Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92638
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧信銘zh_TW
dc.contributor.advisorHsin-Min Luen
dc.contributor.author彭晨zh_TW
dc.contributor.authorChen Pengen
dc.date.accessioned2024-05-27T16:05:05Z-
dc.date.available2025-05-30-
dc.date.copyright2024-05-27-
dc.date.issued2023-
dc.date.submitted2024-05-09-
dc.identifier.citationAbu-Mostafa, Y. S., & Atiya, A. F. (1996). Introduction to financial forecasting. Applied Intelligence, 6(3), 205–213. https://doi.org/10.1007/BF00126626
Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1–8. https://doi.org/10.1016/j.jocs.2010.12.007
Chen, A.-S., Leung, M. T., & Daouk, H. (2003). Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index. Computers & Operations Research, 30(6), 901–923. https://doi.org/https://doi.org/10.1016/S0305-0548(02)00037-0
Chollet, F. (2017). Deep Learning with Python. Manning Publications.
Cohen, L., & Frazzini, A. (2008). Economic links and predictable returns. The Journal of Finance, 63(4), 1977–2011. https://doi.org/https://doi.org/10.1111/j.1540-6261.2008.01379.x
Dai, G., Wang, X., Zou, X., Liu, C., & Cen, S. (2022). MRGAT: Multi-Relational Graph Attention Network for knowledge graph completion. Neural Networks, 154, 234–245. https://doi.org/10.1016/j.neunet.2022.07.014
Feng, F., He, X., Wang, X., Luo, C., Liu, Y., & Chua, T. S. (2019). Temporal relational ranking for stock prediction. ACM Transactions on Information Systems, 37(2). https://doi.org/10.1145/3309547
Gao, J., Ying, X., Xu, C., Wang, J., Zhang, S., & Li, Z. (2021). Graph-Based Stock Recommendation by Time-Aware Relational Attention Network. ACM Transactions on Knowledge Discovery from Data, 16(1). https://doi.org/10.1145/3451397
Gidófalvi, G. (2001). Using News Articles to Predict Stock Price Movements.
He, W., Guo, L., Shen, J., & Akula, V. (2016). Social media-based forecasting: A case study of tweets and stock prices in the financial services industry. Journal of Organizational and End User Computing, 28(2), 74–91. https://doi.org/10.4018/JOEUC.2016040105
Ho, C. S., Damien, P., Gu, B., & Konana, P. (2017). The time-varying nature of social media sentiments in modeling stock returns. Decision Support Systems, 101, 69–81. https://doi.org/10.1016/j.dss.2017.06.001
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
Huang, L., Wu, L., Zhang, J., Bian, J., & Liu, T.-Y. (2022). Dynamic Relation Discovery and Utilization in Multi-Entity Time Series Forecasting. http://arxiv.org/abs/2202.10586
Jafari, A., & Haratizadeh, S. (2022). GCNET: Graph-based prediction of stock price movement using graph convolutional network. Engineering Applications of Artificial Intelligence, 116. https://doi.org/10.1016/j.engappai.2022.105452
Lee, S. W., & Kim, H. Y. (2020). Stock market forecasting with super-high dimensional time-series data using ConvLSTM, trend sampling, and specialized data augmentation. Expert Systems with Applications, 161. https://doi.org/10.1016/j.eswa.2020.113704
Ma, T., & Tan, Y. (2022). Stock Ranking with Multi-Task Learning. Expert Systems with Applications, 199. https://doi.org/10.1016/j.eswa.2022.116886
Qin, Y., Song, D., Cheng, H., Cheng, W., Jiang, G., & Cottrell, G. W. (2017). A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction. Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2627–2633.
Ramnath, S. (2002). Investor and Analyst Reactions to Earnings Announcements of Related Firms: An Empirical Analysis. Journal of Accounting Research, 40, 1351–1376. https://doi.org/10.1111/1475-679X.t01-1-00057
Sawhney, R., Agarwal, S., Wadhwa, A., Derr, T., & Ratn Shah, R. (2021). Stock selection via spatiotemporal hypergraph attention network: A learning to rank approach. Proceedings of the AAAI Conference on Artificial Intelligence, 497–504. https://doi.org/10.1609/aaai.v35i1.16127
Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W., & Woo, W. (2015). Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. Advances in Neural Information Processing Systems, 28.
Song, G., Zhao, T., Wang, S., Wang, H., & Li, X. (2023). Stock ranking prediction using a graph aggregation network based on stock price and stock relationship information. Information Sciences, 643. https://doi.org/10.1016/j.ins.2023.119236
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30.
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018). Graph Attention Networks. International Conference on Learning Representations.
Wu, J., Xu, K., Chen, X., Li, S., & Zhao, J. (2022). Price graphs: Utilizing the structural information of financial time series for stock prediction. Information Sciences, 588, 405–424. https://doi.org/10.1016/j.ins.2021.12.089
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2021). A Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1), 4–24. https://doi.org/10.1109/TNNLS.2020.2978386
Zhao, X. (2017). Does information intensity matter for stock returns? Evidence from form 8-K filings. Management Science, 63(5), 1382–1404. https://doi.org/10.1287/mnsc.2015.2408
Zheng, Z., Chen, K., Sun, G., & Zha, H. (2007). A regression framework for learning ranking functions using relative relevance judgments. Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’07, 287-294. https://doi.org/10.1145/1277741.1277792
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92638-
dc.description.abstract股市預測一直以來都是熱門的研究議題,準確的預測能夠幫助投資者作出投資決策,進而最大化獲利。這類的研究過去多以時間序列模型將股票預測視為回歸問題(預測股價),或是將其視作分類問題(預測股價漲跌),並把每支股票當作是一個獨立的時間序列處理,沒有考慮到股票(公司)與股票(公司)之間會互相影響。除了時間序列相關的深度學習,讓模型考慮自身的時序相關外,隨著圖神經網路近期的發展,我們可以透過加上股票之間的連結,讓模型也考慮股票與股票間的互相影響:我們將股票視為圖上的點,過去的股價相關資料和財務數據當作點的特徵,透過10-K 報告的內容形成圖網路的連結,結合長短期記憶、圖注意力網路和排序學習,試圖去預測隔日股票投報率的排名,進而形成最大化獲利的投資組合。相較於現有使用靜態圖神經網路預測股市的研究,我們使用的是 spatial-based 的圖神經網路,而不是基於 spectral-based 的神經網路。此一設計可以讓我們處理動態圖問題,搭配每年發佈的 10-K 報告,我們可以及時地更新圖上的連結,進而做出更反映現況的預測。
在衡量排序的指標和累計投資回報率上,我們的模型相較於各種基本策略、基準模型和大盤指數在多數測試年中勝出。我們的模型在 2018、2019跟2020 年的累計投資回報率分別取得17.20%、26.01% 和105.26% 的優異表現,而S&P 500 市場指數的累計投資回報率則分別是 -5.82%、26.16% 和 21.05%。
zh_TW
dc.description.abstractStock market prediction is a widely researched topic. Precise prediction can assist investors in making better investment decisions and maximizing profits. In the past, most studies in this area have used time series models for stock prediction, either as a regression problem (predicting prices) or a classification problem (predicting price increases or decreases). However, there has been a tendency to overlook the interactions between stocks. In addition to the time series-related deep learning, which allows the model to consider its temporal correlation. With the recent development of graph neural networks, we can add connections between stocks so that the model can also consider the interactions between stocks: we treat stocks as nodes in a graph, utilizing historical price-related data and financial figures as node features, and we establish connections in the graph network through the content of 10-K reports. We aim to predict the ranking of next-day stock returns and subsequently construct an investment portfolio for maximizing profits. To achieve this, we integrate Long Short-Term Memory (LSTM), Graph Attention Networks (GATs), and learning to rank. In contrast to existing studies that employ static graph neural networks for stock market prediction, our approach employs spatial-based graph neural networks instead of spectral-based ones. This design enables us to address dynamic graph problems, and in combination with annually released 10-K reports, we can promptly update the graph's connections, resulting in more updated and reflective predictions.
Regarding ranking metrics and cumulative investment return ratios, our model outperforms various baseline strategies, benchmark models, and market indices in most testing years. Our model achieved outstanding cumulative investment return ratios of 17.20%, 26.01%, and 105.26% in 2018, 2019, and 2020, respectively, while the S&P 500 market index had cumulative investment return ratios of -5.82%, 26.16%, and 21.05% for the same years.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-05-27T16:05:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-05-27T16:05:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsMaster’s Thesis Acceptance Certificate i
摘要 ii
Abstract iii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objective 2
1.3 Contribution 5
Chapter 2 Literature Review 6
2.1 Stock Market Prediction Based on Historical Stock Data 6
2.2 Stock Market Prediction with the Assistance of External Data 8
2.3 Stock Market Prediction Based on Temporal Graph Neural Networks (TGNNs) 11
Chapter 3 Research Question 16
Chapter 4 System Design 18
4.1 Problem Definition 18
4.2 Overall Framework 19
4.3 Sequential Embedding Layer: Long Short-Term Memory (LSTM) 19
4.4 Relational Embedding Layer: Graph Attention Networks (GATs) 22
4.5 Loss function 25
4.6 Implementation Details 27
4.6.1 Sliding Window Approach 27
4.6.2 Training Details 28
4.6.3 Testing Details 30
Chapter 5 Experiments 31
5.1 Datasets 31
5.1.1 Node Features 32
5.1.2 Relationships as Edges 34
5.1.3 Dataset Arrangement 40
5.1.4 Min-Max Scaling 42
5.1.5 Imputation 43
5.2 Evaluation Metrics 43
5.3 Baseline Models 47
5.4 Experimental Results 48
Chapter 6 Conclusion 54
References 57
Appendix 62
-
dc.language.isoen-
dc.subject時序圖神經網路zh_TW
dc.subject圖注意力網路zh_TW
dc.subject股市預測zh_TW
dc.subject排序學習zh_TW
dc.subject10-K 報告zh_TW
dc.subject深度學習zh_TW
dc.subjectstock market predictionen
dc.subjecttemporal graph neural networks (TGNNs)en
dc.subjectdeep learningen
dc.subject10-K reporten
dc.subjectlearning to ranken
dc.subjectgraph attention networks (GATs)en
dc.title使用 10-K 報告中的公司關係建構時序圖神經網路以預測股票回報率zh_TW
dc.titleTemporal Graph Neural Networks with Stock Relations in 10-K Reports for Stock Return Predictionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張景宏;簡宇泰zh_TW
dc.contributor.oralexamcommitteeChing-Hung Chang;Yu-Tai Chienen
dc.subject.keyword時序圖神經網路,圖注意力網路,股市預測,排序學習,10-K 報告,深度學習,zh_TW
dc.subject.keywordtemporal graph neural networks (TGNNs),graph attention networks (GATs),stock market prediction,learning to rank,10-K report,deep learning,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202400940-
dc.rights.note未授權-
dc.date.accepted2024-05-09-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
1.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved