Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92654
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王泓仁zh_TW
dc.contributor.advisorHung-Jen Wangen
dc.contributor.author魏上傑zh_TW
dc.contributor.authorShang-Chieh Weien
dc.date.accessioned2024-05-30T16:06:03Z-
dc.date.available2024-05-31-
dc.date.copyright2024-05-30-
dc.date.issued2024-
dc.date.submitted2024-05-20-
dc.identifier.citationAbrigo, M. R. M. and Love, I. (2016). Estimation of panel vector autoregression in Stata. Stata Journal, 16(3):778–804.
ACEA (2021). Overview – Electric vehicles: tax benefits & purchase incentives in the European Union (2021). European Automobile Manufacturers Association. Available at https://www.acea.auto/files/Electric_vehicles-Tax_benefits_purchase_incentives_European_Union_2021.pdf.
Akkaya, M. (2021). Vector autoregressive model and analysis. Handbook of Research on Emerging Theories, Models, and Applications of Financial Econometrics, pages 197–214.
Anderson, T. W. and Hsiao, C. (1982). Formulation and estimation of dynamic models using panel data. Journal of Econometrics, 18(1):47–82.
Andrews, D. W. and Lu, B. (2001). Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models. Journal of Econometrics, 101(1):123–164.
Arellano, M. and Bover, O. (1995). Another look at the instrumental variable estimation of error-components models. Journal of Econometrics, 68(1):29–51.
BCG (2022). Automotive industry semiconductor outlook. Boston Consulting Group. Available at https://www.bcg.com/publications/2022/tracking-next-phase-automotive-semiconductor-shortage.
Bernanke, B. S. and Blinder, A. S. (1992). The federal funds rate and the channels of monetary transmission. American Economic Review, 82(4):901–921.
Caldara, D. and Kamps, C. (2008). What are the effects of fiscal policy shocks? A VAR-based comparative analysis. European Central Bank working paper series, 877.
Clinton, B. C. and Steinberg, D. C. (2019). Providing the spark: Impact of financial incentives on battery electric vehicle adoption. Journal of Environmental Economics and Management, 98:102255.
DigiTimes Asia (2023). How significant is TSMC’s influence in the automotive chip market? Available at https://www.digitimes.com/news/a20230817PD200/tsmc-automotive-chips+components.html.
Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, pages 424–438.
Guo, J. et al. (2020). Does air pollution stimulate electric vehicle sales? Empirical evidence from twenty major cities in China. Journal of Cleaner Production, 249:119372.
Hamilton, J. D. (2020). Time series analysis. Princeton University Press, Princeton, NJ.
Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica: Journal of the Econometric Society, 50:1029–1054.
Harris, R. D. and Tzavalis, E. (1999). Inference for unit roots in dynamic panels where the time dimension is fixed. Journal of Econometrics, 91(2):201–226.
Hayakawa, K. et al. (2009). First difference or forward orthogonal deviation-which transformation should be used in dynamic panel data models?: A simulation study. Economics Bulletin, 29(3):2008–2017.
Hlouskova, J. and Wagner, M. (2006). The performance of panel unit root and stationarity tests: results from a large scale simulation study. Econometric Reviews, 25(1):85–116.
IEA (2021). Global EV Outlook 2021. International Energy Agency, Paris. Available at https://www.iea.org/reports/global-ev-outlook-2021.
IEA (2022). Global EV Outlook 2022. International Energy Agency, Paris. Available at https://www.iea.org/reports/global-ev-outlook-2022.
IEA (2023). Global EV Outlook 2023. International Energy Agency, Paris. Available at https://www.iea.org/reports/global-ev-outlook-2023.
Im, K. S., Pesaran, M., and Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115(1):53–74.
Li, X., Chen, P., and Wang, X. (2017). Impacts of renewables and socioeconomic factors on electric vehicle demands–panel data studies across 14 countries. Energy Policy, 109:473–478.
Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer, Berlin, Heidelberg.
Mersky, A. C., Sprei, F., Samaras, C., and Qian, Z. S. (2016). Effectiveness of incentives on electric vehicle adoption in Norway. Transportation Research Part D: Transport and Environment, 46:56–68.
Münzel, C., Plötz, P., Sprei, F., and Gnann, T. (2019). How large is the effect of financial incentives on electric vehicle sales?–A global review and European analysis. Energy Economics, 84:104493.
Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica: Journal of the Econometric Society, pages 1417–1426.
Phillips, R. F. (2019). A comparison of first-difference and forward orthogonal deviations GMM. arXiv preprint arXiv:1907.12880.
Plötz, P., Gnann, T., and Sprei, F. (2016). Can policy measures foster plug-in electric vehicle market diffusion? World Electric Vehicle Journal, 8(4):789–797.
Plötz, P., Gnann, T., and Sprei, F. (2017). What are the effects of incentives on plug-in electric vehicle sales in Europe? ECEEE Summer Study Proc, pages 799–805.
Saether, S. R. (2022a). Mobility at the crossroads–Electric mobility policy and charging infrastructure lessons from across Europe. Transportation Research Part A: Policy and Practice, 157:144–159.
Saether, S. R. (2022b). Panel data - European electric mobility paper - 2000-2020. Mendeley Data, V3.
Sierzchula, W., Bakker, S., Maat, K., and Van Wee, B. (2014). The influence of financial incentives and other socio-economic factors on electric vehicle adoption. Energy Policy, 68:183–194.
Sims, C. A. (1980). Macroeconomics and reality. Econometrica: Journal of the Econometric Society, pages 1–48.
Soltani-Sobh, A., Heaslip, K., Stevanovic, A., Bosworth, R., and Radivojevic, D. (2017). Analysis of the electric vehicles adoption over the United States. Transportation Research Procedia, 22:203–212.
StataCorp (2023). Stata 18 Longitudinal-Data/Panel-Data Reference Manual. College Station, TX.
Stock, J. H. and Watson, M. W. (2020). Introduction to Econometrics. Pearson.
Vergis, S. and Chen, B. (2015). Comparison of plug-in electric vehicle adoption in the United States: A state by state approach. Research in Transportation Economics, 52:56–64.
Wang, N., Pan, H., and Zheng, W. (2017). Assessment of the incentives on electric vehicle promotion in China. Transportation Research Part A: Policy and Practice, 101:177–189.
Wang, N., Tang, L., and Pan, H. (2019). A global comparison and assessment of incentive policy on electric vehicle promotion. Sustainable Cities and Society, 44:597–603.
Wee, S., Coffman, M., and La Croix, S. (2018). Do electric vehicle incentives matter? Evidence from the 50 US states. Research Policy, 47(9):1601–1610.
Wooldridge, J. M. (2013). Introductory Econometrics: A Modern Approach 5th ed. Cengage Learning.
Xue, C., Zhou, H., Wu, Q., Wu, X., and Xu, X. (2021). Impact of incentive policies and other socio-economic factors on electric vehicle market share: A panel data analysis from the 20 countries. Sustainability, 13(5):2928.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92654-
dc.description.abstract本文分析影響電動車銷量的因素,並特別聚焦在總體經濟環境的影響。利用2010年到2021年間27個歐洲國家資料,本文透過固定效果模型發現兩年前的人均GDP成長率提高1%,將導致本年度的電動車銷售量增加6.373%;相反地,兩年前的利率增加1%將導致本年度的電動車銷售量減少35.27%。此外,本文發現充電樁以及電動車持有稅優惠對電動車銷量的正向影響。

本文亦透過追蹤資料向量自迴歸模型分析總體經濟環境與電動車銷量的動態影響。本文發現人均GDP成長率上升的衝擊,將對當年度及一年後的電動車銷售量產生正向影響。值得留意的是,此正向影響在衝擊發生的一年後達到最高點。而在利率方面,利率上升的衝擊將導致電動車銷售量的負面影響,且此負面影響帶有時間滯後,衝擊發生的一年後,負面影響才開始具統計顯著性。

根據以上論述,我們建議在預測電動車需求量時關注人均GDP成長率和利率。增加充電樁數量以及實施經常性的政策誘因則可刺激電動車市場的銷量。
zh_TW
dc.description.abstractOver the past decade, the electric vehicle (EV) market has witnessed a surge in sales, prompting a crucial examination of the factors influencing EV demand. In contrast to prior research, which primarily focused on socioeconomic factors, our study takes a different approach by integrating macroeconomic variables and emphasizing the durable goods attributes of EVs through distributed lag and panel VAR modeling.

Drawing from data spanning 27 European countries from 2010 to 2021, our analysis reveals positive lagged effects of GDP per capita and negative lagged effects of interest rates on EV demand. Specifically, a 1% increase in GDP per capita growth rate from two years prior results in a 6.373% increase in current-year EV registrations. In contrast, a 1% increase in the interest rate from two years ago leads to a 35.27% decrease in current-year EV registrations. We also identify the significant positive influence of charging infrastructure and ownership tax benefits.

Additionally, our impulse response analysis suggests that a one standard deviation shock to the GDP per capita growth rate results in a positive impact from the current year to one year later. The impact peaks one year after the initial shock. On the other hand, a one standard deviation shock to the interest rate leads to a negative impact on EV registrations with time lags.

Based on these findings, we suggest that EV-related businesses pay close attention to GDP per capita and interest rates when projecting EV demand. For policymakers, it is advisable to prioritize the expansion of charging infrastructure and to maintain recurring incentive policies to support the growth of the EV market.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-05-30T16:06:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-05-30T16:06:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsMaster's Thesis Acceptance Certificate . . . . . . . . . . . . . . . . . i
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Data and Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Panel Data Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 Fixed-Effect Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Distributed Lag Model . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Unit Root Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Estimation Results of Panel Data Regression . . . . . . . . . . . . . 25
5 Panel VAR Model . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1 Model Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Estimation Results of Panel VAR . . . . . . . . . . . . . . . . . . . 36
5.3 Granger Causality Test . . . . . . . . . . . . . . . . . . . . . . . . . 39
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
-
dc.language.isoen-
dc.subject總體經濟變數zh_TW
dc.subject電動車zh_TW
dc.subject政策誘因zh_TW
dc.subject追蹤資料向量自迴歸zh_TW
dc.subject充電樁zh_TW
dc.subjectchargeren
dc.subjectpanel VARen
dc.subjectpolicy incentivesen
dc.subjectmacroeconomic factorsen
dc.subjectEVen
dc.title政策與總體經濟變數對電動車銷售的影響分析zh_TW
dc.titleAnalyzing the Impact of Policies and Macroeconomic Factors on Electric Vehicle Salesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳南光;徐之強zh_TW
dc.contributor.oralexamcommitteeNan-Kuang Chen;Chih-Chiang Hsuen
dc.subject.keyword電動車,總體經濟變數,充電樁,追蹤資料向量自迴歸,政策誘因,zh_TW
dc.subject.keywordEV,macroeconomic factors,charger,panel VAR,policy incentives,en
dc.relation.page48-
dc.identifier.doi10.6342/NTU202400926-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-05-20-
dc.contributor.author-college社會科學院-
dc.contributor.author-dept經濟學系-
顯示於系所單位:經濟學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved