請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92591
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳中平 | zh_TW |
dc.contributor.advisor | Chung-Ping Chen | en |
dc.contributor.author | 鄭盛仁 | zh_TW |
dc.contributor.author | Sheng-Jen Cheng | en |
dc.date.accessioned | 2024-05-02T16:05:48Z | - |
dc.date.available | 2024-05-03 | - |
dc.date.copyright | 2024-04-29 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-04-23 | - |
dc.identifier.citation | [1] (2021年2月EET電子工程專輯-5G毫米波時代何時到來?) 取自: https://aspencore.uberflip.com/i/1342489-eetw-ebook-202102/0?
[2] (EEWORLD-电子工程世界- 5G毫米波技术的优势) 取自: http://www.eeworld.com.cn/zt/Qorvo/view/1389 [3] 國立台灣大學電子工程學研究所-盧信嘉教授2023年開授微波工程課程講義 [4] (NCC-5G首波釋照成果暨後續辦理規劃問答集) 取自: https://www.ncc.gov.tw/chinese/news_detail.aspx?site_content_sn=5057&sn_f=42912 [5] Microwave Engineering 4th, David M. Pozar [6] (新通訊-行動通訊頻率逐代上升 太赫茲特性/應用深度解密) 取自: https://www.2cm.com.tw/2cm/zh-tw/tech/B7F89B7877B34481B4A8F04031A4AF89 [7] J. H. Lau, "Recent Advances and Trends in Advanced Packaging," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 12, no. 2, pp. 228-252, Feb. 2022, doi: 10.1109/TCPMT.2022.3144461. [8] (TrendForce - Understanding Chiplets, SoC, and SiP: Why TSMC, Intel, Samsung Invest?) 取自: https://www.trendforce.com/news/2023/08/31/understanding-chiplets-soc-and-sip-why-tsmc-intel-samsung-invest/ [9] (科技新報 - 小晶片、異質整合成半導體顯學!用最簡單的方式讀懂Chiplet、SoC、SiP ) 取自: https://technews.tw/2023/08/31/integrating-small-chips-heterogeneous-components-into-semiconductor-epiphanies/ [10] S. -J. Cheng, P. -N. Shen, C. -H. Hong, Z. -W. Chen, C. -P. Chen and S. -L. Jang, "Injection-Locked Frequency Sixtuplers in 90 nm CMOS by Using the Push-Push Doubler," in IEEE Access, vol. 11, pp. 130048-130059, 2023, doi: 10.1109/ACCESS.2023.3333035. [11] Chung-Hung Hong, Sheng-Jen Cheng, Pi-Neng Shen, Chung-Ping Chen; Optimizing ultra-wideband balanced power amplifiers through the selection of different output impedance transformation based on SiP techniques. AIP Advances 1 February 2024; 14 (2): 025234. https://doi.org/10.1063/5.0194091 [12] S. -J. Cheng, S. -L. Jang, H. Chen, C. -H. Hong and C. -P. Chen, "High Swing VCO with Current-Reused Frequency Doubler and Darlington Amplifier," 2023 International VLSI Symposium on Technology, Systems and Applications (VLSI-TSA/VLSI-DAT), HsinChu, Taiwan, 2023, pp. 1-4, doi: 10.1109/VLSI-TSA/VLSI-DAT57221.2023.10134455. [13] R. T. Prabu, M. Benisha, V. T. Bai and V. Yokesh, "Millimeter wave for 5G mobile communication application," 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Chennai, India, 2016, pp. 236-240, doi: 10.1109/AEEICB.2016.7538280. [14] K. -H. Nam, N. -P. Hong and J. -S. Park, "A 16-times frequency multiplier for 5G synthesizer," IEEE Trans. Microw. Theory Techn., vol. 69, no. 11, pp. 4961-4976, Nov. 2021, doi: 10.1109/TMTT.2021.3103203. [15] B. Çatlı and M. M. Hella, “Triple-push operation for combined oscillation/division functionality in millimeter-wave frequency synthesizers,” IEEE J. Solid-State Circuits, vol. 45, no. 8, Aug. 2010. [16] X. Liu and H. C. Luong, "A 170-GHz 23.7% tuning-range CMOS injection-locked LO generator with third-harmonic enhancement," IEEE Trans. Microw. Theory Techn., vol. 68, no. 7, pp. 2668-2678, July 2020, doi: 10.1109/TMTT.2020.2986757. [17] S. -L. Jang, W. -C. Lai and R. -H. Lu, "Single-stage injection-locked frequency sixtupler in CMOS Process," IEEE Access, vol. 10, pp. 40316-40323, 2022. [18] S.