers using pulse modulation,” IEEE Access, vol. 7, pp. 178788-178797, 2019. [36] H. -S. Yang, S. -H. Tsai, M. -H. Kao and T. -H. Chen, “Spur-reduced and efficiency-enhanced pulse-modulated polar transmitters with output direct absorptive filter connection,” IEEE Trans. Microw. Theory Techn, vol. 70, no. 1, pp. 711-718, Jan. 2022 [37] T.-H. Wang, Y.-H. Chen, C.-W. Chang, K.-M. Li, J.-H. Chen, and J. Staudinger, “On the thermal-memory effect reduction of power amplifiers using pulse modulation,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 4, pp. 285-287, April 2019. [38] H. L. Krauss, C. W. Bostian and F. H. Raab, Solid State Radio Engineering, New York: Wiley, 1980. [39] N. Srirattana, A. Raghavan, D. Heo, P. Allen, and J. Laskar, “Analysis and design of a high-efficiency multistage Doherty power amplifier for wireless communications,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 3, pp. 852–860, Mar. 2005. [40] C.-W. Chang, S.-C. Lin, J.-H. Chen, and J. Staudinger, “A multilevel pulse-modulated polar transmitter based on a Doherty power amplifier and memoryless digital predistortion,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 10, pp. 933–935, Oct. 2018. [41] D. Wang et al., “An 8 GSps 14 bit RF DAC with IM3<−62 dBc up to 3.6 GHz,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66, no. 5, pp. 768–772, May 2019. [42] Y.-H. Chen, T.-H. Wang, S.-C. Lin, J.-H. Chen, and Y.-J.-E. Chen, “A pulse-modulated polar transmitter using direct digital synthesis for 5G NR mobile applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 10, pp. 1894–1898, Oct. 2020. [43] B. Kim, J. Kim, I. Kim, and J. Cha, “The Doherty power amplifier,” IEEE Microw. Mag., vol. 7, no. 5, pp. 42–50, Oct. 2006. [44] M. Özen, K. Andersson, and C. Fager, “Symmetrical Doherty power amplifier with extended efficiency range,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 4, pp. 1273–1284, Apr. 2016. [45] L. Piazzon et al., “Effect of load modulation on phase distortion in Doherty power amplifiers,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 7, pp. 505–507, July 2014. [46] N. Messaoudi, M.-C. Fares, S. Boumaiza, and J. Wood, “Complexity reduced odd-order memory polynomial predistorter for 400-Watt multicarrier Doherty amplifier linearization,” IEEE MTT-S Int. Microw. Symp. Dig., Atlanta, GA, Jun. 2008, pp. 419–422. [47] S. -H. Xu, C. -W. Chang, Y. -C. Chang, S. -C. Lin, J. -H. Chen and J. Staudinger, “A Digital Combining Applied to the Multilevel Pulse Modulated Polar Transmitter,” in IEEE Access, vol. 11, pp. 58055-58063, Sep. 2023. [48] C. Erdmann et al., “16.3 A 330mW 14b 6.8GS/s dual-mode RF DAC in 16nm FinFET achieving −70.8dBc ACPR in a 20MHz channel at 5.2GHz,” IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, pp. 280-281, 2017. [49] S. Boumaiza and F. M. Ghannouchi, “Thermal memory effects modeling and compensation in RF power amplifiers and predistortion linearizers,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 12, pp. 2427–2433, Dec. 2003 [50] L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun., vol. 52, no. 1, pp. 159–165, Jan. 2004. [51] A. Tehrani, C. Haiying, S. Afsardoost, T. Eriksson, M. Isaksson, and C. Fager, “A comparative analysis of the complexity/accuracy tradeoff in power amplifier behavioral models,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 6, pp. 1510–1520, June 2010. [52] J. Wood, “System-level design considerations for digital pre-distortion of wireless base station transmitters,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1880–1890, May 