Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92572
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志宏zh_TW
dc.contributor.advisorJyh-Horng Chenen
dc.contributor.author吳虹誼zh_TW
dc.contributor.authorHong-Yi Wuen
dc.date.accessioned2024-04-22T16:13:41Z-
dc.date.available2024-04-23-
dc.date.copyright2024-04-22-
dc.date.issued2024-
dc.date.submitted2024-03-22-
dc.identifier.citation1. Organization, W.H. Ageing and health. 2022; Available from: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health.
2. Rowe, J.W. and R.L. Kahn, Human aging: usual and successful. Science, 1987. 237(4811): p. 143-149.
3. Harada, C.N., M.C. Natelson Love, and K. Triebel, Normal Cognitive Aging. Clinics in geriatric medicine, 2013. 29(4): p. 737-752.
4. Zimmerman, B., et al., Age‐related changes in cerebrovascular health and their effects on neural function and cognition: A comprehensive review. Psychophysiology, 2021.
5. Xu, L., et al., The Effects of Exercise for Cognitive Function in Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int J Environ Res Public Health, 2023. 20(2).
6. Colcombe, S. and A.F. Kramer, Fitness Effects on the Cognitive Function of Older Adults:A Meta-Analytic Study. Psychological Science, 2003. 14(2): p. 125-130.
7. Zhang, Z., et al., Neural substrates of the executive function construct, age-related changes, and task materials in adolescents and adults: ALE meta-analyses of 408 fMRI studies. Developmental Science, 2021. 24(6): p. e13111.
8. Saylik, R., et al., Characterising the unity and diversity of executive functions in a within-subject fMRI study. Sci Rep, 2022. 12(1): p. 8182.
9. Hu, S., et al., Structural and functional cerebral bases of diminished inhibitory control during healthy aging. Hum Brain Mapp, 2018. 39(12): p. 5085-5096.
10. Yu, Q., et al., Cognitive benefits of exercise interventions: an fMRI activation likelihood estimation meta-analysis. Brain Structure and Function, 2021. 226(3): p. 601-619.
11. Chen, F.T., et al., Effects of Exercise Training Interventions on Executive Function in Older Adults: A Systematic Review and Meta-Analysis. Sports Med, 2020. 50(8): p. 1451-1467.
12. Nouchi, R., et al., Four weeks of combination exercise training improved executive functions, episodic memory, and processing speed in healthy elderly people: evidence from a randomized controlled trial. Age (Dordr), 2014. 36(2): p. 787-99.
13. MacLeod, C.M., Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 1991. 109: p. 163-203.
14. MacLeod, C.M., Training on integrated versus separated Stroop tasks: the progression of interference and facilitation. Memory & cognition, 1998. 26(2): p. 201-211.
15. Huang, H.W., et al., Which digit is larger? Brain responses to number and size interactions in a numerical Stroop task. Psychophysiology, 2021. 58(3): p. e13744.
16. Spence, H., C.J. McNeil, and G.D. Waiter, The impact of brain iron accumulation on cognition: A systematic review. PLoS One, 2020. 15(10): p. e0240697.
17. Penke, L., et al., Brain iron deposits are associated with general cognitive ability and cognitive aging. Neurobiol Aging, 2012. 33(3): p. 510-517.e2.
18. Drayer, B., et al., MRI of brain iron. American Journal of Roentgenology, 1986. 147(1): p. 103-110.
19. Ravanfar, P., et al., Systematic Review: Quantitative Susceptibility Mapping (QSM) of Brain Iron Profile in Neurodegenerative Diseases. Front Neurosci, 2021. 15: p. 618435.
20. Lee, S.Y., et al., Moderating role of physical activity on hippocampal iron deposition and memory outcomes in typically aging older adults. Neurobiology of Aging, 2023. 131: p. 124-131.
21. Zimmerman, B., et al., Age-related changes in cerebrovascular health and their effects on neural function and cognition: A comprehensive review. Psychophysiology, 2021. 58(7): p. e13796.
22. Harada, C.N., M.C. Natelson Love, and K.L. Triebel, Normal cognitive aging. Clin Geriatr Med, 2013. 29(4): p. 737-52.
23. Schmitter-Edgecombe, M. and C.M. Parsey, Assessment of functional change and cognitive correlates in the progression from healthy cognitive aging to dementia. Neuropsychology, 2014. 28(6): p. 881-93.
24. Guo, W., et al., Effect of Combined Physical and Cognitive Interventions on Executive Functions in OLDER Adults: A Meta-Analysis of Outcomes. Int J Environ Res Public Health, 2020. 17(17).
25. Leckie, R.L., et al., BDNF mediates improvements in executive function following a 1-year exercise intervention. Front Hum Neurosci, 2014. 8: p. 985.
26. Galloway, M.T. and P. Jokl, Aging Successfully: The Importance of Physical Activity in Maintaining Health and Function. JAAOS - Journal of the American Academy of Orthopaedic Surgeons, 2000. 8(1): p. 37-44.
27. Fleg, J.L., Aerobic exercise in the elderly: a key to successful aging. Discov Med, 2012. 13(70): p. 223-8.
28. Cabeza, R., Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging, 2002. 17(1): p. 85-100.
29. Davis, S.W., et al., Que PASA? The posterior-anterior shift in aging. Cereb Cortex, 2008. 18(5): p. 1201-9.
30. Miyake, A., et al., The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: a latent variable analysis. Cogn Psychol, 2000. 41(1): p. 49-100.
31. Fjell, A.M., et al., Brain changes in older adults at very low risk for Alzheimer''s disease. J Neurosci, 2013. 33(19): p. 8237-42.
32. Fjell, A.M., et al., What is normal in normal aging? Effects of aging, amyloid and Alzheimer''s disease on the cerebral cortex and the hippocampus. Prog Neurobiol, 2014. 117: p. 20-40.
33. Idowu, M.I. and A.J. Szameitat, Executive function abilities in cognitively healthy young and older adults-A cross-sectional study. Front Aging Neurosci, 2023. 15: p. 976915.
34. Yu, Q., et al., Cognitive Benefits of Exercise Interventions: An fMRI Activation Likelihood Estimation Meta-Analysis. bioRxiv, 2020: p. 2020.07.04.187401.
35. Wu, J., et al., Effects of Exercise on Neural Changes in Inhibitory Control: An ALE Meta-Analysis of fMRI Studies. Front Hum Neurosci, 2022. 16: p. 891095.
36. Coetsee, C. and E. Terblanche, Cerebral oxygenation during cortical activation: the differential influence of three exercise training modalities. A randomized controlled trial. European Journal of Applied Physiology, 2017. 117(8): p. 1617-1627.
37. Kaufmann, L., et al., Neural correlates of distance and congruity effects in a numerical Stroop task: an event-related fMRI study. NeuroImage, 2005. 25(3): p. 888-898.
38. Huang, C.M., et al., Both left and right posterior parietal activations contribute to compensatory processes in normal aging. Neuropsychologia, 2012. 50(1): p. 55-66.
39. DuBose, L.E., et al., Association between cardiorespiratory fitness and cerebrovascular reactivity to a breath-hold stimulus in older adults: influence of aerobic exercise training. J Appl Physiol (1985), 2022. 132(6): p. 1468-1479.
40. Bliss, E.S., et al., The Effects of Aerobic Exercise Training on Cerebrovascular and Cognitive Function in Sedentary, Obese, Older Adults. Frontiers in Aging Neuroscience, 2022. 14.
41. Zhao, M.Y., et al., Reproducibility of cerebrovascular reactivity measurements: A systematic review of neuroimaging techniques*. Journal of Cerebral Blood Flow & Metabolism, 2022. 42(5): p. 700-717.
42. Connor, J.R., et al., Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res, 1990. 27(4): p. 595-611.
43. Hallgren, B. and P. Sourander, THE EFFECT OF AGE ON THE NON-HAEMIN IRON IN THE HUMAN BRAIN. Journal of Neurochemistry, 1958. 3(1): p. 41-51.
44. Thomas, L.O., et al., MR detection of brain iron. AJNR Am J Neuroradiol, 1993. 14(5): p. 1043-8.
45. Zecca, L., et al., Iron, brain ageing and neurodegenerative disorders. Nature Reviews Neuroscience, 2004. 5(11): p. 863-873.
46. Lee, D.W. and J.K. Andersen, Iron elevations in the aging Parkinsonian brain: a consequence of impaired iron homeostasis? Journal of Neurochemistry, 2010. 112(2): p. 332-339.
47. Levenson, C.W., Trace metal regulation of neuronal apoptosis: From genes to behavior. Physiology & Behavior, 2005. 86(3): p. 399-406.
48. Rodrigue, K.M., et al., The role of hippocampal iron concentration and hippocampal volume in age-related differences in memory. Cereb Cortex, 2013. 23(7): p. 1533-41.
49. Maaroufi, K., et al., Impairment of emotional behavior and spatial learning in adult Wistar rats by ferrous sulfate. Physiol Behav, 2009. 96(2): p. 343-9.
50. Haacke, E.M., et al., Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging, 2015. 33(1): p. 1-25.
51. Haacke, E.M., et al., Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. Journal of Magnetic Resonance Imaging, 2010. 32(3): p. 663-676.
52. Sun, H., et al., Validation of quantitative susceptibility mapping with Perls'' iron staining for subcortical gray matter. NeuroImage, 2015. 105: p. 486-492.
53. Langkammer, C., et al., Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. Neuroimage, 2012. 62(3): p. 1593-9.
54. Hametner, S., et al., The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study. NeuroImage, 2018. 179: p. 117-133.
55. Acosta-Cabronero, J., et al., In Vivo MRI Mapping of Brain Iron Deposition across the Adult Lifespan. The Journal of Neuroscience, 2016. 36(2): p. 364-374.
56. Keuken, M.C., et al., Effects of aging on T₁, T₂*, and QSM MRI values in the subcortex. Brain Struct Funct, 2017. 222(6): p. 2487-2505.
57. Ryan, B.J., et al., Exercise training decreases whole-body and tissue iron storage in adults with obesity. Exp Physiol, 2021. 106(4): p. 820-827.
58. Ziolkowski, W., et al., Are the health effects of exercise related to changes in iron metabolism? Mediterranean Journal of Nutrition and Metabolism, 2014. 7: p. 33-43.
59. Choi, D.-H., et al., Treadmill Exercise Alleviates Brain Iron Dyshomeostasis Accelerating Neuronal Amyloid-β Production, Neuronal Cell Death, and Cognitive Impairment in Transgenic Mice Model of Alzheimer’s Disease. Molecular Neurobiology, 2021. 58(7): p. 3208-3223.
60. Belaya, I., et al., Regular Physical Exercise Modulates Iron Homeostasis in the 5xFAD Mouse Model of Alzheimer’s Disease. International Journal of Molecular Sciences, 2021. 22(16): p. 8715.
61. Rajmohan, V. and E. Mohandas, The limbic system. Indian J Psychiatry, 2007. 49(2): p. 132-9.
62. Pierce, J.E. and J. Péron, The basal ganglia and the cerebellum in human emotion. Social Cognitive and Affective Neuroscience, 2020. 15(5): p. 599-613.
63. Torrico, T.J. and S. Munakomi, Neuroanatomy, Thalamus, in StatPearls. 2024, StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC.: Treasure Island (FL).
64. Szymkowicz, S.M., et al., Hippocampal Brain Volume Is Associated with Faster Facial Emotion Identification in Older Adults: Preliminary Results. Front Aging Neurosci, 2016. 8: p. 203.
65. Smoliński, Ł. and A. Członkowska, Cerebral vasomotor reactivity in neurodegenerative diseases. Neurologia i Neurochirurgia Polska, 2016. 50(6): p. 455-462.
66. Duchesne, C., et al., Enhancing both motor and cognitive functioning in Parkinson''s disease: Aerobic exercise as a rehabilitative intervention. Brain Cogn, 2015. 99: p. 68-77.
67. Smiley-Oyen, A.L., et al., Exercise, Fitness, and Neurocognitive Function in Older Adults: The “Selective Improvement” and “Cardiovascular Fitness” Hypotheses. Annals of Behavioral Medicine, 2008. 36(3): p. 280-291.
68. Organization, W.H. Physical activity. 2022; Available from: https://www.who.int/news-room/fact-sheets/detail/physical-activity.
69. Haskell, W.L., et al., Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc, 2007. 39(8): p. 1423-34.
70. MacIntosh, B.R., et al., What Is Moderate to Vigorous Exercise Intensity? Front Physiol, 2021. 12: p. 682233.
71. Peres, G., H. Vandewalle, and P. Havette, Heart rate, maximal heart rate and pedal rate. J Sports Med Phys Fitness, 1987. 27(2): p. 205-10.
72. Liu, P., J.B. De Vis, and H. Lu, Cerebrovascular reactivity (CVR) MRI with CO2 challenge: A technical review. Neuroimage, 2019. 187: p. 104-115.
73. Cox, R.W., AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res, 1996. 29(3): p. 162-73.
74. Hsieh, M.-C., et al., Quantitative Susceptibility Mapping-Based Microscopy of Magnetic Resonance Venography (QSM-mMRV) for In Vivo Morphologically and Functionally Assessing Cerebromicrovasculature in Rat Stroke Model. PLOS ONE, 2016. 11(3): p. e0149602.
75. 謝孟錡, 磁化率影像於大腦之研究與應用:定量靜脈血氧濃度與鐵沉積, in 生醫電子與資訊學研究所. 2016, 國立臺灣大學. p. 1-200.
76. Woolrich, M.W., et al., Bayesian analysis of neuroimaging data in FSL. Neuroimage, 2009. 45(1 Suppl): p. S173-86.
77. Puckett, A.M., J.R. Mathis, and E.A. DeYoe, An investigation of positive and inverted hemodynamic response functions across multiple visual areas. Human brain mapping, 2014. 35(11): p. 5550-5564.
78. Wu, Y., et al., The neuroanatomical basis for posterior superior parietal lobule control lateralization of visuospatial attention. Frontiers in neuroanatomy, 2016. 10: p. 32.
79. Sonuga-Barke, E.J.S. and F.X. Castellanos, Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis. Neuroscience & Biobehavioral Reviews, 2007. 31(7): p. 977-986.
80. Sambataro, F., et al., Age-related alterations in default mode network: Impact on working memory performance. Neurobiology of Aging, 2010. 31(5): p. 839-852.
81. Erickson, K.I., et al., Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A, 2011. 108(7): p. 3017-22.
82. Scharfman, H., et al., Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol, 2005. 192(2): p. 348-56.
83. Tolwani, R.J., et al., BDNF overexpression increases dendrite complexity in hippocampal dentate gyrus. Neuroscience, 2002. 114(3): p. 795-805.
84. Arancibia, S., et al., Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiol Dis, 2008. 31(3): p. 316-26.
85. Dinoff, A., et al., The Effect of Exercise Training on Resting Concentrations of Peripheral Brain-Derived Neurotrophic Factor (BDNF): A Meta-Analysis. PLOS ONE, 2016. 11(9): p. e0163037.
86. Huang, F.-Y., et al., Mindfulness Improves Emotion Regulation and Executive Control on Bereaved Individuals: An fMRI Study. Frontiers in Human Neuroscience, 2019. 12.
87. Wood, G., et al., Developmental Trajectories of Magnitude Processing and Interference Control: An fMRI Study. Cerebral Cortex, 2009. 19(11): p. 2755-2765.
88. Tang, J., et al., Imaging informational conflict: a functional magnetic resonance imaging study of numerical stroop. J Cogn Neurosci, 2006. 18(12): p. 2049-62.
89. Tempest, G.D., et al., The differential effects of prolonged exercise upon executive function and cerebral oxygenation. Brain and Cognition, 2017. 113: p. 133-141.
90. Yanagisawa, H., et al., Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. NeuroImage, 2010. 50(4): p. 1702-1710.
91. Wang, C.H., et al., Open vs. closed skill sports and the modulation of inhibitory control. PLoS One, 2013. 8(2): p. e55773.
92. Ke, L., et al., Comparison of open-skill and closed-skill exercises in improving the response inhibitory ability of the elderly: a protocol for a randomised controlled clinical trial. BMJ Open, 2021. 11(11): p. e051966.
93. Alameda, C., D. Sanabria, and L.F. Ciria, The brain in flow: A systematic review on the neural basis of the flow state. Cortex, 2022. 154: p. 348-364.
94. Nakamura, J. and M. Csikszentmihalyi, Flow theory and research, in Oxford handbook of positive psychology, 2nd ed. 2009, Oxford University Press: New York, NY, US. p. 195-206.
95. Contrepois, K., et al., Molecular Choreography of Acute Exercise. Cell, 2020. 181(5): p. 1112-1130.e16.
96. Klein, I., et al., Transient activity in the human calcarine cortex during visual-mental imagery: an event-related fMRI study. J Cogn Neurosci, 2000. 12 Suppl 2: p. 15-23.
97. de Haan, E.H.F. and A. Cowey, On the usefulness of ‘what’ and ‘where’ pathways in vision. Trends in Cognitive Sciences, 2011. 15(10): p. 460-466.
98. Tong, F., Primary visual cortex and visual awareness. Nat Rev Neurosci, 2003. 4(3): p. 219-29.
99. Northoff, G., et al., GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nature Neuroscience, 2007. 10(12): p. 1515-1517.
100. Colcombe, S.J., et al., Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci U S A, 2004. 101(9): p. 3316-21.
101. Mulser, L. and D. Moreau, Effect of acute cardiovascular exercise on cerebral blood flow: A systematic review. Brain Research, 2023. 1809: p. 148355.
102. Wagner, G., et al., Changes in fMRI activation in anterior hippocampus and motor cortex during memory retrieval after an intense exercise intervention. Biol Psychol, 2017. 124: p. 65-78.
103. Sarga, L., et al., Aerobic endurance capacity affects spatial memory and SIRT1 is a potent modulator of 8-oxoguanine repair. Neuroscience, 2013. 252: p. 326-36.
104. García-Mesa, Y., et al., Oxidative Stress Is a Central Target for Physical Exercise Neuroprotection Against Pathological Brain Aging. J Gerontol A Biol Sci Med Sci, 2016. 71(1): p. 40-9.
