Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92577
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙基揚zh_TW
dc.contributor.advisorChi-Yang Chaoen
dc.contributor.author黃建文zh_TW
dc.contributor.authorChien-Wen Huangen
dc.date.accessioned2024-04-24T16:13:04Z-
dc.date.available2024-04-25-
dc.date.copyright2024-04-24-
dc.date.issued2024-
dc.date.submitted2024-04-18-
dc.identifier.citation[1]Yu, X.; Xiao, K.; Chen, J.; Lavrik, N. V.; Hong, K.; Sumpter, B. G.; Geohegan, D. B., “High-Performance Field-Effect Transistors Based on Polystyrene-b-Poly(3-hexylthiophene) Diblock Copolymers”, ACS Nano 2011, 5(5), 3559–3567.
[2]Britze, A.; Möllmann, V.; Grundmeier, G.; Luftmann, H.; Kuckling, D., “Synthesis of Blockcopolymers P3HT‐b‐PS Using a Combination of Grignard‐Metathesis and Nitroxide‐Mediated Radical Polymerization”, Macromolecular Chemistry and Physics 2011, 212(7), 679–690.
[3]Arif, M.; Liu, J.; Zhai, L.; Khondaker, S. I., “Temperature dependent charge transport in poly(3-hexylthiophene)-block polystyrene copolymer field-effect transistor”, Synthetic Metals 2012, 162(17–18), 1531–1536.
[4]Li, H.; Yang, Z.; Pan, C.; Jiang, N.; Satija, S. K.; Xu, D.; Gersappe, D.; Nam, C.-Y.; Rafailovich, M. H., “A new strategy to engineer polymer bulk heterojunction solar cells with thick active layers via self-assembly of the tertiary columnar phase”, Nanoscale 2017, 9(32), 11511–11522.
[5]Lim, H.; Huang, K.-T.; Su, W.-F.; Chao, C.-Y., “Facile Syntheses, Morphologies, and Optical Absorptions of P3HT Coil‐Rod‐Coil Triblock Copolymers”, Journal of Polymer Science Part A: Polymer Chemistry 2010, 48(15), 3311–3322.
[6]Lim, H.; Chao, C.-Y.; Su, W.-F., “Modulating Crystallinity of Poly(3-hexylthiophene) via Microphase Separation of Poly(3-hexylthiophene)-Polyisoprene Block Copolymers”, Macromolecules 2015, 48(10), 3269-3281.
[7]Korczagin, I.; Hempenius, M. A.; Fokkink, R. G.; Cohen Stuart, M. A.; Al-Hussein, M.; Bomans, P. H.; Frederik, P. M.; Vancso, G. J., “Self-Assembly of Poly(ferrocenyldimethylsilane-b-methyl methacrylate) Block Copolymers in a Selective Solvent”, Macromolecules 2006, 39(6), 2306-2315.
[8]Gilroy, J. B.; Lunn, D. J.; Patra, S. K.; Whittell, G. R.; Winnik, M. A.; Manners, I., “Fiber-like Micelles via the Crystallization-Driven Solution Self-Assembly of Poly(3-hexylthiophene)-block-Poly(methyl methacrylate) Copolymers”, Macromolecules 2012, 45(14), 5806-5815.
[9]Kuebler, J.; Dhapola, S.; Fernandez-Ballester, L., “Selecting for Surface-Induced vs Bulk Crystallization in P3HT Thin Films: Distinct Morphology, Orientation, and Linear Growth Rates”, Macromolecules 2024, 57(6), 2639–2650.
[10]Newacheck, S.; Uyen Huynh, N.; Youssef, G., “Tunable and switchable magnetoresistance of P3HT:PCBM organic framework”, Materials Letters 2024, 363, 136258.
[11]Wu, Y.; Duong, Q. M.; Simafranca, A. F.; Salamat, C. Z.; Schwartz, B. J.; Tolbert, S. H., “Crystal Structure Control of the Energetics of Chemical Doping in Rub-Aligned P3HT Films”, ACS Materials Letters 2024, 6(2), 489–497.
