請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9264完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳靜枝 | |
| dc.contributor.author | Sheng-Yu Huang | en |
| dc.contributor.author | 黃聖祐 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:15:08Z | - |
| dc.date.available | 2009-07-29 | |
| dc.date.available | 2021-05-20T20:15:08Z | - |
| dc.date.copyright | 2009-07-29 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-15 | |
| dc.identifier.citation | [1] 丁恬文,流通業協同規劃預測補貨解決方案,國立台灣大學資訊管理研究所碩士論文,民國96年。
[2] 陳靜枝與蔣明晃,需求預測模式之研究期末報告,財團法人工業技術研究院,民國94年。 [3] Cardoso, G. and F. Gomide, “Newspaper demand prediction and replacement model based on fuzzy clustering and rules,” Information Sciences, Vol. 177, Issue 21, 2007, pp. 4799-4809. [4] Carvalho, D. R. and A. A. Freitas, “A hybrid decision tree/genetic algorithm method for data mining,” Information Sciences, Vol. 163, Issues 1-3, 2004, pp. 13-35. [5] Chiu, C., “A case-based customer classification approach for direct marketing,” Expert Systems with Applications, Vol. 22, Issue 2, 2002, pp. 163-168. [6] Chopra, S. and P. Meindl, Supply Chain Management: Strategy, Planning, and Operation, Second Edition, Pearson Education International, USA, 2004. [7] Forina, M., S. Lanteri, and S. Rosso, “Confidence intervals of the prediction ability and performance scores of classifications methods,” Chemometrics and Intelligent Laboratory Systems, Vol. 57, Issue 2, 2001, pp. 121-132. [8] Guyon, I. and A. Elisseeff, “An Introduction to Variable and Feature Selection,” Journal of Machine Learning Research, Vol. 3, 2003, pp. 1157-1182. [9] Han, J. and M. Kamber, Data Mining: Concepts and Techniques, Second Edition, Morgan Kaufmann Publishers, USA, 2006. [10] Hanczar, B., M. Courtine, A. Benis, C. Hennegar, K. Clement, and J. D. Zucker, “Improving Classification of Microarray Data using Prototype-based Feature Selection,” ACM SIGKDD Explorations Newsletter, Vol. 5, Issue 2, 2003, pp. 23-30. [11] Jain, A. K., M. N. Murty, and P. J. Flynn, “Data Clustering: A Review,” ACM Computing Surveys (CSUR), Vol. 31, Issue 3, 1999, pp. 264-323. [12] Kahn, K. B., “Benchmarking Sales Forecasting Performance Measures,” The Journal of Business Forecasting Methods & Systems, Vol. 17, No. 4, Winter 1998/1999, pp. 19-23. [13] Keller, G., Statistics for Management and Economics, Seventh Edition, Thomson Brooks/Cole, USA, 2005. [14] Kim, D., S. Lee, J. Chun, and J. Lee, “A Semantic Classification Model for e-Catalogs,” Proceeding of the IEEE International Conference on e-Commerce Technology (CEC 2004), 2004, pp. 85-92. [15] Kotsiantis, S. B., “Supervised Machine Learning: A Review of Classification Techniques,” Informatica, Vol. 31, 2007, pp. 249-268. [16] Lee, Y. and C. K. Lee, “Classification of multiple cancer types by multicategory support vector machines using gene expression data,” Bioinformatics, Vol. 19, No. 9, 2003, pp. 1132-1139 [17] Li, R. and Z. Wang, “Mining classification rules using rough sets and neural networks,” European Journal of Operational Research, Vol. 157, Issue 2, 2004, pp. 439-448. [18] Li, X. B., “A scalable decision tree system and its application in pattern recognition and intrusion detection,” Decision Support Systems, Vol. 41, Issue 1, 2005, pp. 112-130. [19] Liu, H. and L. Yu, “Toward Integrating Feature Selection Algorithms for Classification and Clustering,” IEEE Transactions on Knowledge and Data Engineering, Vol. 17. Issue 4, 2005, pp. 491-502. [20] Lo, V. S. Y., “The True Lift Model – A Novel Data Mining Approach to Response Modeling in Database Marketing,” ACM SIGKDD Explorations Newsletter, Vol. 4, Issue 2, 2002, pp. 78-86. [21] Mayr, E., Principles of Systematic Zoology, Second Edition, McGraw-Hill, New York, 1991. [22] Mohanty, B. K. and B. Bhasker, “Product classification in the Internet business─a fuzzy approach,” Decision Support Systems, Vol. 38, Issue 4, 2005, pp. 611-619. [23] Moshkovich, H. M., A. I. Mechitov, and D. L. Olson, “Rule induction in data mining: effect of ordinal scales,” Expert Systems with Applications, Vol. 22, Issue 4, 2002, pp. 303-311. [24] Nauck, D., and R. Kruse, “Obtaining interpretable fuzzy classification rules from medical data,” Artificial Intelligence in Medicine, Vol. 16, Issue 2, 1998, pp. 149-169. [25] Pawlak, Z., J. Grzymala-Busse, R. Slowinski, and W. Ziarko, “Rough Sets,” Communication of the ACM, Vol. 38, Issue. 11, 1995, pp. 89-95. [26] Shaw, M. J., C. Subramaniam, G. W. Tan, and M. E. Welge, “Knowledge management and data mining for marketing,” Decision Support Systems, Vol. 31, Issue 1, 2001, pp. 127-137. [27] Sheikh, K., Manufacturing Resource Planning (MRP II) with introduction to ERP, SCM, and CRM, International Edition, McGraw-Hill, Singapore, 2002. [28] Sousa, I. and D. Wallace, “Product classification to support approximate life-cycle assessment of design concepts,” Technological Forecasting and Social Change, Vol. 73, Issue 3, 2006, pp. 228-249. [29] Swiniarski, R. W. and A. Skowron, “Rough set methods in feature selection and recognition,” Pattern Recognition Letters, Vol. 24, Issue 6, 2003, pp. 833-849. [30] Thabtah, F., P. Cowling, and S. Hammoud, “Improving rule sorting, predictive accuracy and training time in associative classification,” Expert Systems with Applications, Vol. 31, Issue 2, 2006, pp. 414-426. [31] Wakaki, T., H. Itakura, and M. Tamura, “Rough Set-Aided Feature Selection for Automatic Web-Page Classification,” Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence (WI 2004), 2004, pp. 70-76. [32] Yuan, H., S. S. Tseng, W. Gangshan, and Z. Fuyan, “A Two-phase Feature Selection Method using both Filter and Wrapper,” Proceeding of the IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC ’99 Conference), Tokyo, Japan, 1999, pp. 132-136. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9264 | - |
| dc.description.abstract | 商品分類為所有與管理商品相關資訊活動的核心,每個公司都會為商品分類,用於銷售管理、採購管理、存貨管理等方面。需求預測是需求管理中最重要的功能,過去許多研究提出改進傳統時間序列趨勢預測方法的準確度,其中之一是合併不同商品的銷售記錄,降低資料的變異度,以合併後的資料進行預測再用適當的比率分配給各個商品。合併商品銷售記錄的依據便是商品分類。以往管理者以質性觀點所建立的商品分類架構並非完全適用於需求預測,貿然將銷售發展趨勢差異太大的商品歸為同一類,會導致類別商品的發展趨勢扭曲或模糊。本研究希望以量化觀點輔助調整商品分類架構使其適合需求預測所用。
針對此問題,本研究根據資料探勘分類方法中的距離基礎方法,定義商品之間銷售發展趨勢的相似程度,進而提出一兩階段最佳化目標模式:首先在固定分群數目下最小化群集內樣本間距離總平均;然後比較不同分群數目時,最大化群集間距離總平均。 本研究的最佳化目標函式並非線性,且解集合的型態近似於整數規劃,必須在每個整數點上搜尋,可行解區域大小隨著分類的商品數目呈現指數速度成長,因此無法利用有限資源求出最佳解。本研究提出一啟發式演算法,使上述問題在可接受的時間內找到一趨近最佳解的分類結果。 本研究啟發性演算法主要流程為:在前置作業中,以時間序列分析進行分類所需之資料轉換,然後根據前一步驟的分析結果建構分類階層,並以基因演算法為基礎搜尋最適分類結果。新的分類架構匯入一需求預測學習系統進行預測準確度評估。 最後,本研究實作出此分類架構建立系統,以兩個實際案例進行驗證本研究所提出之方法確實可行且具有效率。經過實驗之後發現,數百個商品若擁有長期的銷售歷史,且具有明顯的長期趨勢與季節性波動,經過本研究所提之方法分析可以有效判別商品之間的異同,並加以群集,提升預測準確度。本研究的適用商品不限產業,也足以應用於供應鏈管理其他功能。 | zh_TW |
| dc.description.abstract | Product classification is the core of every information activity related to product management. Almost all companies classify their products according to some attributes for different management purposes such as sales, procurement, and inventory control. Within these business functions, demand management is the leading pulling force while demand forecasting is the most critical function of demand management. Previous studies have suggested many ways to improve the accuracy of prediction using traditional time-series analysis with trend, and one of notable techniques is aggregating sales records of individual product. The purpose of sales aggregation is to reduce the data variation, which can then result in a better sales forecast. Product classification can be used as the scheme for deciding which items should be combined into one product class.