-L. Jang, W.-C. Lai and Y.-J. Chang, D.-L Wang, M.-H Juang, "CMOS Injection-locked frequency quadrupler/quintupler," IEEE Access, vol. 10, pp. 78168-78175, 2022. [19] Y. -H. Hsiao et al., "A 77-GHz 2T6R transceiver with injection-lock frequency sextupler using 65-nm CMOS for automotive radar system application," IEEE Trans. Microw. Theory Techn., vol. 64, no. 10, pp. 3031-3048, Oct. 2016. [20] Y.-C. Chang, Y.-H. Hsiao, Y.-H. Lin, and H. Wang, “A W-band LO-chain with injection-locked frequency sextupler and medium power amplifier using 65-nm CMOS technology for automotive radar applications,” Asia–Pacific Microw. Conf. (APMC) Tech. Dig., Nanjing, China, Dec. 2015, pp. 1–3. [21] X. Liu and H. C. Luong, "A fully integrated 0.27-THz injection-locked frequency synthesizer with a frequency-tracking loop in 65-nm CMOS," IEEE J. Solid-State Circuits, vol. 55, no. 4, pp. 1051-1063, April 2020, doi: 10.1109/JSSC.2019.2954232. [22] A. Kankuppe, S. Park, P. T. Renukaswamy, P. Wambacq and J. Craninckx, "A wideband 62-mW 60-GHz FMCW radar in 28-nm CMOS," IEEE Trans. Microw. Theory Techn., vol. 69, no. 6, pp. 2921-2935, June 2021, doi: 10.1109/TMTT.2021.3075437. [23] V. N. R. Vanukuru, "High-Q inductors utilizing thick metals and dense-tapered spirals," IEEE Trans. Electron Devices, vol. 62, no. 9, pp. 3095-3099, Sept. 2015, doi: 10.1109/TED.2015.2458772. [24] H.-C. Lee, S.–L. Jang, H.‐W. Liu, and L. Y. Chen,” Divide-by-2 Injection-locked frequency divider exploiting an 8-shaped inductor,” Microw Opt Technol Lett. vol. 63, no. 4, April 2021 pp.1024-1028 [25] A. Poon, A. Chang, H. Samavati and S. S. Wong, "Reduction of inductive crosstalk using quadrupole inductors," IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1756-1764, June 2009, doi: 10.1109/JSSC.2009.2020525. [26] Mahmoud, A., Fanori, L., Mattsson, T. et al. "A 2.8-to-5.8 GHz harmonic VCO based on an 8-shaped inductor in a 28 nm UTBB FD-SOI CMOS process, " Analog Integr Circ Sig Process 88, 391–399 (2016). https://doi.org/10.1007/s10470-016-0759-4 [27] N. Itoh, Hideaki, Masuoka, S. -i. Fukase, K. -i. Hirashiki and M. Nagata, "Twisted Inductor VCO for suppressing on-chip interferences," 2007 Asia-Pacific Microwave Conference, 2007, pp. 1-4, doi: 10.1109/APMC.2007.4554539. [28] P.-Y. Wang et al., “A low phase-noise class-C VCO using a novel 8-shaped transformer,” in Proc. IEEE ISCAS, 2015, pp. 886–889. [29] P. Andreani, K. Kozmin, P. Sandrup, M. Nilsson, and T. Mattsson, “A TX VCO for WCDMA/EDGE in 90 nm RF CMOS,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1618–1626, Jul. 2011. [30] S.-W. Chu, C.-K. Wang, “An 80 GHz wide tuning range push-push VCO with gm-boosted full-wave rectification technique in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 203–205, April 2012. [31] L. Li, P. Reynaert, and M. S. J. Steyaert, “A 60-GHz CMOS VCO using capacitance-splitting and gate–drain impedance-balancing techniques,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 8, pp. 406–413, Jan. 2011. [32] C. Wan, L. Wu, H. Zhu, T. Xu, Q. Xue “A 22.2-GHz Injection-Locked Frequency Tripler Featuring Dual Injection and 39.4% Locking Range,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 7, pp. 3548–3556, July 2022. [33] D. Shin and K.-J. Koh, “24-GHz injection-locked frequency tripler with third-harmonic quadrature phase generator,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 8, pp. 2898–2906, Aug. 2019. [34] Y. Yu, P. Tang, K. Yi, C. Zhao, H. Liu, Y. Wu, W-Y. Yin and K. Kang, “A Wideband CMOS Frequency Quadrupler With Transformer-Based Tail Feedback Loop”, IEEE Trans. Circuits and Systems-II: Express Briefs, vol. 68, no. 4, pp. 1153-1157, April. 2021. [35] M. H. Eissa et al., "Wideband 240-GHz transmitter and receiver in BiCMOS technology with 25-Gbit/s data rate," IEEE J. Solid-State Circuits, vol. 53, no. 9, pp. 2532-2542, Sept. 2018, doi: 10.1109/JSSC.2018.2839037. [36] W. Jung, H. Kim, Y. Song, K. -H. Lee and D. -K. Jeong, "A 0.99μs FFT-based fast-locking, 0.82GHz-to-4.1GHz DPLL-based input-jitter-filtering clock driver with wide-range mode-switching 8-Shaped LC oscillator for DRAM interfaces," 2023 IEEE Custom Integrated Circuits Conference (CICC), San Antonio, TX, USA, 2023, pp. 1-2, doi: 10.1109/CICC57935.2023.10121322. [37] P. Martin, R. Horn, and K. Ben Atar, "A multi-turn twisted inductor for on-chip cross-talk reduction," 2016 IEEE International Conference on the Science of Electrical Engineering (ICSEE), 2016, pp. 1-5, doi: 10.1109/ICSEE.2016.7806138 [38] R. Struzak, T. Tjelta and J. P. Borrego, "On radio-frequency spectrum management," in URSI Radio Science Bulletin, vol. 2015, no. 354, pp. 11-35, Sept. 2015, doi: 10.23919/URSIRSB.2015.7909902. [39] J. Mukherjee and B. Ramamurthy, "Communication Technologies and Architectures for Space Network and Interplanetary Internet," in IEEE Communications Surveys & Tutorials, vol. 15, no. 2, pp. 881-897, Second Quarter a2013, doi: 10.1109/SURV.2012.062612.00134. [40] J. Zander, "Radio resource management in future wireless networks: requirements and limitations," in IEEE Communications Magazine, vol. 35, no. 8, pp. 30-36, Aug. 1997, doi: 10.1109/35.606024. [41] G. Staple and K. Werbach, "The end of spectrum scarcity [spectrum allocation and utilization]," in IEEE Spectrum, vol. 41, no. 3, pp. 48-52, March 2004, doi: 10.1109/MSPEC.2004.1270548. [42] K. Siwiak and D. McKeown, Ultra-Wideband Radio Technology. (John Wiley & Sons, 2005). [43] H. Arslan, Z. N. Chen and M.-G. Di Benedetto, Ultra wideband wireless communication. (John Wiley & Sons, 2006). [44] M. Ghavami, L. Michael and R. Kohno, Ultra wideband signals and systems in communication engineering. (John Wiley & Sons, 2007). [45] D. M. Pozar, Microwave engineering. (John wiley & sons, 2011). [46] M. Elsanhoury et al., "Precision Positioning for Smart Logistics Using Ultra-Wideband Technology-Based Indoor Navigation: A Review," in IEEE Access, vol. 10, pp. 44413-44445, 2022, doi: 10.1109/ACCESS.2022.3169267. [47] A. F. Molisch, J. R. Foerster and M. Pendergrass, "Channel models for ultrawideband personal area networks," in IEEE Wireless Communications, vol. 10, no. 6, pp. 14-21, Dec. 2003, doi: 10.1109/MWC.2003.1265848. [48] M. R. Yuce, H. C. Keong and M. S. Chae, "Wideband Communication for Implantable and Wearable Systems," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 10, pp. 2597-2604, Oct. 2009, doi: 10.1109/TMTT.2009.2029958. [49] Chun Ting Li, Jack C.P. Cheng, Keyu Chen, “Top 10 technologies for indoor positioning on construction sites”, Automation in Construction, Volume 118, 2020, 103309, ISSN 0926-5805, https://doi.org/10.1016/j.autcon.2020.103309. [50] B. Wang and K. J. R. Liu, "Advances in cognitive radio networks: A survey," in IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 1, pp. 5-23, Feb. 2011, doi: 10.1109/JSTSP.2010.2093210. [51] Y. -C. Liang, K. -C. Chen, G. Y. Li and P. Mahonen, "Cognitive radio networking and communications: an overview," in IEEE Transactions on Vehicular Technology, vol. 60, no. 7, pp. 3386-3407, Sept. 2011, doi: 10.1109/TVT.2011.2158673. [52] B. Razavi, IEEE J. Solid-State Circuits 45, 1542 (2010). [53] A. F. Molisch, L. J. Greenstein and M. Shafi, "Propagation Issues for Cognitive Radio," in Proceedings of the IEEE, vol. 97, no. 5, pp. 787-804, May 2009, doi: 10.1109/JPROC.2009.2015704. [54] C. Clancy, J. Hecker, E. Stuntebeck and T. O''Shea, "Applications of Machine Learning to Cognitive Radio Networks," in IEEE Wireless Communications, vol. 14, no. 4, pp. 47-52, August 2007, doi: 10.1109/MWC.2007.4300983. [55] Tashnim J.S. Chowdhury, Colin Elkin, Vijay Devabhaktuni, Danda B. Rawat, Jared Oluoch, “Advances on localization techniques for wireless sensor networks: A survey”, Computer Networks, Volume 110, 2016, Pages 284-305, ISSN 1389-1286, https://doi.org/10.1016/j.comnet.2016.10.006. [56] E. Jovanov, J. Price, D. Raskovic, K. Kavi, T. Martin and R. Adhami, "Wireless personal area networks in telemedical environment," Proceedings 2000 IEEE EMBS International Conference on Information Technology Applications in Biomedicine. ITAB-ITIS 2000. Joint Meeting Third IEEE EMBS International Conference on Information Technol, Arlington, VA, USA, 2000, pp. 22-27, doi: 10.1109/ITAB.2000.892342. [57] Z. Irahhauten, J. Dacuna, G. J. M. Janssen and H. Nikookar, "UWB channel measurements and results for wireless personal area networks applications," The European Conference on Wireless Technology, 2005., Paris, France, 2005, pp. 189-192, doi: 10.1109/ECWT.2005.1617689. [58] H. K. Lau, "High-speed short-range systems for wireless personal area networks," 2009 Wireless Telecommunications Symposium, Prague, Czech Republic, 2009, pp. 1-4, doi: 10.1109/WTS.2009.5068981. [59] A. S. Syed Navaz, G. M. Kadhar Nawaz, “Ultra Wideband on High Speed Wireless Personal Area Networks”, International Journal of Science and Research (IJSR), Volume 3 Issue 8, August 2014, pp. 1952-1955. [60] Li Richard Chi-Hsi, RF Circuit Design, Wiley, New York (2009). [61] S. A. Z. Murad, R. K. Pokharel, A. I. A. Galal, R. Sapawi, H. Kanaya and K. Yoshida, "An Excellent Gain Flatness 3.0–7.0 GHz CMOS PA for UWB Applications," in IEEE Microwave and Wireless Components Letters, vol. 20, no. 9, pp. 510-512, Sept. 2010, doi: 10.1109/LMWC.2010.2052593. [62] S. -K. Wong, S. Maisurah, M. N. Osman, F. Kung and J. -H. See, "High Efficiency CMOS Power Amplifier for 3 to 5 GHz Ultra-Wideband (UWB) Application," in IEEE Transactions on Consumer Electronics, vol. 55, no. 3, pp. 1546-1550, August 2009, doi: 10.1109/TCE.2009.5278025. [63] H. . -W. Chung, C. . -Y. Hsu, C. . -Y. Yang, K. . -F. Wei and H. . -R. Chuang, "A 6-10-GHz CMOS Power Amplifier with an Inter-stage Wideband Impedance Transformer For UWB Transmitters," 2008 38th European Microwave Conference, Amsterdam, Netherlands, 2008, pp. 305-308, doi: 10.1109/EUMC.2008.4751449. [64] Q. Cai, W. Che, G. Shen and Q. Xue, "Wideband High-Efficiency Power Amplifier Using D/CRLH Bandpass Filtering Matching Topology," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 6, pp. 2393-2405, June 2019, doi: 10.1109/TMTT.2019.2909892. [65] K. Kurokawa,“Design theory of balanced transistor amplifiers,”Bell Syst.Tech. J., vol.44, pp. 1675–1698, Oct. 1965. [66] K. Husna Hamza, D. Nirmal, “A review of GaN HEMT broadband power amplifiers”, AEU - International Journal of Electronics and Communications, Volume 116, March 2020, 153040, ISSN 1434-8411, https://doi.org/10.1016/j.aeue.2019.153040. [67] R. Quaglia and S. Cripps, "A Load Modulated Balanced Amplifier for Telecom Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 3, pp. 1328-1338, March 2018, doi: 10.1109/TMTT.2017.2766066. [68] M. Haond, Issues for logic CMOS integration in Systems on a Chip (SoC), Microelectronic Engineering, Volume 54, Issues 1–2, December 2000, Pages 23-34, ISSN 0167-9317, https://doi.org/10.1016/S0167-9317(00)80056-8. [69] R. Saleh et al., "System-on-Chip: Reuse and Integration," in Proceedings of the IEEE, vol.94, no. 6, pp. 1050-1069, June 2006, doi: 10.1109/JPROC.2006.873611. [70] A. Maurelli, D. Belot and G. Campardo, "SoC and SiP, the Yin and Yang of the Tao for the New Electronic Era," in Proceedings of the IEEE, vol. 97, no. 1, pp. 9-17, Jan. 2009, doi: 10.1109/JPROC.2008.2007453. [71] M. L. Sham, Y. C. Chen, L. W. Leung, J. R. Lin and T. Chung, "Challenges and Opportunities in System-in-Package (SiP) Business," 2006 7th International Conference on Electronic Packaging Technology, Shanghai, China, 2006, pp. 1-5, doi: 10.1109/ICEPT.2006.359838. [72] Kyutae Lim et al., "RF-system-on-package (SOP) for wireless communications," in IEEE Microwave Magazine, vol. 3, no. 1, pp. 88-99, March 2002, doi: 10.1109/MMW.2002.990700. [73] Kai Yang, Chenggong He, Jiming Fang, Xinhui Cui, Haiding Sun, Yansong Yang, Chengjie Zuo, “Advanced RF filters for wireless communications”, Chip, Volume 2, Issue 4, 2023, 100058, ISSN 2709-4723, https://doi.org/10.1016/j.chip.2023.100058. [74] D. Staiculescu, J. Laskar and E. M. Tentzeris, "Design rule development for microwave flip-chip applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 9, pp. 1476-1481, Sept. 2000, doi: 10.1109/22.868997. [75] W. Heinrich, "The flip-chip approach for millimeter wave packaging," in IEEE Microwave Magazine, vol. 6, no. 3, pp. 36-45, Sept. 2005, doi: 10.1109/MMW.2005.1511912. [76] Ali, M.; Hamed, H.F.A.; Fahmy, G.A. Small Group Delay Variation and High Efficiency 3.1–10.6 GHz CMOS Power Amplifier for UWB Systems. Electronics 2022, 11, 328. https://doi.org/10.3390/electronics11030328 [77] R. Sapawi, S. K. Sahari and K. Kipli, "A Low Power 3.1-10.6 GHz Ultra-wideband CMOS Power Amplifier with Resistive Shunt Feedback Technique," 2013 International Conference on Advanced Computer Science Applications and Technologies, Kuching, Malaysia, 2013, pp. 172-175, doi: 10.1109/ACSAT.2013.41. [78] H. Mosalam i A. Gadallah, "High Efficiency, Good phase linearity 0.18 µm CMOS Power Amplifier for MBAN-UWB Applications", International journal of electrical and computer engineering systems, vol.12, br. 3, str. 131-138, 2021. [Online]. https://doi.org/10.32985/ijeces.12.3.2 [79] Al-Kofahi, Idrees S., Zaid Albataineh, and Ahmad Dagamseh. "A two-stage power amplifier design for ultra-wideband applications." Int. J. Electr. Comput. Eng.(IJECE) 11 (2021): 772-779. [80] Sapawi, R., et al. "High gain of 3.1-5.1 GHz CMOS power amplifier for Direct sequence ultra-wideband application." Journal of Telecommunication, Electronic and Computer Engineering (JTEC) 8.12 (2016): 99-103. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92591 | - |
dc.description.abstract | 本論文主要探討射頻積體電路設計與射頻積體電路在異質整合技術中的應用。分為三個部分。
第一部分探討隨著第五代移動通信的發展,對更高數據傳輸速率的需求不斷增加。這需要更大的頻寬和更快的傳輸速率。倍頻器顯著提高時脈訊號的工作頻率,降低TRX系統設計的複雜性。我們提出兩個單級LC-注入鎖定六倍頻器(ILFS),採用90nm CMOS製程實現,並描述了ILFS的電路設計、工作原理和測量結果。該ILFS電路為差動輸入和單端輸出,由一次諧波注入鎖定振盪器(ILO)、三倍頻器和push-push倍頻器組成。第一個ILFS使用八角形電感。其自身震盪頻率約為41.52 GHz,0 dBm的輸入功率下DC功耗為9.03 mW,並且在0 dBm輸入功率下的輸出鎖定範圍為10.21%。第二個ILFS使用8字形電感以減少電磁干擾生成。自震頻率約為37.2 GHz,其DC功耗為7.72 mW,並且在0 dBm輸入功率下的輸出鎖定範圍為17.4%。該部分還對設計的電感的射頻性能進一步分析和比較。模擬顯示了被干擾者和干擾者之間的基板雜訊耦合和距離間的雜訊耦合,8字形電感顯著減少耦合效應。通過測量結果,可以明顯看出8字形電感ILFS的性能優於八角形電感ILFS [10]。 第二部分提出了兩種基於覆晶系統封裝(SiP)技術與電子設計自動化的超寬頻(UWB)平衡功率放大器。對於系統晶片(SoC),常用方法是將所有子電路積體設計到單一製程。然而,在射頻電路中,採用SoC方法需要複雜的匹配設計,導致開發成本增加。在本研究中,採用SiGe製程,設計兩種單元功率放大器實現平坦的S21響應,並且使用更簡單的輸入/輸出匹配設計。第一類單元功率放大器採用並聯結構。隨後,第二類單元功率放大器的設計建立在第一類的基礎上,唯一的差異在於兩並聯疊接架構的元件尺寸,主要目標是增強與第一類相比的增益和輸出功率。此外,這第二類單元功率放大器,與正交混合器結合使用,選擇了最佳的阻抗匹配值,以保持整個UWB範圍內增益的平坦度。此外,通過使用WIPD製程(WIN Integrated Passive Device Technology)製造的正交混合器來改善這兩種單元功率放大器的S11、S22的性能不佳。因此,使用覆晶封裝技術可以有效降低由於主動電路中複雜匹配設計而導致的增加的晶圓製造成本。此外,本文提出的優化阻抗匹配方法可以與SiP技術結合,形成改進的平衡功率放大器系統。這種增強的系統具有為UWB功率放大器設計提供實際新應用的潛力 [11]。 最後一部分是根據第一部分去做改良。提出了一種針對放大倍頻器信號的電流重複利用倍頻器-達林頓放大器(FD-DA),由post-layout simulation 觀察出其 harmonic rejection 與輸出功率大幅改善。 harmonic rejection 改善21.2 dB , 訊號放大達到16.5dB , 總功率消耗為 11.86mW [12]. | zh_TW |
dc.description.abstract | This thesis primarily explores Radio Frequency Integrated Circuits (RFIC) and their application in heterogeneous integration technologies. It is divided into three sections.
The first section addresses the growing demand for higher data transmission rates in line with the development of 5th generation mobile communications. This necessitates increased bandwidth and faster transmission rates. Frequency multipliers significantly enhance clock signal operating frequencies and notably reduce the complexity in TRX system design. We proposed two single-stage LC-tank injection-locked frequency sixtuplers (ILFSs) fabricated in a 90 nm CMOS process and it describes the circuit design, operation principle, and measurement results of the ILFSs. The ILFS circuit with a differential input and single-phase output is made of a first-harmonic injection-locked oscillator (ILO), a frequency tripler, and a push-push doubler. The first ILFS uses an octagonal inductor. The free-running frequency is around 41.52 GHz, DC power consumption is 9.03 mW at the incident power of 0 dBm, and the output locking range at 0 dBm input power is 10.21 %. The second ILFS uses an 8-shaped inductor for low electromagnetic (EM) noise generation. The free-running frequency is around 37.2 GHz, DC power consumption is 7.72 mW at the incident power of 0 dBm, and the output locking range at 0 dBm input power is 17.4 %. This section also provides a further analysis and comparison of the RF performance of on-chip inductors designed. Simulation shows the substrate noise coupling and distance noise coupling between victim and aggressor, the 8-shaped inductor exhibits a significant reduction in coupling. By the measurement results, it is evident that the performance of the 8-shaped inductor ILFS is superior to that of the octagonal inductor ILFS [10]. The second section proposes two improved ultra-wideband (UWB) balanced power amplifiers based on the flip-chip system-in-package (SiP) technique and electronic design automation (EDA). The conventional approach for system-on-chip (SoC) involves integrating all sub-circuits designs into a single manufacturing process. However, in radio frequency circuits, adopting the SoC approach necessitates intricate matching designs, leading to an increase in development costs. In this study, two types of SiGe unit power amplifiers attempted to achieve flat S21 response using simpler matching for input/output. The cascode architecture was adopted as the main structure for the first type of unit power amplifier. Subsequently, the design of the second type unit power amplifier was built upon the foundation of the first type, with the only difference being the device size of a two paralleled cascode structure, and the primary goal is to enhance both gain and output power compared to first type. Additionally, this second type unit power amplifier, in conjunction with a quadrature hybrid coupler, the optimal impedance matching value was selected to maintain the flatness of gain across the entire UWB range. Furthermore, The poor performance for S11,22 of these two types unit power amplifiers were improved by using quadrature hybrid couplers manufactured using the WIPD process (WIN Integrated Passive Device Technology). Therefore, using flip-chip packaging technology can effectively reduce the increased wafer fabrication costs caused by complex matching designs in active circuits. Besides, the method for optimizing impedance matching presented in this paper can be combined with SiP techniques to form an improved balanced power amplifier system. This enhanced system has the potential to offer a practical new application for UWB power amplifier design [11]. The final part involves improving based on the first part. A Current-Reuse Frequency Doubler-Darlington Amplifier (FD-DA) is proposed for amplifying frequency multiplier signals. Post-layout simulation reveals significant improvements in harmonic rejection and output power. The harmonic rejection improves by 21.2 dB, while the signal amplification reaches 16.5 dB. The total power consumption is 11.86 mW [12]. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-05-02T16:05:48Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-05-02T16:05:48Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審訂書 #
Acknowledgements i 中文摘要 iii Abstract v Table of Contents viii List of Figures x List of Tables xv Chapter 1 Introduction 1 1. Motivation 1 2.1 5G NR Introduction 1 2.2 5G NR Spectrum 1 2.3 The advantages of 5G mmWave 3 2.4 5G mmWave Challenges for RFIC 7 3.1 Packaging Technology Introduction 9 3.2 Chiplet Advantages 11 4 Thesis Contribution and Organization 13 Chapter 2 Injection-locked Frequency Sixtuplers in 90nm CMOS by Using the Push-Push Doubler 14 2.1 Introduction 14 2.2 Circuit Design 18 2.3 Comparison of Noise Suppression Between 8- and O-shaped Inductors 21 2.4 Measurement Results 34 2.5 Discussion 45 2.6 Conclusion 47 Chapter 3 Optimizing Ultra-Wideband Balanced Power Amplifiers Through the Selection of Different Output Impedance Transformation Based on SiP Techniques 48 3.1 Introduction 48 3.2 Design Optimization of Improved UWB Power Amplifiers 53 3.3 Results and Discussions of Improved UWB Power Amplifiers 67 3.4 Conclusion 74 Chapter 4 High harmonic rejection of Sixtuplers with Current-Reused Frequency Doubler and Darlington Amplifier 77 4.1 Introduction to the Improvement of Injection-Locked Frequency Sixtuplers (ILFSs) 77 4.2 Post-Layout Simulation Results 80 4.3 Conclusion 83 Chapter 5 Conclusion and Future Work 85 Reference 87 Publication List 98 | - |
dc.language.iso | en | - |
dc.title | 應用於5G毫米波之注入鎖定倍頻器與基於SiP技術透過選擇不同輸出阻抗轉換達成最佳化之超寬頻平衡功率放大器 | zh_TW |
dc.title | Injection-Locked Frequency Multipliers for 5G Millimeter-Wave and Optimizing Ultra-Wideband Balanced Power Amplifiers Through the Selection of Different Output Impedance Transformation Based on SiP Techniques | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 張勝良;曹恆偉;魏安祺;洪宗宏 | zh_TW |
dc.contributor.oralexamcommittee | Sheng-Lyang Jang;Hen-Wai Tsao;An-Chi Wei;Chung-Hung Hong | en |
dc.subject.keyword | 5G,毫米波,低功率,LC-Tank,轉導增益提升,推挽式倍頻器,三倍頻器,8字形電感,注入鎖定六倍頻器,鎖定範圍,90奈米CMOS,磁場耦合噪音干擾,功率放大器,超寬頻,SiP,異質整合,功率分配器,功率結合器,相移器,覆晶技術,電流重複利用,推挽對,頻率倍頻器,達林頓放大器, | zh_TW |
dc.subject.keyword | 5G,millimeter-wave (mm-wave),low power,LC-tank,gm-boosted,push-push frequency doubler,frequency tripler,8-shaped inductor,injection-locked frequency sixtupler,locking range,90nm CMOS,magnetic field coupling noise interference,power amplifier,Ultra-wideband (UWB),SiP,heterogeneous integration,power divider,power combiner,phase shifter,flip-chip,current-reused,push-push pair,frequency doubler (FD),Darlington amplifier (DA), | en |
dc.relation.page | 98 | - |
dc.identifier.doi | 10.6342/NTU202400863 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-04-24 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電子工程學研究所 | - |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 6.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。