2017. [53] J. H. K. Vuolevi, T. Rahkonen, and J. P. A. Manninen, “Measurement technique for characterizing memory effects in RF power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 8, pp. 1383–1389, Aug. 2001. [54] H. Ku, M. D. McKinley, and J. S. Kenney, “Quantifying memory effects in RF power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 12, pp. 2843–2849, Dec. 2002. [55] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3852–3860, Oct. 2006. [56] S. Wang, W. Cao, C. Fager, and T. Eriksson, “Infinite Impulse Response Structure for Amplifier Modeling and Linearization,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 8, pp. 961-964, Aug. 2021. [57] P. P. Campo, A. Brihuega, L. Anttila, M. Turunen, D. Korpi, M. Allen, and M. Valkama, “Gradient-adaptive spline-interpolated LUT methods for low-complexity digital predistortion,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 1, pp. 336-349, Jan. 2021. [58] S. -H. Xu et al., “A multilevel pulse modulated polar transmitter for multicarrier 5G applications using low-complexity digital predistortion,” Proc. Asia–Pacific Microw. Conf. (APMC), Nov. 2022, pp. 506-508. [59] J.-H. Chen, C.-W. Chang, and H.-S. Yang, “Linearity enhanced wide-bandwidth pulse-modulated polar transmitters for LTE femtocell applications,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 1, pp. 219–225, Jan. 2016. [60] P. L. Gilabert, G. Montoro, and E. Bertran, “On the Wiener and Hammerstein models for power amplifier predistortion,” Proc. Asia–Pacific Microw. Conf. (APMC), Dec. 2005, pp. 1–4. [61] S. -H. Xu, C. -W. Chang, S. -C. Lin, J. -H. Chen and J. Staudinger, "A wideband pulse-modulated polar transmitter with low-complexity digital predistortion," IEEE Microw. Wireless Techn. Lett., vol. 33, no. 12, pp. 1654-1657, Dec. 2023 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92656 | - |
| dc.description.abstract | 本論文提出了一種採用新的數位脈衝寬度調變技術下的新型發射機架構和與之搭配的數位預失真方案。在第五代行動通訊系統的廣泛應用需求,使得對於高速率數據和低延遲的傳輸提出了更高的要求。為了滿足這些嚴峻的需求,傳輸信號的峰對均值功率比在採用複雜的先進調變技術後也因此提高。在以滿足線性度規範運作傳輸機時,增加峰對均值功率比的調變信號往往有降低了發射機效率的疑慮。因此,開發一種能夠平衡效率和線性度需求的發射機對於新世代通訊的傳輸機有其必要性。
論文的第一部分首先應用了一種數位結合方法,用於調變出能與現代通訊系統相容的多階級脈衝寬度調變信號。使用這種方法,傳輸機系統對被動射頻元件不匹配的依賴性降低。理論模擬上,由脈衝寬度調變引起的諧波可以完全消除。更進一步的,這種方法在論文中用於驅動商業用的Doherty功率放大器。結合多階級脈衝式調變之極化發射機與業界廣為採用的高效率功率放大器架構,可以實現效率和線性度的兼顧。在論文中進一步分析應用具有交錯技術的典型脈衝式調變之極化發射機和數位結合方法兩者技術的差異。第一部分透過實驗驗證多階級脈衝式調變之極化發射機和提出的數位結合方法作為結尾。這種方法可以滿足線性度的要求,而無需進一步添加資源。 論文的第二部分接著專注在緩解功率放大器在傳輸寬頻信號時,其所採用的預失真方案資源需求。透過分析影響基地台傳輸機的非線性因素,研究指出在對功率放大器進行建模以實施線性化技術於寬頻訊號應用時,記憶效應是主要的挑戰。在論文的第二部分中,首先採用了論文第一部分提出的多階級脈衝式調變訊號抑制了長期記憶效應。針對短期記憶效應,採用了兩個記憶深度的記憶模型。與傳統的I/Q調變發射機相比,線性化過程可以使用更少的資源來實現。 延續第二部分的概念,一種新的替代預失真方法在第三部分被提出,以達成在寬頻傳輸下低資源需求在的應用。論文的第三部分應對短期記憶效應,提出了使用等化濾波器用於補償寬頻脈衝式調變極化之發射機的動態頻率響應。與經典脈衝式調變極化之發射機模型相比,提出了寬頻脈衝調變式極化之發射機模型並加以驗證。當射頻電路硬體滿足脈衝式調變極化之發射機的操作要求時,該架構中的線性度性能可以達到與複雜的通用記憶多項式模型相當的結果,同時顯著減少了資源。 本文提出的方法適合軟體定義無線電的開發,低使用資源與高效的數位預失真解決方案有潛力促進經濟高效的第五代通訊基地台的推進和建立。 | zh_TW |
| dc.description.abstract | This thesis presents new methods for transmitter architecture and digital predistortion scheme (DPD) based on digital pulse-width modulation (DPWM). With the continuous challenges posed by the fifth-generation (5G) communication system development, it demands more on low latency and high data rates transmission. The advanced modulation signal with an increased peak-to-average power ratio (PAPR) decreases the efficiency of the transmitter when simultaneously addressing linearity demands. Therefore, it is necessary to develop a transmitter that balances efficiency and linearity requirements.
The first part of the thesis proposes a digital combining method to modulate multi-level pulse-width signals, which can be compatible with modern communication generation. With this method, the transmitter suffers less from passive radio frequency (RF) component mismatch. Ideally, the harmonics induced by pulse-width modulation (PWM) can be eliminated completely. Furthermore, this method is used to drive the commercially available Doherty power amplifier (DPA). Combining the currently popular high-efficiency power amplifier (PA) architecture and multilevel pulse-modulated polar transmitter (PMPT), this work can maintain efficiency and linearity concurrently. Further, in the text, classical PMPT with interleaving technique and the proposed method are explained and analyzed. The operating principle of multilevel PMPT is discussed and validated on the testbed. This method can meet the linearity requirement without additional resources. The second part of the thesis focuses on alleviating the resource demands of the DPD scheme, which is applied to PA to ensure linearity when transmitting broadband signals. The reason for nonlinearities and the challenge of linearization are analyzed. When implementing linearization techniques, the memory effect emerges as the primary obstacle in modeling the behavior of the PA in wideband applications. The long-term memory effect can be inhibited by the method proposed in the first part of the thesis. A two-tap robust memory DPD model is adopted to target the short-term memory effect. Compared to conventional In-phase/Quadrature (I/Q) transmitters, the linearization process can use fewer resources. Building on the concept introduced in the second part, an alternative method is further presented to address low resource requirements. Targeting the short-term memory effect, an equalization filter is proposed to compensate for the dynamic frequency response with wideband PMPT. Compared with the classical PMPT mathematical model, the broadband PMPT model is proposed and validated. With the hardware meeting the operational prerequisites of PMPT, this architecture achieves comparable linearity performance to employing a complex general memory polynomial model (GMP) for the linearization process while significantly reducing resource demands. The approach presented in this thesis is applicable to the development of software-defined radio, and the resource-efficient DPD solution can potentially facilitate the advancement and establishment of cost-effective 5G base stations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-05-30T16:06:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-05-30T16:06:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝...............................................I
中文摘要 ..........................................II ABSTRACT..........................................IV CONTENTS..........................................VI LIST OF FIGURES...................................IX LIST OF TABLES...................................XII LIST OF ABBREVIATIONS...........................XIII Chapter 1. Introduction.......................1 1.1 Motivation.................................1 1.2 Background.................................3 1.2.1 Polar Transmitter..........................3 1.2.2 Memory Effects.............................3 1.2.2.1. Short-Term Memory..................3 1.2.2.2. Long-Term Memory...................4 1.2.3 Performance Metrics........................5 1.2.3.1. Efficiency.........................5 1.2.3.2. Adjacent Channel Leakage Ratio.....6 1.2.3.3. Error Vector Magnitude.............8 1.3 Objectives.................................9 1.4 Outline...................................10 Chapter 2. A Digital Combining Method Applied to the Multilevel PMPT............................11 2.1 Introduction..............................11 2.2 Operating Principle of Multi-Phase PMPTs..14 2.2.1 Aliasing and Gibbs Phenomenon.............15 2.2.2 Spurs and Multi-Way PMPTs.................16 2.3 Digital Combining Method..................21 2.4 Thermal Memory Effect Reduction...........26 2.5 System Implementation and Measurement Results...........................................31 2.6 Summary...................................38 Chapter 3. A Multilevel PMPT for Multicarrier 5G Applications Using Low-Complexity Digital Predistortion.....................................39 3.1 Introduction..............................39 3.2 Multilevel PMPTS with GRDPWM..............40 3.3 Low Complexity Linearization..............45 3.4 Implementation and Measurement Results....51 3.5 Summary...................................56 Chapter 4. A Wideband PMPT With Low-Complexity Digital Predistortion.............................57 4.1 Introduction..............................57 4.2 PMPTs Approximated Memoryless Model.......58 4.3 Broadband PMPTs Model and Equalization Filter............................................61 4.4 System Implementation and Measurement.....65 4.5 Summary...................................72 Chapter 5. Conclusion........................74 References........................................76 | - |
| dc.language.iso | en | - |
| dc.subject | 等化濾波器 | zh_TW |
| dc.subject | 極化座標發射機 | zh_TW |
| dc.subject | 功率放大器 | zh_TW |
| dc.subject | 數位預失真 | zh_TW |
| dc.subject | 數位脈衝調變 | zh_TW |
| dc.subject | Polar transmitters | en |
| dc.subject | Equalization filter | en |
| dc.subject | Digital pulse-width modulation (DPWM) | en |
| dc.subject | Digital predistortion (DPD) | en |
| dc.subject | Power amplifiers (PAs) | en |
| dc.title | 高效率脈衝式極化傳輸機與低複雜度預失真 | zh_TW |
| dc.title | A Highly Efficient Pulse-Modulated Polar Transmitter with Low-Complexity Digital Predistortion | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳怡然;楊濠瞬;張恆華;陳彥廷 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Jan Emery Chen;Hao-Shun Yang;Herng-Hua Chang;Yen-Ting Chen | en |
| dc.subject.keyword | 功率放大器,極化座標發射機,數位脈衝調變,等化濾波器,數位預失真, | zh_TW |
| dc.subject.keyword | Power amplifiers (PAs),Polar transmitters,Digital pulse-width modulation (DPWM),Equalization filter,Digital predistortion (DPD), | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202401016 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-05-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