Most companies cluster or group their products based on qualitative features such as brand, color, package, etc, even though for different purposes. The sales trends might be distorted or become unremarkable if the products are carelessly clustered together. This study aims to cluster products by analyzing their quantitative characteristics, namely sales pattern, and make it more suitable for demand forecasting. This study defines the similarity of sales pattern among various products by adopting distance-based method in data mining, and furthermore develops a two-phase optimization model: starting with a given number of groups, minimizing the average distance within groups, then looking for maximization of average distance among separated groups through incrementing number of groups assigned. Because of the non-linear nature of objective function, integer programming is a popular way to solve the problem. However, when the number of items to be classified increases, the size of feasible solution set grows exponentially as well and makes the problem insolvable due to the time and computing resource it requires. To conquer the difficulty, this study proposes a heuristic algorithm, called Data-Mining Aided Product Classification (DMAPC). DMAPC first analyzes sales records using time-series analysis and transfers them into a number of indexes which can best describe their patterns. Then, DMAPC searches the optimal product grouping result using GA-based heuristic and the extracted indexes from first stage. A demand forecasting learning platform is used in the final stage. In order to show the effectiveness and efficiency, a prototype was constructed and tested to demonstrate the power of DMAPC using complexity and computational analysis. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:15:08Z (GMT). No. of bitstreams: 1 ntu-98-R96725031-1.pdf: 1441466 bytes, checksum: 7d115fb2ec6b172115239af2366a36e5 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 謝詞 三
論文摘要 四 THESIS ABSTRACT 五 目錄 六 圖目錄 八 表目錄 九 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 6 第三節 研究範圍 7 第四節 研究架構 7 第二章 文獻探討 9 第一節 資料分類之定義 9 第二節 資料分類之議題 11 2-2-1 分類之資料準備 11 2-2-2 資料分類之評量 14 第三節 資料分類之方法 15 2-3-1 統計基礎方法 15 2-3-2 規則基礎方法 16 2-3-3 類神經網路 17 2-3-4 距離基礎方法 18 2-3-5 其他方法 20 第四節 分類方法與預測 21 第五節 預測成果評估方法 21 第三章 問題描述與最小距離群集模型 24 第一節 問題描述 24 3-1-1 銷售歷史記錄 25 第二節 假設條件 29 第三節 最小距離群集模型 30 3-3-1 最小距離群集模型建構流程 30 3-3-2 參數部分 30 3-3-3 決策變數 31 第四節 成果評估流程 34 第四章 商品依銷售資料分類啟發式演算法 38 第一節 商品依銷售資料分類演算法概述 38 第二節 演算法主要流程 39 第三節 前置作業 40 第四節 分類演算法(DMAPC) 47 第五節 複雜度分析 58 第五章 系統說明與模式分析 60 第一節 分類架構建立系統說明 60 5-1-1 資料結構 60 5-1-2 系統畫面與執行步驟 66 第二節 實例分析 77 5-2-1 驗證方法與環境 77 5-2-2 案例簡介 77 第三節 實例分析結果 78 5-3-1 案例一:某知名茶飲料商 78 5-3-2 案例二:某連鎖藥粧店 79 第四節 適用性分析 80 5-4-1 效率分析 80 第六章 結論 82 第一節 總論 82 第二節 未來研究方向 83 參考文獻 85 附錄 系統執行步驟範例資訊 88 簡歷 98 | |
| dc.language.iso | zh-TW | |
| dc.title | 運用資料探勘輔助商品分類之需求預測方法 | zh_TW |
| dc.title | Demand Forecasting Using Data Mining Aided Product Classification | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔣明晃,林我聰,蕭正平 | |
| dc.subject.keyword | 供應鏈管理,時間序列分析,基因演算法,商品分類,資料探勘,需求預測, | zh_TW |
| dc.subject.keyword | Data Mining,Demand Forecasting,Generic Algorithm,Product Classification,Supply Chain Management,Time Series Analysis, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2009-07-15 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 1.41 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