105. Chen, D.Y.-T., et al., Effect of Age on Working Memory Performance and Cerebral Activation after Mild Traumatic Brain Injury: A Functional MR Imaging Study. Radiology, 2016. 278(3): p. 854-862.
106. Rossetti, G.M., et al., Reversal of neurovascular coupling in the default mode network: Evidence from hypoxia. J Cereb Blood Flow Metab, 2021. 41(4): p. 805-818.
107. Pfefferbaum, A., et al., Cerebral blood flow in posterior cortical nodes of the default mode network decreases with task engagement but remains higher than in most brain regions. Cereb Cortex, 2011. 21(1): p. 233-44.
108. DuBose, L.E., et al., Association between cardiorespiratory fitness and cerebrovascular reactivity to a breath-hold stimulus in older adults: influence of aerobic exercise training. Journal of Applied Physiology, 2022. 132(6): p. 1468-1479.
109. Crossland, M.D., et al., The Effect of Age and Fixation Instability on Retinotopic Mapping of Primary Visual Cortex. Investigative Ophthalmology & Visual Science, 2008. 49(8): p. 3734-3739.
110. Liu, P., et al., Age-related differences in memory-encoding fMRI responses after accounting for decline in vascular reactivity. NeuroImage, 2013. 78: p. 415-425.
111. Kalogeraki, E., et al., Voluntary physical exercise promotes ocular dominance plasticity in adult mouse primary visual cortex. J Neurosci, 2014. 34(46): p. 15476-81.
112. Erickson, K.I., R.L. Leckie, and A.M. Weinstein, Physical activity, fitness, and gray matter volume. Neurobiol Aging, 2014. 35 Suppl 2: p. S20-8.
113. Flöel, A., et al., Physical activity and memory functions: Are neurotrophins and cerebral gray matter volume the missing link? NeuroImage, 2010. 49(3): p. 2756-2763.
114. Anderson, B.J., P.B. Eckburg, and K.I. Relucio, Alterations in the thickness of motor cortical subregions after motor-skill learning and exercise. Learn Mem, 2002. 9(1): p. 1-9.
115. Ruscheweyh, R., et al., Physical activity and memory functions: An interventional study. Neurobiology of Aging, 2011. 32(7): p. 1304-1319.
116. Erickson, K.I., et al., Physical activity predicts gray matter volume in late adulthood: the Cardiovascular Health Study. Neurology, 2010. 75(16): p. 1415-22.
117. Laird, A.R., et al., Investigating the Functional Heterogeneity of the Default Mode Network Using Coordinate-Based Meta-Analytic Modeling. The Journal of Neuroscience, 2009. 29(46): p. 14496-14505.
118. Park, D.C., et al., Age differences in default mode activity on easy and difficult spatial judgment tasks. Front Hum Neurosci, 2010. 3: p. 75.
119. Hansen, N.L., et al., Subclinical cognitive decline in middle-age is associated with reduced task-induced deactivation of the brain''s default mode network. Human Brain Mapping, 2014. 35(9): p. 4488-4498.
120. Zhang, Y., et al., Longitudinal atlas for normative human brain development and aging over the lifespan using quantitative susceptibility mapping. NeuroImage, 2018. 171: p. 176-189.
121. Peterson, E.T., et al., Distribution of brain iron accrual in adolescence: Evidence from cross-sectional and longitudinal analysis. Human Brain Mapping, 2019. 40(5): p. 1480-1495.
122. Connor, J.R. and S.A. Benkovic, Iron regulation in the brain: Histochemical, biochemical, and molecular considerations. Annals of Neurology, 1992. 32(S1): p. S51-S61.
123. Andersen, H.H., K.B. Johnsen, and T. Moos, Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration. Cellular and Molecular Life Sciences, 2014. 71(9): p. 1607-1622.
124. Connor, J.R., et al., Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. Journal of Neuroscience Research, 1990. 27(4): p. 595-611.
125. Oshiro, S., et al., Glial cells contribute more to iron and aluminum accumulation but are more resistant to oxidative stress than neuronal cells. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2000. 1502(3): p. 405-414.
126. Jung, S., et al., Fusiform gyrus volume reduction associated with impaired facial expressed emotion recognition and emotional intensity recognition in patients with schizophrenia spectrum psychosis. Psychiatry Research: Neuroimaging, 2021. 307: p. 111226.
127. Wilckens, K.A., et al., Exercise interventions preserve hippocampal volume: A meta-analysis. Hippocampus, 2021. 31(3): p. 335-347.
128. Neeper, S.A., et al., Exercise and brain neurotrophins. Nature, 1995. 373(6510): p. 109-109.
129. Niemann, C., B. Godde, and C. Voelcker-Rehage, Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults. Front Aging Neurosci, 2014. 6: p. 170.
130. Bradburn, S., J. Sarginson, and C.A. Murgatroyd, Association of Peripheral Interleukin-6 with Global Cognitive Decline in Non-demented Adults: A Meta-Analysis of Prospective Studies. Frontiers in Aging Neuroscience, 2018. 9.
131. Tian, Y., et al., Iron Metabolism in Aging and Age-Related Diseases. Int J Mol Sci, 2022. 23(7).
132. Lyle, R.M., et al., Iron status in exercising women: the effect of oral iron therapy vs increased consumption of muscle foods. Am J Clin Nutr, 1992. 56(6): p. 1049-55.
133. Mudd, A.T., et al., Early-Life Iron Deficiency Reduces Brain Iron Content and Alters Brain Tissue Composition Despite Iron Repletion: A Neuroimaging Assessment. Nutrients, 2018. 10(2): p. 135.
134. Li, X., et al., The performance of patients with cerebral microbleeds in different cognitive tests: A cross-sectional study. Front Aging Neurosci, 2023. 15: p. 1114426.
135. Liu, T., et al., Cerebral microbleeds: burden assessment by using quantitative susceptibility mapping. Radiology, 2012. 262(1): p. 269-78.
136. Fazlollahi, A., et al., Restricted Effect of Cerebral Microbleeds on Regional Magnetic Susceptibility. J Alzheimers Dis, 2020. 76(2): p. 571-577.
137. McGillivray, J.E., et al., The Effect of Exercise on Neural Activation and Cognition: A Review of Task-Based fMRI Studies. Crit Rev Biomed Eng, 2021. 49(2): p. 21-52.
138. Nocera, J., et al., Changes in Cortical Activation Patterns in Language Areas following an Aerobic Exercise Intervention in Older Adults. Neural Plast, 2017. 2017: p. 6340302.
139. Micalos, P.S., et al., Cerebral responses to innocuous somatic pressure stimulation following aerobic exercise rehabilitation in chronic pain patients: a functional magnetic resonance imaging study. Int J Gen Med, 2014. 7: p. 425-32.
140. Holzschneider, K., et al., Cardiovascular fitness modulates brain activation associated with spatial learning. Neuroimage, 2012. 59(3): p. 3003-14.
141. Davidson, D.J., R.T. Zacks, and C.C. Williams, Stroop interference, practice, and aging. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn, 2003. 10(2): p. 85-98.
142. Hartshorne, J.K. and L.T. Germine, When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span. Psychol Sci, 2015. 26(4): p. 433-43.
143. Kleerekooper, I., et al., The effect of aging on fronto-striatal reactive and proactive inhibitory control. NeuroImage, 2016. 132: p. 51-58.
144. Straub, S., et al., Suitable reference tissues for quantitative susceptibility mapping of the brain. Magn Reson Med, 2017. 78(1): p. 204-214.
145. Goldberg, R.F., C.A. Perfetti, and W. Schneider, Perceptual knowledge retrieval activates sensory brain regions. J Neurosci, 2006. 26(18): p. 4917-21.
146. Jong, M.C.d., et al., Implicit Perceptual Memory Modulates Early Visual Processing of Ambiguous Images. The Journal of Neuroscience, 2014. 34(30): p. 9970-9981.
147. St-Laurent, M., M. Moscovitch, and M.P. McAndrews, The retrieval of perceptual memory details depends on right hippocampal integrity and activation. Cortex, 2016. 84: p. 15-33.
148. Pay, R.G., Contextual organization of unitary information processes in the cortex by the thalamus and basal ganglia and the central control of attention. Int J Neurosci, 1980. 11(4): p. 249-77.
149. Liu, P., et al., Dependence of resting-state-based cerebrovascular reactivity (CVR) mapping on spatial resolution. Frontiers in Neuroimaging, 2023. 2.
150. Pinto, J., et al., Cerebrovascular Reactivity Mapping Without Gas Challenges: A Methodological Guide. Front Physiol, 2020. 11: p. 608475.
151. Yeh, M.-Y., et al., Cerebrovascular Reactivity Mapping Using Resting-State Functional MRI in Patients With Gliomas. Journal of Magnetic Resonance Imaging, 2022. 56(6): p. 1863-1871.
152. Yarkoni, T., et al., Large-scale automated synthesis of human functional neuroimaging data. Nat Methods, 2011. 8(8): p. 665-70.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92572-
dc.description.abstract全球老年人口逐年增加,老年群體罹患失智風險亦隨之上升,對於整體社經層面產生負面影響,使得健康老化顯得格外重要。為了達到健康老化之目標,體育鍛煉已被證明是一種對於提升年長者認知功能具備潛力的介入措施,可以防止大腦的神經髓鞘損壞、保持血管彈性、避免鐵沈積,從而維持認知功能。在與生活品質密切相關之認知功能中,高齡者的抑制控制能力已被證實可透過有氧運動而有所提升。然而,目前的證據顯示不同運動的持續時間對於大腦的神經可塑性影響並不一致,因此未有明確結論。另一方面,過去已有證據指出腦中的鐵沈積會降低老化大腦的認知功能,而年長者提升每日活動量可削弱鐵沈積與認知功能的關係,暗示體育活動對於清除大腦鐵沈積並提升認知功能的可能性。

為了回應上述兩項研究議題,我們對年輕成人和年長者進行了為期十二週的運動介入,使用數值Stroop任務和功能性磁振造影重複測量不同面向的抑制控制功能(促進和干擾效應)。對於大腦鐵沈積的部分,則使用定量磁化率影像量測不同年齡層的大腦鐵沈積數值,並觀察其中的年長者經過十二週運動介入之鐵沈積數值變化與認知行為表現的關係。此外,除了上述影像資訊,將使用功能性磁振造影於高碳酸血症期間獲得血管反應力,紀錄血管資訊。

結果顯示,經過 12 週的運動後,抑制控制的行為表現提升,可能源自於額頂葉網路和預設模式網路效應。在年輕人中,六週的運動增加了右上內側額葉回的激活,與干擾效應中的RT 減少相關,但在第二個運動階段(六至十二週),左上內側額葉回的活化減少腦回與促進效應的反應時間減少相關。 在老年人中,前六週的介入導致額下回、頂下回和預設模式網路區域的活化減少,這與干擾效應的反應時間減少有關。 儘管如此,年長者在第二個介入階段,只有視覺區域表現出活動增加,這與幹擾中 RT 的減少有關。而在鐵沈積的結果中,杏仁核, 前、中扣帶迴, 海馬迴, 蒼白球, 海馬旁迴, 殼核的鐵沈積數值受到年齡增長而上升,卻僅發現海馬迴的鐵沈積於運動六週後顯著下降,而其鐵沈積的下降反映情緒識別任務的準確率提升。另外,血管反應力沒有年齡、運動之顯著差異。

除了運動介入的兩個階段間存在獨特的大腦可塑性外,本研究還表明老年組在運動幹預的前六週內獲得了更多的認知益處; 然而,年輕組的認知能力介入六週後才得到更多改善。這些發現不僅證實了有氧運動對抑制功能與老化鐵沈積的益處,而且還暗示了年齡與運動對大腦可塑性的促進和干擾的交互作用。
zh_TW
dc.description.abstractThe global aging population is increasing yearly, and if physical and cognitive functions decline, the growing elderly population may have negative implications for society. This underscores the importance of healthy aging. With aging, physiological factors such as neural demyelination, decreased vascular elasticity, and iron deposition contribute to age-related decline in cognitive function. Physical exercise has been demonstrated as a potential intervention to enhance cognitive function in older adults.

Specifically, executive functions crucial for the quality of life in older people, such as inhibitory functions, may benefit from aerobic exercise. Despite neuroimaging evidence indicating enhanced inhibitory functions after aerobic exercise, the neural plasticity patterns associated with different durations of exercise remain inconsistent. Moreover, iron deposition has been linked to cognitive decline in the aging brain, and increased daily physical activity in older adults may mitigate the relationship between iron deposition and cognitive function. This suggests that physical exercise may clear brain iron deposition and enhance cognitive function. Therefore, we conducted a 12-week exercise intervention in young and elderly adults, assessing inhibitory functions using the Numerical Stroop task and functional magnetic resonance imaging (fMRI) to measure different aspects (facilitation and interference effects) of inhibitory function.

For brain iron deposition, Quantitative Susceptibility Mapping (QSM) was used to quantify iron deposition values in different age groups. Mainly, the relationship between changes in iron deposition values after 12 weeks of exercise intervention and cognitive performance was observed in older people. Additionally, fMRI was employed to obtain vascular reactivity during hypercapnia, recording vascular information.

Results showed that performance enhanced after 12 weeks of exercise due to effects on the frontoparietal and default mode network. In young adults, the first six weeks of exercise, increased activation in the right superior medial frontal gyrus, correlated with a reduction in interference-related RT. However, in the second intervention stage (weeks six to twelve), decreased activation in the left superior medial frontal gyrus and visual areas was positively correlated with reduced RT in facilitation. In older adults, the initial six weeks of intervention led to reduced activation in regions of the inferior frontal gyrus, inferior parietal gyrus, and default mode network, correlated with reduced RT in interference. Nevertheless, in the second intervention stage, only visual areas exhibited increased activity in older adults, related to reduced RT in interference.