[12]Shan, H.; Wang, Z.; He, J.; Zhu, B.; Cao, X.; Zhou, J.; Huo, H., “A Simple Method to Tailor the Electrical and Tensile Properties of Poly(3-hexylthiophene) Ultrathin Films”, ACS Applied Polymer Materials 2023, 5(10), 8744–8753.
[13]Panchal, A.; Behera, S. K.; Nath, B.; Ramamurthy, P. C., “Influence of thin-film processing on the performance of organic field-effect transistors”, Journal of Applied Physics 2022, 132(5), 055501.
[14]Fu, C.; Jeng, K.; Li, Y.; Hsu, Y.; Chi, M.; Jian, W.; Chen, J., “Effects of Thermal Annealing and Solvent Annealing on the Morphologies and Properties of Poly(3-hexylthiophene) Nanowires”, Macromolecular Chemistry and Physics 2014, 216(1), 59–68.
[15]Jang, M.; Huh, Y.-I.; Chang, M., “Effects of Solvent Vapor Annealing on Morphology and Charge Transport of Poly(3-hexylthiophene) (P3HT) Films Incorporated with Preformed P3HT Nanowires”, Polymers 2020, 12(5), 1188.
[16]Jo, G.; Jung, J.; Chang, M., “Controlled Self-Assembly of Conjugated Polymers via a Solvent Vapor Pre-Treatment for Use in Organic Field-Effect Transistors”, Polymers 2019, 11(2), 332.
[17]Jin, S.-M.; Hwang, J. H.; Lim, J. A.; Lee, E., “Precrystalline P3HT nanowires: growth-controllable solution processing and effective molecular packing transfer to thin film”, CrystEngComm 2022, 24(6), 1248-1257.
[18]Yin, Y.; Chen, S.; Zhu, S.; Li, L.; Zhai, D.; Huang, D.; Peng, J., “Tailoring Cocrystallization and Microphase Separation in Rod–Rod Block Copolymers for Field-Effect Transistors”, Macromolecules 2021, 54(10), 4571–4581.
[19]Kim, P.; Kim, E. Y.; Han, S. G.; Lee, J.; Kang, S.; Park, C.; Cho, K.; Moon, H. C.; Kim, J. K., “Enhanced Vertical Hole Mobility through End-on Chain Orientation of Poly(3-hexylthiophene)-based Diblock Copolymers by Microphase Separation”, Macromolecules 2022, 55(14), 6160–6166.
[20]Shang, X.; Yin, Y.; Chen, S.; Zhu, M.; Zhai, D.; Liu, X.; Peng, J., “Unravelling the Correlation between Microphase Separation and Cocrystallization in Thiophene-Selenophene Block Copolymers for Organic Field-Effect Transistors”, Macromolecules 2020, 53(22), 10245–10255.
[21]Chen, S.; Li, L.; Zhai, D.; Yin, Y.; Shang, X.; Ni, B.; Peng, J., “Cocrystallization-Promoted Charge Mobility in All-Conjugated Diblock Copolymers for High-Performance Field-Effect Transistors”, ACS Applied Materials & Interfaces 2020, 12(52), 58094–58104.
[22]Peng, J.; Han, Y., “Recent advances in conjugated polythiophene-based rod–rod block copolymers: From morphology control to optoelectronic applications”, Giant 2020, 4, 100039.
[23]Daripa, S.; Khawas, K.; Sharma, A.; Kumar, A.; Pal, B.; Das, S.; Jit, S.; Kuila, B. K., “Simple and Direct Synthetic Route to a Rod–Coil Conjugated Block Copolymer from Either a Rod or Coil Block Using a Single Bifunctional Initiator: A Solvent Dependent Self-Assembly and Field Effect Mobility Study”, ACS Applied Polymer Materials 2020, 2(3), 1283–1293.
[24]Wu, W.-N.; Tu, T.-H.; Pai, C.-H.; Cheng, K.-H.; Tung, S.-H.; Chan, Y.-T.; Liu, C.-L., “Metallo-Supramolecular Rod–Coil Block Copolymer Thin Films for Stretchable Organic Field Effect Transistor Application”, Macromolecules 2022, 55(23), 10670–10681.
[25]Otep, S.; Tseng, Y.-C.; Yomogita, N.; Chang, J.-F.; Chueh, C.-C.; Michinobu, T., “Coil–rod–coil triblock copolymers synthesized by macromolecular clicking and their compatibilizer effects in all-polymer solar cells”, Journal of Materials Chemistry C 2022, 10(1), 346–359.
[26]Jin, S.-M.; Hwang, J. H.; Lee, E., “Crystallization-Driven Solution-State Assembly of Conjugated Block Copolymers in Materials Science”, Macromolecules 2023, 56(10), 3474–3496.
[27]Qi, R.; Qi, W.; Zhang, Y.; Liu, B.; Wang, J.; Li, H.; Yuan, H.; Xie, S., “Fabrication of Multilayered Two-Dimensional Micelles and Fibers by Controlled Self-Assembly of Rod-Coil Block Copolymers”, Polymers 2022, 14(19), 4125.
[28]Zhang, J.; Li, S.; Yin, Y.; Xiang, L.; Xu, F.; Mai, Y., “One‐Dimensional Helical Nanostructures from the Hierarchical Self‐Assembly of an Achiral “Rod−coil” Alternating Copolymer”, Macromolecular Rapid Communications 2022, 43(21).
[29]Park, M.; Kang, S.; Nam, C.; Narasimha, K.; Lee, W. B.; Park, S.-J., “Magnetic Field-Induced Self-Assembly of Conjugated Block Copolymers and Nanoparticles at the Air–Water Interface”, ACS Applied Materials & Interfaces 2022, 14(6), 8266–8273.
[30]Wang, J.-T.; Takshima, S.; Wu, H.-C.; Shih, C.-C.; Isono, T.; Kakuchi, T.; Satoh, T.; Chen, W.-C., “Stretchable Conjugated Rod-Coil Poly(3-hexylthiophene)-block-poly(butyl acrylate) Thin Films for Field Effect Transistor Applications”, Macromolecules 2017, 50(4), 1442-1452.
[31]Ji, E.; Pellerin, V.; Rubatat, L.; Grelet, E.; Bousquet, A.; Billon, L., “Self-Assembly of Ionizable “Clicked” P3HT‑b‑PMMA Copolymers: Ionic Bonding Group/Counterion Effects on Morphology”, Macromolecules 2017, 50(10), 235-243.
[32]Qi, R.; Zhu, Y.-L.; Han, L.; Wang, M.-J.; He, F., “Rectangular Platelet Micelles with Controlled Aspect Ratio by Hierarchical Self-Assembly of Poly(3-hexylthiophene)-b-poly(ethylene glycol)”, Macromolecules 2020, 53(15), 6555-6565.
[33]Cambridge, G.; Gonzalez-Alvarez, M. J.; Guerin, G.; Manners, I.; Winnik, M. A., “Solution Self-Assembly of Blends of Crystalline-Coil Polyferrocenylsilane-block-polyisoprene with Crystallizable Polyferrocenylsilane Homopolymer”, Macromolecules 2015, 48(3), 707–716.
[34]Wang, X.-S.; Liu, K.; Arsenault, A. C.; Rider, D. A.; Ozin, G. A.; Winnik, M. A.; Manners, I., “Shell-Cross-Linked CylindricalPolyisoprene-b-Polyferrocenylsilane (PI-b-PFS) BlockCopolymer Micelles: One-Dimensional (1D) Organometallic Nanocylinders”, J. AM. CHEM. SOC. 2007, 129, 5630-5639.
[35]Qian, J.; Guerin, G.; Lu, Y.; Cambridge, G.; Manners, I.; Winnik, M. A., “Self-Seeding in One Dimension: An Approach To Control the Lengthof Fiberlike Polyisoprene-Polyferrocenylsilane Block Copolymer Micelles”, Angewandte Chemie 2011, 123(7), 1660–1663.
[36] Miyakoshi, R.; Yokoyama, A.; Yokozawa, T., “Development of catalyst-transfer condensation polymerization. Synthesis of π-conjugated polymers with controlled molecular weight and low polydispersity”, Journal of Polymer Science Part A: Polymer Chemistry 2007, 46(3), 753–765.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92577-
dc.description.abstract此研究的主要目的是以改變混合溶劑的組成來調控聚(3-己基噻吩)嵌段共聚高分子(P3HT block copolymer)在溶液中的自組裝行為,進而達到利用低分子量的聚(3-己基噻吩)(P3HT)及較為環保的無鹵溶劑製備具有良好電子傳導特性的P3HT長纖維薄膜。研究中所使用的嵌段共聚高分子是由具有高度立體規則性,分子量為8000的P3HT與柔軟且具有低玻璃轉移溫度、分子量為3000的聚異戊二烯(PI)所組成的雙嵌段共聚高分子P3HT-b-PI;藉由GRIM聚合及後續的官能基轉換可得到末端官能基為醛基的(P3HT-CHO),並以陰離子聚合得到PI的活性陰離子,再將此兩者進行耦合成功合成出P3HT-b-PI。所使用的溶劑系統是以一P3HT的溶劑(如tetrahydrofuran或toluene),以及一P3HT的非溶劑(non-solvent, 如hexane或decane)進行搭配,而此四種溶劑皆對PI有良好的溶解度。我們系統化改變P3HT溶劑與非溶劑的組成與比例, 及溶液製備的方式以探討影響其自組裝行為的因素。
我們發現非溶劑比例超過70%時,純P3HT會形成大量的沉澱,但PI鏈段的導入可以使P3HT-b-PI在P3HT已經形成聚集的情形下仍良好的分散在混和溶劑中,隨著靜置時間的增加可以觀察到長纖維的產生。推測其自組裝行為是P3HT鏈段首先形成小晶粒或聚集,之後溶解良好的PI鏈段可以引導小晶粒接合使其成長為長纖維以減低高分子與溶液間的界面面積。而不同的溶劑組合,可以產生不同長度和寬度的纖維;有趣的是,當使用decane為非溶劑與不同的溶劑進行搭配時,P3HT-b-PI皆可形成較為長直的纖維;而以drop casting製備薄膜時,高沸點溶劑的緩慢揮發使P3HT-b-PI可以形成更長的纖維。溶液的靜置時間對於纖維的生長與結晶度亦會有所影響,在toluene/decane (v/v=3/7)的溶劑體系中,將溶液靜置7天後,P3HT晶粒的大小可以從7.5奈米成長到12.1奈米,纖維的長度可以超過1微米且顯示出更緊密的堆疊並具有垂直於基材位向(edge-on)的方向性,這些特點都有利於有機薄膜電晶體的後續應用。我們也初步探討了此選擇性溶劑系統對分子量較大的P3HT-b-PI的影響, 發現高分子量P3HT的結晶會主導自組裝行為; 而具相近P3HT嵌段長度的P3HT-b-PI-b-P3HT三嵌段共聚高分子的亦無法如雙嵌段共聚高分子展現出良好的結晶性。
zh_TW
dc.description.abstractThis research aims to manipulate the self-assembly behavior of poly(3-hexylthiophene) block copolymers in solution by employing mixed solvents with different compositions. The ultimate goal is to prepare P3HT long fiber thin films with good electronic conducting properties by utilizing low molecular weight P3HT and environmentally friendly, halogen-free solvents. The block copolymer used in the study is a P3HT-b-PI diblock copolymer, composed of a highly regioregular P3HT segment with a molecular weight of 8000, and a flexible polyisoprene (PI) with low glass transition temperature and a molecular weight of 3000. By employing GRIM polymerization and subsequent functional group transformation, we can obtain an aldehyde terminated P3HT, (P3HT-CHO). Anionic polymerization is adopted to synthesize living polyisoprene anions and then coupling with P3HT-CHO would afford the P3HT-b-PI block copolymer. The mix solvent system consists of a solvent for P3HT, such as tetrahydrofuran or toluene, and a non-solvent for P3HT, such as hexane or decane. All these four solvents have good solubility for polyisoprene(PI). By systematically varying the composition and ratio of P3HT solvent and non-solvent as well as the solution preparation process, we can explore important factors influencing the self-assembly behavior of P3HT-b-PI in the mixed solvent system.
It is observed that when the non-solvent ratio exceeds 70 vol%, P3HT homopolymers tend to precipitate seriously. However, the incorporation of PI segments allows P3HT-b-PI to disperse homogenously in the mixed solvent even when P3HT has already form certain aggregates. With increasing standing time of the solution, long fibers could be observed. We propose a model suggesting that, P3HT segments initially forms small crystallites or aggregates in the solution; subsequently, the well-dissolved PI segments could guide these small crystallites to join together and facilitate their growths into long fibers. This process could be thermodynamic driving as the interfacial areas between the aggregates and the solvents are reduced with the formation of larger structures. Furthermore, different solvent combinations could result in fibers with varying lengths and widths. It’s noted that when using decane as the non-solvent in combination with different solvents, P3HT-b-PI consistently forms longer and straighter fibers. Additionally, drop casting films prepared from high boiling point solvents, slow evaporation allows P3HT-b-PI to form even longer and wider fibers. These observations suggest that solvent selection and the preparation method play critical roles in the microstructure of the resulting films. We also observe that the solution's standing time plays an important role in fiber growth and the crystallinity of the resulting fiber. In the toluene/decane (v/v=3/7) solvent system, the fibers obtained from the solution standing for 7 days exhibit an increase in P3HT crystallite size from 7.5 to 12.1 nanometers and a denser packing in comparison with the fibers from the same solution standing for 1 day. The fibers grow to lengths exceeding 1 micron with edge-on orientation. These features are favorable for the applications of organic thin-film transistors. The preliminary exploration of the impact of the selective solvent system on higher molecular weight P3HT-b-PI reveals that the self-assembly behavior is dominated by the crystallization of high molecular weight P3HT. Additionally, the tri-block copolymer P3HT-b-PI-b-P3HT, with similar P3HT segment lengths, does not exhibit the same level of crystallinity as the diblock copolymer counterpart. This information provides insights into how the molecular weight and block arrangement can influence the self-assembly behavior in the selective solvent system.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-04-24T16:13:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-04-24T16:13:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
致謝 i
中文摘要 ii
ABSTRACT iii
目次 v
圖索引 vii
表索引 x
第1章 緒論 1
1.1 研究背景與動機 1
1.2 研究架構 3
第2章 文獻回顧 4
2.1 P3HT 4
2.1.1 熱退火調控微結構 4
2.1.2 溶劑退火調控微結構 5
2.1.3 溶劑調控P3HT微結構 6
2.2 含P3HT嵌段的硬桿-柔曲嵌段共聚高分子(Rod-Coil block copolymer) 9
2.2.1 嵌段比例調控微結構 9
2.2.2 溶劑調控微結構 13
2.3 半結晶材料的硬桿-柔曲嵌段共聚高分子(Rod-Coil block copolymer) 14
2.3.1 嵌段比例調控微結構 14
2.3.2 溶劑與熱退火調控微結構 16
第3章 實驗步驟與原理 18
3.1 藥品目錄 18
3.2 實驗儀器 19
3.3 材料製備 19
3.3.1 2,5-dibromo-3-hexylthiophene(Br23HT)之合成 20
3.3.2 H-P3HT-Br的聚合 21
3.3.3 H-P3HT-Br的末端基改質 22
3.3.4 1,2/3,4-PI的聚合 22
3.3.5 P3HT和PI的耦合 23
3.3.6 溶液樣品的製備 24
3.3.7 薄膜樣品的製備 24
3.3.8 TEM樣品的製備 24
第4章 結果與討論 26
4.1 P3HT-b-PI之合成與鑑定 26
4.1.1 H-P3HT-Br之合成與鑑定 26
4.1.2 H-P3HT-CHO之合成與鑑定 29
4.1.3 雙嵌段共聚高分子之耦合與鑑定 30
4.2 實驗設計與命名 33
4.3 P1之自組裝與結晶行為分析 34
4.3.1 選擇性溶劑的體積分率 34
4.3.2 光學性質分析 35
4.3.3 電子顯微鏡分析 37
4.3.4 GIWAXS分析 40
4.4 選擇性溶劑間的界面持續時間對P1的自組裝與結晶行為分析 46
4.4.1 時間之選擇 46
4.4.2 電子顯微鏡分析 46
4.4.3 GIWAXS分析 48
4.5 P2與P3之調控 52
4.5.1 電子顯微鏡分析 52
4.5.2 GIWAXS分析 54
第5章 結論 57
第6章 未來展望 59
附錄 60
第7章 參考文獻 64
圖索引
圖 2 1 P3HT結構式 4
圖 2 2 P3HT奈米線(a)退火前和(b)退火後的AFM height圖 5
圖 2 3 P3HT薄膜經過溶劑退火後的AFM圖 5
圖 2 4 以甲醇蒸氣退火的實驗示意圖 6
圖 2 5 P3HT薄膜經過不同時間蒸氣退火的AFM圖與GIWAXS圖 6
圖 2 6 P3HT溶劑樣品的配置 7
圖 2 7 P3HT溶液的TEM圖 8
圖 2 8 P3HT薄膜的的GIWAXS圖 8
圖 2 9 不同PBA比例的P3HT-b-PBA的AFM與2D GIWAXS圖 10
圖 2 10 (a)、(b)、(c)為P3HT,(d)、(e)、(f)為PS-P3HT-PS,(g)、(h)、(i)為PI-P3HT-PI,(j)、(k)、(l)為PMMA-P3HT-PMMA於不同溶劑中成膜後的AFM圖 11
圖 2 11 不同PIwt%組成的P3HT-PI與PI-P3HT-PI塊材的TEM圖 12
圖 2 12 P3HT、P3HT-b-PMMA與P3HT-b+-PMMA·I−薄膜經過熱處理前後的AFM圖 13
圖 2 13 P3HT-b-PEG的TEM圖 14
圖 2 14 PFS和PFS-b-PI溶於decane的TEM圖 15
圖 2 15 PFS-b-PI:PFS以不同莫耳比混摻的TEM圖 16
圖 2 16 PFS-b-PI溶於共溶劑中的TEM圖 17
圖 2 17 PFS-b-PI不同退火溫度下的TEM圖 17
圖 3 1 合成Br23HT的反應路徑 21
圖 4 1 Br23HT的1H NMR圖 26
圖 4 2 H-P3HT-Br的GPC UV檢測圖 27
圖 4 3 H-P3HT-Br之MALDI-TOF鑑定 28
圖 4 4 H-P3HT-Br之1H NMR圖 29
圖 4 5 H-P3HT-CHO之MALDI-TOF鑑定 30
圖 4 6 PI的GPC圖 31
圖 4 7 P3HT-b-PI的GPC圖 31
圖 4 8 P3HT-b-PI之1H NMR圖 32
圖 4 9 樣品配置示意圖 35
圖 4 10 (a)P3HT和(b)P1溶解於Th7/H3、Th3/H7、Th2/H8、Th1/H9 35
圖 4 11 P1溶液在(a)良/不良溶劑體積比為70/30和(b)30/70中的UV-Vis吸收光譜 36
圖 4 12 P1在(a)良/不良溶劑體積比為70/30和(b)30/70中薄膜的UV-Vis吸收光譜 36
圖 4 13 P1溶液的TEM圖,放大倍率為60000倍 38
圖 4 14 P1薄膜的TEM圖,放大倍率為60000倍 39
圖 4 15 P1旋轉塗佈薄膜的2D GIWAXS圖 41
圖 4 16 P1旋轉塗佈薄膜的GIWAXS積分圖 42
圖 4 17 P1滴落塗佈薄膜的2D GIWAXS圖 43
圖 4 18 P1滴落塗佈薄膜的GIWAXS積分圖 44
圖 4 19 P1旋轉塗佈和滴落塗佈薄膜在不同溶劑系統中(100)平面的間距 45
圖 4 20 P1旋轉塗佈和滴落塗佈薄膜在不同溶劑系統中(100)平面的晶粒尺寸 45
圖 4 21 在T1和T2條件下,P1溶液於Th3/H7的TEM圖 47
圖 4 22 在T1和T2條件下,P1溶液於To3/D7的TEM圖 48
圖 4 23 T1條件下,於(a)Th3/H7、(b)To3/D7,P1滴落塗佈薄膜的GIWAXS積分圖 49
圖 4 24 T2條件下,於(a)Th3/H7、(b)To3/D7,P1滴落塗佈薄膜的GIWAXS積分圖 50
圖 4 25 T3條件下,於(a)Th3/H7、(b)To3/D7,P1滴落塗佈薄膜的GIWAXS積分圖 50
圖 4 26 T1、T2、T3條件下,於(a)Th3/H7和(b)To3/D7中,P1滴落塗佈薄膜(100)平面的間距 52
圖 4 27 T1、T2、T3條件下,於(a)Th3/H7和(b)To3/D7中,P1滴落塗佈薄膜(100)平面的晶粒尺寸 52
圖 4 28 P2薄膜於Th3/D7,放大倍率為(a)20000,(b)60000倍的TEM圖 53
圖 4 29 P3薄膜於Th3/D7和To3/D7,放大倍率為20000(左側)和60000倍(右側)的TEM圖 54
圖 4 30 (a)P2和(b)P3滴落塗佈薄膜的GIWAXS積分圖 55
圖 4 31 在不同溶劑系統中,P1、P2、P3滴落塗佈薄膜(100)平面的間距 56
圖 4 32 在不同溶劑系統中,P1、P2、P3滴落塗佈薄膜(100)平面的晶粒尺寸 56
圖 5 1 P1、P2、P3於選擇性溶劑中自組裝成長纖維的微觀示意圖 58
圖 A 1 P1 T1條件下,P1滴落塗佈薄膜於Th3/H7和To3/D7的2D GIWAXS圖
60
圖 A 2 T2條件下,P1滴落塗佈薄膜於Th3/H7和To3/D7的2D GIWAXS圖 61
圖 A 3 T3條件下,P1滴落塗佈薄膜於Th3/H7和To3/D7的2D GIWAXS圖 61
圖 A 4 (a)P2和(b)P3滴落塗佈薄膜的2D GIWAXS圖 62
圖 A-5 P1溶液(左)和薄膜(右),放大倍率為20000倍的TEM圖 63
表索引
表 3 1 材料與藥品資訊 18
表 3 2 實驗儀器資訊 19
表 4 1 P3HT-b-PI之分子量資訊 32
表 4 2 P1、P2、P3的GPC分子量數據整理 33
表 4 3 良/不良溶劑系統之命名 34
表 4 4 界面持續時間之命名 34
表 4 5 溶劑之密度與沸點 34
表 4 6 P1旋轉塗佈薄膜的GIWAXS數據整理 42
表 4 7 P1滴落塗佈薄膜的GIWAXS 數據整理 44
表 4 8 P1 T1、T2、T3條件下,Th3/H7,P1滴落塗佈薄膜的GIWAXS數據整理 51
表 4 9 T1、T2、T3條件下,To3/D7,P1滴落塗佈薄膜的GIWAXS數據整理 51
表 4 10 P2滴落塗佈薄膜的GIWAXS 數據整理 55
表 4 11 P3滴落塗佈薄膜的GIWAXS 數據整理 55
-
dc.language.isozh_TW-
dc.title以選擇性溶劑調控聚三-己基噻吩-聚異戊二烯嵌段共聚高分子之微結構zh_TW
dc.titleManipulating microstructure of poly(3-hexylthiophene-b-isoprene) via selective solventsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee童世煌;張峻瑜zh_TW
dc.contributor.oralexamcommitteeShih-Huang Tung;Chun-Yu Changen
dc.subject.keyword聚(3-己基噻吩),聚異戊二烯,嵌段共聚物,溶劑誘導形態調控,自組裝,P3HT長纖維,zh_TW
dc.subject.keywordPoly(3-hexylthiophene),polyisoprene,block copolymer,solvent induced morphology manipulation,self-assembly,P3HT long fiber,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU202400870-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-04-18-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2029-04-18-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
6.34 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved