請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92583
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 袁孝維 | zh_TW |
dc.contributor.advisor | Hsiao-Wei Yuan | en |
dc.contributor.author | 何欣澄 | zh_TW |
dc.contributor.author | Hsin-Cheng Ho | en |
dc.date.accessioned | 2024-04-26T16:13:09Z | - |
dc.date.available | 2024-06-27 | - |
dc.date.copyright | 2024-04-26 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2024-04-19 | - |
dc.identifier.citation | 內政部地政司(2020)。2020年版全臺灣及部分離島20公尺網格數值地形模型DTM資料。取自https://data.gov.tw/
內政部統計處(2022)。內政統計查詢網。擷取日期:2023年4月。取自https://statis.moi.gov.tw/micst/webMain.aspx?k=defjsp 顏士清(2016)。太魯閣國家公園蓮花池耕地復育生態監測與智慧監控規劃。太魯閣國家公園委託辦理報告。 行政院農委會(2017)。第四次森林資源調查全島森林林型分布。取自https://data.gov.tw/ 行政院(2023)。土地。擷取日期:2023年12月。取自https://www.ey.gov.tw/ 成允聖、蕭鈺、陳相伶(2021)。東勢林場中大型哺乳動物與地棲性鳥類調查。國立中興大學農資院實驗林管理處補助計畫。 朱有田(2013)。陽明山國家公園特殊稀有動物(麝香貓)生活史之研究(PG10101-0505)。陽明山國家公園管理處委託研究報告。 林良恭、姜博仁、陳美汀、陳家鴻、張燕伶(2008)。保育類哺乳動物生息現況分析與生態資訊建置(97-03)。行政院農業委員會林務局保育研究系列。 林業及自然保育署(2023)。島嶼上的森林現況。擷取日期:2023年12月。取自https://if.forest.gov.tw/IF/FResourceArchive/ArchiveHome/ArchiveIndex 盂燕汝(2019)。2013-2018 年臺灣鼬獾(Melogale moschata subaurantiaca)狂犬病疫情的時空變遷趨勢與地景特徵探討〔未出版之碩士論文〕。國立臺灣大學生態學與演化生物學研究所。 翁國精(2021)。野生動物長期監測系統之優化與資料整合計畫4-1(110農科-7.2.6-務-e1)。行政院農業委員會林務局110年度科技計畫研究報告。 動物保護資訊網(2022)。111年各縣市遊蕩犬估計數調查結果。擷取日期2023年11月。取自https://animal.moa.gov.tw/ 陳相伶、蘇愉婷、王晴萱、潘玉潔(2020)。惠蓀森林遊樂區中大型哺乳動物及鳥類調查。農林學報,67(4),273-288。 黃美秀(1995)。福山試驗林食蟹獴(Herpestes urva)族羣與資源利用之硏究〔未出版之碩士論文〕。國立臺灣大學動物學研究所。 農業部(2023)。陸域保育類野生動物名錄。擷取日期:2023年12月。取自https://conservation.forest.gov.tw/0002021 經濟部水利署(2017)。河川河道。取自https://data.gov.tw/ 經濟部水利署(n.d.)。水文資料。擷取日期:2023年12月。取自https://www.wra.gov.tw/cp.aspx?n=3168 裴家騏(2004)。新竹、苗栗之淺山地區小型食肉目動物之現況與保育研究(94-00-8-05)。行政院農業委員會林務局委託研究系列。 鄭錫奇、張簡琳玟(2015)。臺灣食肉目野生動物辨識手冊。農業部生物多樣性研究所。 顏士清(2022)。110-111年度壽山國家自然公園哺乳類動物族群與流浪犬現況調查計畫。國家自然公園管理處。 顏士清、翁綉茗、龔明祥、曾建閔、張世欣、蘇迎晨、林宗以、朱有田(2015)。陽明山國家公園麝香貓的分布、活動模式與潛在生存威脅。國家公園學報,25,58–65。 Allen, B. L., Fleming, P. J. S., Allen, L. R., Engeman, R. M., Ballard, G., & Leung, L. K. P. (2013). As clear as mud: A critical review of evidence for the ecological roles of Australian dingoes. Biological Conservation, 159, 158-174. https://doi.org/10.1016/j.biocon.2012.12.004 Azlan, J. M., & Sharma, D. S. (2006). The diversity and activity patterns of wild felids in a secondary forest in Peninsular Malaysia. Oryx, 40(1), 36-41. Bischof, R., Ali, H., Kabir, M., Hameed, S., & Nawaz, M. A. (2014). Being the underdog: an elusive small carnivore uses space with prey and time without enemies. Journal of Zoology, 293(1), 40-48. Brook, L. A., Johnson, C. N., & Ritchie, E. G. (2012). Effects of predator control on behaviour of an apex predator and indirect consequences for mesopredator suppression. Journal of Applied Ecology, 49(6), 1278-1286. Burnham, K. P., Anderson, D. R., Burnham, K. P., & Anderson, D. R. (1998). Practical use of the information-theoretic approach. Springer. Chen, C. C., Chang, A. M., Chen, W. J., Chang, P. J., Lai, Y. C., & Lee, H. H. (2021). Molecular survey of selected viral pathogens in wild leopard cats (Prionailurus bengalensis) in Taiwan with an emphasis on the spatial and temporal dynamics of carnivore protoparvovirus 1. Archives of Virology, 166, 427-438. Chen, C. C., Pei, J. C., Liao, M. H., & Mortenson, J. A. (2008). Canine distemper virus in wild ferret-badgers of Taiwan. Journal of wildlife diseases, 44(2), 440-445. Chen, M. T., Tewes, M. E., Pei, K. J., & Grassman, L. I. (2009). Activity patterns and habitat use of sympatric small carnivores in southern Taiwan. Mammalia, 73(1), 20-26. Chiang, P. J. (2007). Ecology and conservation of Formosan clouded leopard, its prey, and other sympatric carnivores in southern Taiwan. [Unpublished doctoral dissertation]. Virginia Tech. Chiang, P. J., Pei, J. C., Vaughan, M. R., & Li, C. F. (2012). Niche relationships of carnivores in a subtropical primary forest in southern Taiwan. Zoological Studies, 51(4), 500-511. Conner, M. M., Keane, J. J., Gallagher, C. V., Munton, T. E., & Shaklee, P. A. (2016). Comparing estimates of population change from occupancy and mark–recapture models for a territorial species. Ecosphere, 7(10), e01538. Creel, S. (2001). Interspecific competition and the population biology of extinction-prone carnivores. Carnivore Conservation, 35-60. Dahmer, T. D. (2001). Feral dogs and civet mortality on Kau Sai Chau, Sai Kung, Hong Kong. Porcupine! 24: 16-18. Dobrowski, S., Greenberg, J., Ramirez, C., & Ustin, S. (2006). Improving image derived vegetation maps with regression based distribution modeling. Ecological Modelling, 192(1-2), 126-142. Doherty, T. S., Dickman, C. R., Glen, A. S., Newsome, T. M., Nimmo, D. G., Ritchie, E. G., Vanak, A. T., & Wirsing, A. J. (2017). The global impacts of domestic dogs on threatened vertebrates. Biological Conservation, 210, 56-59. Donadio, E., & Buskirk, S. W. (2006). Diet, morphology, and interspecific killing in Carnivora. The American Naturalist, 167(4), 524-536. ESRI, (2022). Sentinel-2 10m Land Use/Land Cover Timeseries Downloader. https://www.esri.com/en-us/home (accessed April 2022) Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., Carpenter, S. R., Essington, T. E., Holt, R. D., & Jackson, J. B. (2011). Trophic downgrading of planet Earth. Science, 333(6040), 301-306. Farris, Z., Kelly, M., Karpanty, S., & Ratelolahy, F. (2016). Patterns of spatial co‐occurrence among native and exotic carnivores in north‐eastern Madagascar. Animal Conservation, 19(2), 189-198. Ferreiro‐Arias, I., Isla, J., Jordano, P., & Benítez‐López, A. (2021). Fine‐scale coexistence between Mediterranean mesocarnivores is mediated by spatial, temporal, and trophic resource partitioning. Ecology and evolution, 11(22), 15520-15533. Fiske, I., & Chandler, R. (2011). Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of statistical software, 43, 1-23. Frey, S., Volpe, J. P., Heim, N. A., Paczkowski, J., & Fisher, J. T. (2020). Move to nocturnality not a universal trend in carnivore species on disturbed landscapes. Oikos, 129(8), 1128-1140. https://doi.org/10.1111/oik.07251 Gaynor, K. M., Hojnowski, C. E., Carter, N. H., & Brashares, J. S. (2018). The influence of human disturbance on wildlife nocturnality. Science, 360(6394), 1232-1235. Gálvez, N., Infante, J., Fernandez, A., Díaz, J., & Petracca, L. (2021). Land use intensification coupled with free‐roaming dogs as potential defaunation drivers of mesocarnivores in agricultural landscapes. Journal of Applied Ecology, 58(12), 2962-2974. https://doi.org/10.1111/1365-2664.14026 Gompper, M. E. (2014). Free-ranging dogs and wildlife conservation / edited by Matthew E. Gompper, University of Missouri, USA (First edition. ed.). Oxford University Press. Gompper, M. E. (2014). Introduction: outlining the ecological influences of a subsidized domesticated predator. In Free-ranging dogs and wildlife conservation (pp. 1-8). Hardin, G. (1960). The Competitive Exclusion Principle: An idea that took a century to be born has implications in ecology, economics, and genetics. Science, 131(3409), 1292-1297. Hayward, M. W., & Slotow, R. (2009). Temporal partitioning of activity in large African carnivores: tests of multiple hypotheses. South African Journal of Wildlife Research-24-month delayed open access, 39(2), 109-125. Hsu, Y., Liu Severinghaus, L., & Serpell, J. A. (2003). Dog keeping in Taiwan: its contribution to the problem of free-roaming dogs. Journal of applied animal welfare science, 6(1), 1-23. Hughes, J., & Macdonald, D. W. (2013). A review of the interactions between free-roaming domestic dogs and wildlife. Biological Conservation, 157, 341-351. Hunter, J., & Caro, T. (2008). Interspecific competition and predation in American carnivore families. Ethology Ecology & Evolution, 20(4), 295-324. Jenks, K. E., Chanteap, P., Kanda, D., Cutter, P., Redford, T., Antony, J. L., Howard, J., & Leimgruber, P. (2011). Using relative abundance indices from camera-trapping to test wildlife conservation hypotheses–an example from Khao Yai National Park, Thailand. Tropical Conservation Science, 4(2), 113-131. Johnson, C. (2006). Australia''s mammal extinctions: a 50,000-year history. Cambridge University Press. Jha, A., Praveen, J., & Nameer, P. (2022). Contrasting occupancy models with presence-only models: Does accounting for detection lead to better predictions? Ecological modelling, 472, 110105. Keene, O. N. (1995). The log transformation is special. Statistics in medicine, 14(8), 811-819. Kellner, K. F., Smith, A. D., Royle, J. A., Kéry, M., Belant, J. L., & Chandler, R. B. (2023). The unmarked R package: Twelve years of advances in occurrence and abundance modelling in ecology. Methods in Ecology and Evolution. Kelly, M. J., & Holub, E. L. (2008). Camera trapping of carnivores: trap success among camera types and across species, and habitat selection by species, on Salt Pond Mountain, Giles County, Virginia. Northeastern naturalist, 15(2), 249-262. Kronfeld-Schor, N., & Dayan, T. (2003). Partitioning of time as an ecological resource. Annual review of ecology, evolution, and systematics, 34(1), 153-181. Land, K. C. (1969). Principles of path analysis. Sociological methodology, 1, 3-37. Levy, J. K., & Crawford, P. C. (2004). Humane strategies for controlling feral cat populations. Journal of the American Veterinary Medical Association, 225(9), 1354-1360. Li, C. F., Chytrý, M., Zelený, D., Chen, M. Y., Chen, T. Y., Chiou, C. R., Hsia, Y. J., Liu, H. Y., Yang, S. Z., & Yeh, C. L. (2013). Classification of Taiwan forest vegetation. Applied vegetation science, 16(4), 698-719. Lijun, C., Wenhong, X., & Zhishu, X. (2019). Limitations of relative abundance indices calculated from camera-trapping data. Biodiversity Science, 27(3), 243. Lim, P. X., Lin, S. M., Lin, W. L., & Tseng, H. Y. (2023). Breeding records, urban habitat, and threats to the masked palm civet in Taiwan. The Journal of Wildlife Management, e22467. https://doi.org/https://doi.org/10.1002/jwmg.22467 Lin, H. Y., Hu, J. M., Chen, T.Y., Hsieh, C.F., Wang, G., & Wang, T. (2018). A dynamic downscaling approach to generate scale-free regional climate data in Taiwan. Taiwania, 63(3), 251-266. Liu, S. S., Fung, H. P., Liu, B. T., & Cheng, F. P. (2007). Ovarian cycle of the captive formosan gem‐faced civets (Paguma larvata taivana). Zoo Biology: Published in affiliation with the American Zoo and Aquarium Association, 26(1), 1-11. Lleras, C. (2005). Path analysis. Encyclopedia of social measurement, 3(1), 25-30. Long, R. A., Zielinski, W. J., Long, R., MacKay, P., Zielinski, W., & Ray, J. (2008). Designing effective noninvasive carnivore surveys. Noninvasive survey methods for carnivores, 8-44. Longcore, T., Rich, C., & Sullivan, L. M. (2009). Critical assessment of claims regarding management of feral cats by trap–neuter–return. Conservation biology, 23(4), 887-894. MacArthur, R., & Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101(921), 377-385. Mackenzie, D. I. (2006). Modeling the probability of resource use: the effect of, and dealing with, detecting a species imperfectly. The Journal of Wildlife Management, 70(2), 367-374. MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., & Hines, J. E. (2017). Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Elsevier. MacKenzie, D. & Hines, J. (2018). RPresence: R interface for program PRESENCE. R package version 2.13.47. Retrieved from https://www.mbr-pwrc.usgs.gov/softw are/prese nce.html Meredith, M., & Ridout, M. (2018). Package ‘overlap’. Estimates of coefficient of overlapping for animal activity patterns, 3, 1. Monterroso, P., Alves, P. C., & Ferreras, P. (2014). Plasticity in circadian activity patterns of mesocarnivores in Southwestern Europe: implications for species coexistence. Behavioral Ecology and Sociobiology, 68, 1403-1417. Monterroso, P., Rebelo, P., Alves, P. C., & Ferreras, P. (2016). Niche partitioning at the edge of the range: a multidimensional analysis with sympatric martens. Journal of Mammalogy, 97(3), 928-939. OpenStreetMap(2022)。OpenStreetMap台灣。擷取日期:2022年3月,取自http://osm.tw/ Palomares, F., & Caro, T. M. (1999). Interspecific killing among mammalian carnivores. The American Naturalist, 153(5), 492-508. Polis, G. A., Myers, C. A., & Holt, R. D. (1989). The ecology and evolution of intraguild predation: potential competitors that eat each other. Annual review of ecology and systematics, 297-330. R Core Team (2023). _R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Ramm, F., Names, I., Files, S., Catalogue, F., Features, P., Features, N., & Cars, C. (2014). OpenStreetMap data in layered GIS format Richmond, O. M., Hines, J. E., & Beissinger, S. R. (2010). Two‐species occupancy models: a new parameterization applied to co‐occurrence of secretive rails. Ecological Applications, 20(7), 2036-2046. Ridout, M. S., & Linkie, M. (2009). Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 14(3), 322-337. https://doi.org/10.1198/jabes.2009.08038 Ripple, W. J., Estes, J. A., Beschta, R. L., Wilmers, C. C., Ritchie, E. G., Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., & Nelson, M. P. (2014). Status and ecological effects of the world’s largest carnivores. Science, 343(6167), 1241484. Ritchie, E. G., & Johnson, C. N. (2009). Predator interactions, mesopredator release and biodiversity conservation. Ecology letters, 12(9), 982-998. Ritchie, E. G., Dickman, C. R., Letnic, M., Vanak, A. T., & Gommper, M. (2014). Dogs as predators and trophic regulators. In Free-ranging dogs and wildlife conservation (pp. 55-68). Roughgarden, J., & Feldman, M. (1975). Species packing and predation pressure. Ecology, 56(2), 489-492. Savolainen, P., Zhang, Y.-p., Luo, J., Lundeberg, J., & Leitner, T. (2002). Genetic evidence for an East Asian origin of domestic dogs. Science, 298(5598), 1610-1613. Schmidt, P. M., Swannack, T. M., Lopez, R. R., & Slater, M. R. (2009). Evaluation of euthanasia and trap–neuter–return (TNR) programs in managing free-roaming cat populations. Wildlife Research, 36(2), 117-125. Schoener, T. W. (1983). Field experiments on interspecific competition. The American Naturalist, 122(2), 240-285. Schoener, T. W. (1974). Resource Partitioning in Ecological Communities: Research on how similar species divide resources helps reveal the natural regulation of species diversity. Science, 185(4145), 27-39. Sévêque, A., Gentle, L. K., López‐Bao, J. V., Yarnell, R. W., & Uzal, A. (2020). Human disturbance has contrasting effects on niche partitioning within carnivore communities. Biological Reviews, 95(6), 1689-1705. https://doi.org/10.1111/brv.12635 Sévêque, A., Gentle, L. K., Vicente López‐Bao, J., Yarnell, R. W., & Uzal, A. (2022). Impact of human disturbance on temporal partitioning within carnivore communities. Mammal Review, 52(1), 67-81. Shepherd, N. (1981). Predation of red kangaroos, Macropus rufus, by the dingo, Canis familiaris dingo (Blumenbach) in north-western New South Wales. Wildlife Research, 8(2), 255-262. Shores, C. R., Dellinger, J. A., Newkirk, E. S., Kachel, S. M., & Wirsing, A. J. (2019). Mesopredators change temporal activity in response to a recolonizing apex predator. Behavioral Ecology, 30(5), 1324-1335. Sollmann, R., Mohamed, A., Samejima, H., & Wilting, A. (2013). Risky business or simple solution–Relative abundance indices from camera-trapping. Biological Conservation, 159, 405-412. Streiner, D. L. (2005). Finding our way: an introduction to path analysis. The Canadian Journal of Psychiatry, 50(2), 115-122. Taborsky, M. (1988). Kiwis and dog predation: observations in Waitangi State Forest. Notornis, 35(3), 197-202. Terzin, V., & Pavlović, I. (2012). The strategy to resolve the problem of ownerless dogs and cats in Belgrade. Proceeding of 19th Scientific Conference with International Participation Animal Protection and Welfare, Brno, Chech Republic. Vanak, A. T., Dickman, C. R., Silva-Rodriguez, E. A., Butler, J. R., & Ritchie, E. G. (2013). Top-dogs and under-dogs: competition between dogs and sympatric carnivores. In Free-ranging dogs and wildlife conservation (pp. 69-93). Vanak, A. T., & Gompper, M. E. (2009). Dogs Canis familiaris as carnivores: their role and function in intraguild competition. Mammal Review, 39(4), 265-283. Wand, M. P., & Jones, M. C. (1994). Kernel smoothing. CRC press. Witten, D., & James, G. (2013). An introduction to statistical learning with applications in R. Springer publication. Wolf, C., & Ripple, W. J. (2017). Range contractions of the world''s large carnivores. Royal Society open science, 4(7), 170052. Yan, T. Y., & Teng, T. Y. (2023). Trends in Animal Shelter Management, Adoption, and Animal Death in Taiwan from 2012 to 2020. Animals, 13(9), 1451. Yen, S. C., Ju, Y. T., Shaner, P. J. L., & Chen, H. L. (2019). Spatial and temporal relationship between native mammals and free-roaming dogs in a protected area surrounded by a metropolis [Article]. Scientific Reports, 9, 9, Article 8161. https://doi.org/10.1038/s41598-019-44474-y Young, J. K., Olson, K. A., Reading, R. P., Amgalanbaatar, S., & Berger, J. (2011). Is wildlife going to the dogs? Impacts of feral and free-roaming dogs on wildlife populations. Bioscience, 61(2), 125-132. Zhang, L., Wang, Y., Zhou, Y., Newman, C., Kaneko, Y., Macdonald, D. W., Jiang, P., & Ding, P. (2010). Ranging and activity patterns of the group-living ferret badger Melogale moschata in central China. Journal of Mammalogy, 91(1), 101-108. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92583 | - |
dc.description.abstract | 群聚中的物種能透過調整現實生態棲位以降低種間競爭。然而,當面臨強大的共同掠食者時,物種可能會增加與掠食者的生態棲位分化,以迴避威脅。這可能導致物種間的生態棲位重疊度增加,進而可能降低物種的適存度(fitness)。家犬(Canis familiaris)是世界上分布最廣泛的入侵食肉動物,對原生食肉動物造成嚴重威脅,本研究假設犬隻造成的掠食壓力會導致:(1)原生食肉動物與遊蕩犬的活躍程度(relative activity index, RAI)呈負相關;(2)原生食肉動物與遊蕩犬的生態棲位時空分化增加;(3)原生食肉動物之間的生態棲位時空分化降低。本研究以臺灣中低海拔的四種中型食肉動物為研究對象,包含白鼻心(Paguma larvata)、鼬獾(Melogale moschata)、麝香貓(Viverricula indica)與食蟹獴(Herpestes urva)。我們共蒐集到1270台自動相機之資料,計算各物種RAI、建立佔據模型(occupancy modeling)與核密度估計(kernel density estimation),分析物種空間利用及活動模式重疊度的變化。研究發現,遊蕩犬與鼬獾RAI(P < 0.001)與食蟹獴RAI(P < 0.05)呈顯著負相關,顯示犬隻對其族群可能有負面影響。而鼬獾在佔據度上表現出迴避犬隻的現象(Species Interaction Factor, SIF < 1),代表其與遊蕩犬具有空間生態棲位的分化。然而,物種的活動模式重疊度未受任何因子影響。此外,我們也沒有發現原生食肉動物之間的生態棲位時空分化受遊蕩犬影響,我們推測可能有三種原因:(1)研究對象中僅有鼬獾在棲地利用上表現出對遊蕩犬迴避的傾向,其餘物種則無,故原生物種間的現實生態棲位並沒有重疊度增加的現象。(2)原生食肉動物的時空生態棲位具有更細微的分化,本研究中難以偵測。(3)有重要的因子影響原生食肉動物的時空生態棲位,導致狗對各個物種分別的影響沒有改變原生食肉動物的現實生態棲位並增加重疊度。例如即便食蟹獴與犬隻RAI顯著負相關,我們卻沒有觀察到食蟹獴迴避犬隻的現象(SIF > 1),這可能與其高度依賴特定環境生存有關,使其未能靈活改變棲地。本研究證實了遊蕩犬對鼬獾與食蟹獴造成衝擊,後續研究應進一步整合生態棲位的其他維度,更能清楚了解犬隻對原生食肉動物群聚造成的影響。 | zh_TW |
dc.description.abstract | Species within a guild can reduce interspecific competition by partitioning their realized niches. However, when facing co-predators, species may partition their niche with their co-predators to avoid threats. However, this reduction in niche overlap with predators may lead to an increase in the niche overlap among prey species, thereby potentially reducing the prey species’ fitness. Dog (Canis familiaris) is the most common invasive carnivore worldwide, posing severe threats to native carnivores. In this study, we hypothesize that the predation by free-ranging dogs will result in (1) a negative correlation between the relative activity index (RAI) of native carnivores and dogs, (2) increased spatiotemporal niche partitioning between native carnivores and dogs, and (3) decreased spatiotemporal niche partitioning among native carnivores. This study focused on four meso-carnivores in Taiwan, including the masked palm civet (Paguma larvata), ferret-badger (Melogale moschata), small Indian civet (Viverricula indica), and crab-eating mongoose (Herpestes urva). Data from 1270 camera traps were analyzed using occupancy modeling and kernel density estimation to assess species' spatial and temporal niche overlap changes. Results revealed a significant negative correlation between the RAI of dogs and ferret-badgers (P < 0.001), as well as dogs and crab-eating mongooses (P < 0.05). The ferret badger exhibited a significant spatial avoidance of dogs (Species Interaction Factor, SIF < 1), indicating spatial niche partitioning with dogs. However, the overlaps of species’ activity patterns were not influenced by any factor. Also, we did not observe any influence of free-ranging dogs on the spatiotemporal niche partitioning among native carnivores. There were three potential explanations: (1) Only the ferret badger showed spatial avoidance of dogs, while other species did not. Thus, no increase in niche overlap was observed. (2) More subtle partitioning on the spatiotemporal niches of native carnivores might exist, but it was difficult to detect in this study. (3) There were more vital factors influencing the spatiotemporal niches of native carnivores, so the threats posed by dogs on individual species were not able to alter their realized niches nor increase their niche overlap. For instance, despite the significant negative correlation between the RAI of crab-eating mongooses and dogs, we did not observe avoidance behavior in crab-eating mongooses (SIF > 1). This situation was likely due to their high dependency on specific environments for survival, which limited their ability to alter their habitats flexibly. In conclusion, this study confirms the negative impacts of free-ranging dogs on the ferret badger and mongoose, suggesting further research to integrate other niche dimensions for a comprehensive understanding of the effects of dogs on the niche partitioning of native carnivores. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-04-26T16:13:08Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-04-26T16:13:09Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝誌 i
摘要 ii Abstract iv 目次 vi 圖次 viii 表次 ix 壹、 前言 1 貳、 材料與方法 6 一、 研究地點 6 二、 資料蒐集與篩選 6 三、 環境因子 7 四、 相對活躍指數模型 9 五、 空間利用分化 10 六、 日活動模式分化 13 參、 結果 15 一、 環境因子的路徑分析 15 二、 相對活躍指數模型 15 三、 空間利用分化 16 四、 日活動模式分化 17 肆、 討論 19 一、 遊蕩犬與原生食肉動物之間的關係 19 二、 原生食肉動物間的生態棲位分化 21 三、 研究限制 22 四、 未來研究建議 23 伍、 引用文獻 24 圖 36 表 43 附錄 61 | - |
dc.language.iso | zh_TW | - |
dc.title | 遊蕩犬對臺灣原生食肉動物時空生態棲位之影響 | zh_TW |
dc.title | Impacts of Free-ranging Dogs on Spatiotemporal Niches of Native Carnivores in Taiwan | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 丁宗蘇;顏士清 | zh_TW |
dc.contributor.coadvisor | Tzung-Su Ding;Shih-Ching Yen | en |
dc.contributor.oralexamcommittee | 翁國精;蔡若詩 | zh_TW |
dc.contributor.oralexamcommittee | Guo-Jing Weng;Jo-Szu Tsai | en |
dc.subject.keyword | 種間競爭,現實生態棲位,自動相機,核密度估計,佔據模型, | zh_TW |
dc.subject.keyword | interspecific competition,realized niche,camera trap,kernel density estimation,occupancy model, | en |
dc.relation.page | 73 | - |
dc.identifier.doi | 10.6342/NTU202400878 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-04-22 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 森林環境暨資源學系 | - |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 7.44 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。