In the results of iron deposition, the susceptibility increased with age in the amygdala, anterior cingulate, middle cingulate, hippocampus, pallidum, parahippocampal, and putamen. However, a significant decrease in hippocampal iron deposition was observed after six weeks of exercise, reflecting an improvement in the accuracy of the Emotion Recognition Task. Furthermore, there were no significant differences in cerebrovascular reactivity based on age or exercise.

Beyond the unique brain plasticity observed between the two stages of exercise intervention, this study indicates that the elderly group obtained more cognitive benefits in the initial six weeks of exercise intervention; however, the cognitive ability of the young group improved after six weeks of intervention. These findings confirm the benefits of aerobic exercise for inhibitory functions and aging-related iron deposition and suggest the interactive effects of age and exercise on brain plasticity.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-04-22T16:13:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-04-22T16:13:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iv
Abstract vi
Contents ix
Figure list xi
Table list xii
Appendix xiii
Chapter 1. Introduction 1
Chapter 2. Literature Review 4
2.1 Inhibitory control function 4
2.1.1 Aging and the advantage of physical exercise 4
2.1.2 Neuroimaging of aging and physical exercise 5
2.1.3 Neuroplastic Changes Show Variability Across Exercise Intervention Duration 6
2.2 Iron deposition 10
2.2.1 Iron deposition in the aging process 10
2.2.2 Quantitative susceptibility mapping (QSM) 11
2.2.3 Benefits of the exercise intervention on iron deposition 12
Chapter 3. Materials and Methods 14
3.1 Participants 14
3.1.1 Inhibitory control 14
3.1.2 Iron deposition 16
3.2 Exercise intervention 18
3.3 MRI Data Acquisition 19
3.4 Functional MRI tasks 20
3.4.1 Numerical Stroop task 20
3.4.2 Breath task 21
3.5 Preprocessing and image analysis 22
3.5.1 fMRI 22
3.5.2 QSM 23
3.5.3 CVR 23
3.6 Cognitive Test Acquisition 24
3.7 Statistical analysis 32
3.7.1 Inhibitory control 32
3.7.2 Iron deposition 33
Chapter 4. Results 35
4.1 Inhibitory control 35
4.1.1 The effects of exercise intervention on cognitive performance 35
4.1.2 The effects of exercise intervention on the Young and the Old brain 39
4.1.3 The association between brain activation and cognitive performance 44
4.2 Iron deposition 46
4.2.1 The aging effect on the amount of change in susceptibility 46
4.2.2 The exercise effect on the susceptibility of the aging brain through 12-week 47
4.2.3 Correlation between changes in susceptibility and variation in cognitive factors during exercise 49
Chapter 5. Discussion 51
5.1 Inhibitory control 51
5.1.1 Review of Key Findings 51
5.1.2 The impact of exercise intervention on facilitation and interference processes 53
5.1.3 The alterations of neuroimaging supporting cognitive improvement in both younger and older groups 56
5.1.4 Negative activations in DMN after exercise intervention 59
5.2 Iron deposition 59
5.2.1 Review of Key Findings 59
5.2.2 Changes in brain iron deposition with age 60
5.2.3 The reduction of iron deposits for cognition support in the aging brain 61
5.3 Limitations and Future work 64
Chapter 6. Conclusions 69
Appendix 71
Reference 83
-
dc.language.isoen-
dc.title十二週有氧運動對於不同年齡群之大腦抑制控制與鐵沈積之神經影像研究zh_TW
dc.titleA cross-age MRI Study of the Effects of Twelve-Week Aerobic Exercise on Inhibitory Control and Iron Deposition in the Brainen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.coadvisor吳昌衛zh_TW
dc.contributor.coadvisorChangwei W. Wuen
dc.contributor.oralexamcommittee季力康;廖漢文;張玉玲;林慶波;黃植懋;黃從仁zh_TW
dc.contributor.oralexamcommitteeLi-Kang Chi;Hon-Man Liu;Yu-Ling Chang;Lin Ching-Po;Chih-Mao Huang;Tsung-Ren Huangen
dc.subject.keyword老化,功能性磁振造影,磁化率定量影像,運動介入,抑制控制,鐵沈積,zh_TW
dc.subject.keywordAging,functional Magnetic Resonance Imaging,Quantitative Susceptibility Mapping,Exercise intervention,Inhibitory control,Iron deposition,en
dc.relation.page89-
dc.identifier.doi10.6342/NTU202400787-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-03-22-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
dc.date.embargo-lift2029-03-18-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
7.46 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved