Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融組
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92630
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱顯比zh_TW
dc.contributor.advisorShean-Bill Chiuen
dc.contributor.author盧靜足zh_TW
dc.contributor.authorChing-Tsu Luen
dc.date.accessioned2024-05-15T16:06:09Z-
dc.date.available2024-05-16-
dc.date.copyright2024-05-15-
dc.date.issued2024-
dc.date.submitted2024-05-11-
dc.identifier.citation一、中文文獻
劉懷謙,2022,傳統與非傳統貨幣政策之影響:以美國經濟為例,國立台灣大學,經濟學研究所論文
黃子豪,2023,COVID-19對股市的從眾行為之影響:以台灣股票市場為例,國立雲林科技大學,財務金融學系碩士論文
郭家豪,2023,投資人情緒對於台灣個股報酬之影響,國立清華大學,計量財務金融學系碩士論文
二、英文文獻
Barberis, N., Shleifer, A., Wurgler, J., 2005. Comovement. Journal of Financial Economics 75, 283–317.
Baetje, F., 2018. Does a lot help a lot? Forecasting stock returns with pooling strategies in a data‐rich environment. Journal of Forecasting 37, 37–63.
Brooks, R., Negro, M.D., 2004. The rise in comovement across national stock markets: market integration or IT bubble. Journal of Empirical Finance 11, 659–680.
Campbell, J. C., Thompson, S. B., 2008. Predicting excess stock returns out of sample: Can anything beat the historical average? Review of Financial Studies 21, 1509–1531.
Chang, S.L., Lee, H.C., Lien, D., 2022. The global latent factor and international index futures returns predictability. Journal of Forecasting 41, 514–538.
Chang, S.L., Lee, H.C., Lien Donald, 2021, The global latent factor and international index futures returns predictability. WILEY DOI:10.1002/for.2821
Chen, H., Singal, V., Whitelaw, R.F., 2016. Comovement revisited. Journal of Financial Economics 121, 624–644.
Chen, S.S., 2011. Lack of consumer confidence and stock returns. Journal of Empirical Finance 18, 225-236.
Chordia, T., Roll, R., Subrahmanyam, A., 2000. Commonality in liquidity. Journal of Financial Economics 56, 3–28.
Cieslak, A., 2018.Short-rate expectations and unexpected returns in Treasury bonds. Review of Financial Studies 31, 3265–3306.
Clark, T.E., West, K.D., 2007.Approximately normal tests for equal predictive accuracy in nested models. Journal of Econometrics 138, 291–311.
Domowitz, I., Hansch, O., Wang, X., 2005. Liquidity commonality and return co-movement. Journal of Financial Markets 8, 351–376.
Dong, X., Li, Y., Rapach, D.E., Zhou, G., 2022. Anomalies and the expected market return. Journal of Finance 77, 639–681.
Fernández, M.F., Henry, Ó., Pybis, S., Stamatogiannis, M., 2023. Can we forecast better in periods of low uncertainty? The role of technical indicators. Journal of Empirical Finance 71, 1–12.
Fong, T.P.W., Wu, S.T., 2020. Predictability in sovereign bond returns using technical trading rules: Do developed and emerging markets differ? North American Journal of Economics and Finance 51, 101105
Forbes, K. J., Rigobon, R., 2002. No contagion, only interdependence: Measuring stock market comovements. Journal of Finance 57, 2223–2261.
Frijns, B., Verschoor, W., Zwinkels, R., 2017. Excess stock return comovements and the role of investor sentiment. Journal of International Financial Markets, Institutions and Money 49, 74-87.
Giglio, S., Liao, Y., Xiu, D., 2021. Thousands of alpha tests. Review of Financial Studies 34, 3456–3496.
Giglio, S., Xiu, D., 2021. Asset Pricing with Omitted Factors. Journal of Political Economy 129, 1947–1990.
Hasbrouck, J., Seppi, D.J., 2001. Common factors in prices, order flows, and liquidity. Journal of Financial Economics 59, 383–411.
Hwang, S., Rubesam, A., Salmon, M., 2021. Beta herding through overconfidence: A behavioral explanation of the low-beta anomaly. Journal of International Money and Finance 111, 102318.
Karolyi, G.A., Lee, K.H., van Dijk, M.A., 2012. Understanding commonality in liquidity around the world. Journal of Financial Economics 105, 82–112.
Karolyi, G.A., Stulz, R.M., 1996. Why do markets move together? An investigation of U.S.-Japan stock return comovements. Journal of Finance 51, 951–986.
Kumar, A., Page, J.K., Spalt, O.G., 2016. Gambling and comovement. Journal of Financial and Quantitative Analysis 51, 85–111.
Lee, H.C., Tseng, Y.C., Yang, C.J., 2014. Commonality in liquidity, liquidity distribution, and financial crisis: Evidence from country ETFs. Pacific-Basin Finance Journal 29, 35–58.
Lee, H.C., Lee, Y.H., Nguyen, C., 2023. Tail comovements of implied volatility indices and global index futures returns predictability. Working Paper.
Lee, H.C., Chang, S.L., 2013. Spillovers of currency carry trade returns, market risk sentiment, and U.S. market returns. North American Journal of Economics and Finance 26, 197–216.
Lee, Y.H., Liao, T.H., Lee, H.C., 2022. Overnight returns of industry ETFs, investor sentiment, and futures market returns. Journal of Futures Markets, 42, 1114–1134.
Lin, Q., 2018. Technical analysis and stock return predictability: An aligned approach. Journal of Financial Markets 38, 103–123.
Lo, A., MacKinlay, C., 1990. When are contrarian profits due to stock market overreaction? Review of Financial Studies 3, 175–205.
Maheu, J.M., McCurdy, T.H., 2000. Identifying bull and bear markets in stock returns. Journal of Business and Economic Statistics 18, 100-112.
Neely, C.J., Rapach, D.E., Tu, J., Zhou, G., 2014. Forecasting the equity risk premium: The role of technical indicators. Management Science 60, 1772–1791.
Perez-Quiros, G., Timmermann, A., 2000. Firm size and cyclical variations in stock returns. Journal of Finance 55, 1229-1262.
Rapach, D. E., Strauss, J. K., Zhou, G., 2013. International stock return predictability: What is the role of the United States. Journal of Finance 68, 1633–1662.
Rapach, D., Strauss, J., Tu, J., Zhou, G., 2019. Industry return predictability: A machine learning approach. Journal of Financial Data Science 1:3, 9-28.
SChen.,2011. Lack of consumer confidence and stock returns. Journal of Empirical Finance 18, 225-236
Shynkevich, A. 2016. Predictability in bond returns using technical trading rules. Journal of Banking and Finance 70, 55–69.
Wahal, S., Yavuz, M. D. 2013., Style investing, comovement and return predictability. Journal of Financial Economics 107, 136–154.
Welch, I., Goyal, A. 2008. A comprehensive look at the empirical performance of equity premium prediction. Review of Financial Studies 21, 1455–1508.
Whaley, R. E., 2000. The investor fear gauge. Journal of Portfolio Management 26(3), 12–17.
Yang, Z., Zhou, Y., Cheng, X., 2020. Systemic risk in global volatility spillover networks: Evidence from option‐implied volatility indices. Journal of Futures Markets 40, 392–409.
Zaremba, A., 2019. Cross-sectional seasonalities in international government bond returns. Journal of Banking and Finance 98, 80–94.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92630-
dc.description.abstract本研究旨在探討波動指數共移對美國債券期貨市場報酬的影響。採用量化數據分析方法,透過實證研究波動指數共移對美國債券期貨市場報酬之影響,找出二者間之關聯性,提出有效的投資策略建議。

透過對2000年至2023年美聯儲(Fed)貨幣政策的深入分析,本文梳理了不同經濟階段對債券市場的影響,特別是在快速升息周期對固定收益市場造成的衝擊。本研究總結了波動指數共移對債券期貨市場報酬的影響,並基於研究結果提出了具體的投資建議。從波動指數共移之共同因子的多空交易策略,其結果說明當模型預測未來報酬會低的投組實際上的報酬較低,模型預測報酬會高的投組實際上的報酬較高。根據此模型的預測值進行投資,可以獲得正的報酬。故使用波動指數共移之共同因子建構出的多空交易策略有預測能力及經濟意涵。這些建議旨在幫助投資者在面對市場波動時,能夠制定更好投資策略,從而實現收益最大化。
zh_TW
dc.description.abstractThis study aims to explore the impact of volatility index co-movement on the returns of the U.S. bond futures market. Utilizing quantitative data analysis, it empirically examines the influence of volatility index co-movement on U.S. bond futures market returns, identifies the correlation between the two, and proposes effective investment strategy recommendations.

Through an in-depth analysis of the Federal Reserve's monetary policy from 2000 to 2023, the paper delineates the impact of different economic phases on the bond market, especially the challenges posed during rapid interest rate hike cycles. The research concludes the impact of volatility index co-movement on bond futures market returns and provides specific investment recommendations based on the findings. These suggestions aim to assist investors in formulating better investment strategies to maximize returns amid market fluctuations.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-05-15T16:06:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-05-15T16:06:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 ii
中文摘要 iii
THESIS ABSTRACT iv
目次 v
圖次 vii
表次 viii
第一章 緒論 1
第一節 研究背景-貨幣政策論述 1
第二節 研究背景-債券倒掛探討 5
第三節 研究動機 8
第四節 研究架構 10
第二章 文獻探討 11
第一節 共移現象 11
第二節 資產報酬預測 14
第三節 多頭空頭判斷衡量 16
第四節 文獻評論 17
第三章 研究方法 18
第一節 資料來源 18
第二節 共移衡量與預測模型 20
第三節 預測績效衡量 23
第四節 多頭空頭判斷衡量 27
第四章 研究結果 29
第一節 基本統計量與共移強度 29
第二節 樣本外預測績效 32
第三節 確定等值報酬 40
第四節 多、空交易策略 47
第五節 回溯實證結果 53
第六節 參考文獻討論 64
第五章 結論與建議 66
第一節 研究結論 66
第二節 研究建議 70
參考文獻 72
-
dc.language.isozh_TW-
dc.title波動指數共移對美國債券期貨市場報酬之實證研究zh_TW
dc.titleAn Empirical Study of Volatility Index Co-Movement on U.S. Treasury Bond Futures Market Returnsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林修葳;廖咸興zh_TW
dc.contributor.oralexamcommitteeXiu-Wei Lin;Xian-Xing Liaoen
dc.subject.keyword波動指數共移,美聯儲(Fed),貨幣政策,美國債券期貨,量化數據分析,zh_TW
dc.subject.keywordVolatility Index Co-movement,Federal Reserve(Fed),Monetary Policy,U.S. bond futures,Quantitative Data Analysis,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202400952-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-05-11-
dc.contributor.author-college管理學院-
dc.contributor.author-dept碩士在職專班財務金融組-
顯示於系所單位:財務金融組

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.33 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved