請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92564完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周中哲 | zh_TW |
| dc.contributor.advisor | Chung-Che Chou | en |
| dc.contributor.author | 趙品鈞 | zh_TW |
| dc.contributor.author | Pin-Chun Chao | en |
| dc.date.accessioned | 2024-04-17T16:12:51Z | - |
| dc.date.available | 2025-06-30 | - |
| dc.date.copyright | 2024-04-17 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-04-15 | - |
| dc.identifier.citation | 1. ACI 318-14 (2014). “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14).” American Concrete Institute, Farmington Hills, Mich.
2. ACI 318-19 (2019). “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19).” American Concrete Institute, Farmington Hills, Mich. 3. AISC (2010), Specification for Structural Steel Buildings, ANSI/AISC 360-10,American Institute of Steel Construction, Chicago, Illinois. 4. AISC (2016), Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-16, American Institute of Steel Construction, Chicago, Illinois. 5. AISC (2016), Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, including Supplement No.1, ANSI/AISC 358-16,American Institute of Steel Construction, Chicago, Illinois. 6. AISC (2016), Specification for Structural Steel Buildings, ANSI/AISC 360-16,American Institute of Steel Construction, Chicago, Illinois. 7. AWS (2018), Structural Welding Code-Steel Reinfocing Bars. D1.4/D1.4M:2018 8. AWS (2020), Structural Welding Code-Steel. D1.1/D1.1M:2020 9. Chou, C. C., and Uang, C. M. (2002). Cyclic performance of a type of steel beamto steel-encased reinforced concrete column moment connection, Journal of Constructional Steel Research, Volume 58, pp. 637-663. 10. Gautham, A. and Sahoo, D. R. (2022). Performance of SRC Column-RC BeamJoints Under Combined Axial and Cyclic Lateral Loading. Engineering Structures, 260, 114218. 11. Ju, Y. K., Chun, S. C., & Yoon, S. W. (2005). Assessment of composite column and RC beam joints. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 158(3), 201-215. 12. Saravanan, M., Goswami, R., Palani, G.S. (2021). Energy dissipative beam-column connection for earthquake resistant moment frames, Journal of Constructional Steel Research,Volume 176, 2021,106428. 13. Park, R. (1989). Evaluation of ductility of structures and structural assemblages from laboratory testing. Bulletin of the New Zealand Society for Earthquake Engineering, 22(3), 155–166. 14. Rizvia, S.A., Alib, W. (2019). Welding defects, Causes and their Remedies: A Review. Teknomekanik 2019;2:39–47. https://doi.org/10.24036/tm.v2i2.3272. 15. Feng, S., Guan, D., Ni, L., Lin, Y., Liu, Z., Guo, Z. and Li, G. (2022). Experimental Study on Seismic Behavior of Joints Connecting Precast H-Steel Reinforced Concrete Beams and Concrete-Filled Steel Tube Columns. Journal of Building Engineering, 45 (2022) 103444. 16. Yan, C.W. (2015). A study of Development and Construction for Steel Reinforce Concrete in Taiwan. Master Thesis. Advisor: Chen, Chun-Sen., Chang, Ja-Shian. Department of Civil Engineering in National Cheng Kung University. 17. Li, Z., Liu, Y., Ma, H., Wang, Q., Tang, Z. (2019). Seismic Performance of Full-Scale Joints Composed by Concrete-Filled Steel Tube Column and Reinforced Concrete Beam with Steel Plate-Stud Connections. Advances in Civil Engineering, vol. 2019, Article ID 5476909, 17 pages. 18. 翁正強、陳誠直 (2001),「鋼骨鋼筋混凝土構造設計規範之檢討與梁柱接頭試驗研究」,內政部建築研究所計劃成果報告,民國九十年十二月,台北。 19. 陳正誠、陳生金 (2002),「鋼骨鋼筋混凝土建築結構施工實務手冊之研究」,內政部建築研究所計畫成果報告,民國九十一年十二月,台北。 20. 中華民國結構工程學會 (2005),「鋼結構設計手冊極限設計法」。 21. 內政部營建署 (2010),「鋼結構極限設計法規範及解說」,2010年修正。 22. 內政部營建署 (2011),「鋼骨鋼筋混凝土構造設計規範與解說」。 23. 內政部營建署 (2011),「建築物耐震設計規範及解說」,2022年修正。 24. 內政部營建署 (2011),「混凝土結構設計規範」,2021年修正。 25. 內政部營建署 (2011),「建築物混凝土結構設計規範」,2023年修正。 26. 吳松城 (2015)「高強度混凝土充填箱型鋼柱於大軸力下之耐震行為」,碩士論文,指導教授:周中哲,國立臺灣大學土木工程學系。 27. 李宏仁、陳正誠、陳建中、張家榮 (2017),「建築工程鋼筋機械式續接性能基準及驗證研究」,內政部建築研究所委託研究報告,中華民國106年12月。 28. 陳正平 (2017),「談SRC結構不同材質構材間轉換續接之力學行為」,技師報第1061期,台灣省土木技師公會。 29. 中華民國鋼結構協會 (2019),「鋼結構極限設計法設計手冊 (TISC-020-2019)」。 30. 李台光 (2020) ,「鋼筋混凝土梁主筋與鋼柱續接設計之探討」,內政部建築研究所自行研究報告,中華民國109年12月。 31. 周中哲、劉郁芳、周德光、黃司睿、陳蓮安 (2021),「鋼骨鋼筋混凝土構造設計規範柱及接合設計之修正研擬」,內政部建築研究所期末報告。 32. 俞孟廷 (2021)「鋼筋混凝土中短柱剪壓破壞之實驗研究」,碩士論文,指導教授:黃世建,國立臺灣大學土木工程學系。 33. 周中哲、劉郁芳、周德光、趙品鈞 (2022),「包覆填充型鋼骨鋼筋混凝土柱與梁主筋以續接器接合之接頭耐震試驗」,內政部建築研究所委託研究報告,中華民國111年12月。 34. 沈厚寬 (2022) 「實尺寸一層樓子構架受高軸力以及地震側力下之鋼柱耐震試驗」,碩士論文,指導教授:周中哲,國立臺灣大學土木工程學系。 35. 周中哲、劉郁芳、莊勝智、陳奕勳 (2023),「鋼骨鋼筋混凝土構造柱內連續板經濟化參數之試驗研究」,內政部建築研究所委託研究報告,中華民國112年12月。 36. 陳建明 (2023) 「可變勁度之雙核心自復位斜撐與夾型挫屈束制斜撐於一層樓子構架耐震試驗」,碩士論文,指導教授:周中哲,國立臺灣大學土木工程學系。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92564 | - |
| dc.description.abstract | 本研究探討鋼骨鋼筋混凝土柱與鋼骨鋼筋混凝土梁與鋼骨鋼筋混凝土梁及鋼筋混凝土梁接頭之耐震行為,主要試驗參數包括寬厚比、斷面配置以及接頭細部設計,共四組試體。試驗方法為施加側力對試體進行位移控制之反復載重試驗,試體製作使用SN 490B系列之鋼材、混凝土抗壓強度為35 MPa及SD420W系列之鋼筋。具10 cm厚混凝土之包覆填充型箱型鋼柱其鋼骨斷面為Box 495x495x19 mm,寬厚比為24.1,滿足美國AISC對於高韌性構件的斷面限制(λhd = 33.6),也滿足台灣規範對於塑性斷面設計之限制(λpd = 43.1);試體一為鋼骨鋼筋混凝土梁,其鋼梁斷面滿足台灣規範對於塑性斷面設計之限制;試體二為鋼筋混凝土梁,內部設計一30 cm長之剪力板作為剪力傳遞機制;試體三為鋼筋混凝土梁,內部設計一30 cm長之鋼短梁作為彎矩及剪力傳遞機制;為探討鋼短梁長度對耐震行為之影響,設計試體四為鋼筋混凝土梁,內部接110 cm長之鋼短梁作為彎矩及剪力傳遞機制。
試驗結果顯示,試體一、試體三及試體四在層間側位移角0.04 rad之前,試體皆保持完整無明顯破壞,試體二於層間側位移角0.02 rad即因續接器銲道破壞造成試驗終止。試體一之鋼梁上翼板於層間側位移角0.04 rad負迴圈第一圈時斷裂,顯示SRC梁更應該採用RBS韌性削切以達到接頭之韌性需求。試體二藉由剪力板傳遞剪力之設計未達預期效果,使續接器於反復載重過程中同時受剪力及拉力,且銲道有瑕疵的情況下造成柱面與續接器銲道破壞。試體三於試驗過程中無明顯破壞,滿足AISC 341-16於層間側位移角0.04 rad第一迴圈至少滿足0.8Mp(Mn)之接頭耐震規定,但試體於轉換斷面有明顯相對滑移產生。試體四亦滿足前述AISC規範規定,但轉換斷面於層間側位移角0.04 rad第二迴圈時有更嚴重之梁相對滑移以及混凝土剝落。顯示鋼短梁是比剪力板還要好的傳力機制,然而SRC與RC構材間之轉換續接有待更好的設計及改良。 | zh_TW |
| dc.description.abstract | This study investigates the seismic behavior of steel reinforced concrete columns between steel reinforced concrete beams and reinforced concrete beams.The main test parameters include width-to-thickness ratio, section configuration, and joint detailing, with a total of four groups of specimens. The experimental method involves applying lateral forces to the specimens and subjecting them to displacement-controlled cyclic loading tests. The specimens are fabricated using steel materials from the SN 490B series, concrete with a compressive strength of 35 MPa, and steel reinforcement from the SD420W series. The steel section of the concrete-filled box steel column, with a 10 cm thick concrete enclosure, has a cross-sectional shape of Box 495x495x19 mm. Its width-to-thickness ratio is 24.1, which satisfies the section restrictions for high ductility members according to the American Institute of Steel Construction (AISC) with a limit of λhd = 33.6. Additionally, it meets the requirements for plastic design stipulated by Taiwanese regulations with a limit of λpd = 43.1. Specimen 1 is a steel reinforced concrete beam, and its steel beam section complies with the plastic design requirements stipulated by Taiwanese regulations. Specimen 2 is a reinforced concrete beam with a 30 cm long shear plate for shear transfer mechanism. Specimen 3 is a reinforced concrete beam with a 30 cm long steel short beam for both bending and shear transfer mechanism.To investigate the effect of the length of the steel short beam on seismic behavior, a specimen is designed with a 110 cm long steel short beam for both bending and shear transfer mechanism.
The test results indicate that specimens 1, 3, and 4 maintained integrity without significant damage until a drift angle of 0.04 radians. Specimen 2 was terminated due to weld failure of the couplers at a drift angle of 0.02 radians. The failure of the upper flange of the steel beam in specimen 1 at the first cycle of the negative loop at 0.04 rad drift indicates the need for a more ductile joint design for SRC beams, such as the reduced beam section (RBS) method. Specimen 2 failed to achieve the expected effect of shear transfer through the shear plate design, leading to simultaneous shear and tension on the couplers during cyclic loading, exacerbating the weld defects and resulting in weld failure between the column face and couplers. Specimen 3 showed no significant damage during testing, satisfying the seismic requirements of AISC 341-16 at a drift angle of 0.04 radians for the first loop with at least 0.8Mp (Mn) capacity. However, significant relative slip occurred at the transformed section. Specimen 4 also met the seismic requirements of AISC, but exhibited more severe relative slip and concrete spalling at the transformed section during the second loop at a 0.04 rad drift. This indicates that the steel short beam is a better transfer mechanism than the shear plate, but there is room for improvement in the design and detailing of the transition joints between SRC and RC members. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-04-17T16:12:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-04-17T16:12:51Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii ABSTRACT iii 目次 v 圖次 ix 表次 xiii 照片次 xiv 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 4 1.4 研究方法 4 1.5 論文架構 4 第二章 鋼骨鋼筋混凝土梁柱接頭試體設計與實驗規劃 6 2.1 試體斷面規劃 6 2.1.1 試體一 6 2.1.2 試體二 7 2.1.3 試體三 7 2.1.4 試體四 7 2.2 實尺寸子構架設計 8 2.2.1 檢核柱構件強度 8 2.2.2 檢核梁構件強度 10 2.2.3 檢核強柱弱梁比 11 2.2.4 檢核接頭區剪力強度 12 2.2.5 檢核梁剪力強度 13 2.2.6 檢核續接器銲道強度 15 2.2.7 試體細部設計 17 2.3 試體製作與安裝 18 2.3.1 鋼骨部分施作 18 2.3.2 鋼筋混凝土部分施作 19 2.3.3 試體定位與安裝 20 2.4 實驗測試系統 20 2.4.1 反力牆與強力地板系統 20 2.4.2 軸力系統 21 2.4.3 側撐系統 21 2.4.4 資料擷取系統 21 2.5 量測規劃 21 2.5.1 光學空間座標監測系統規劃 21 2.5.2 應變計配置 22 2.5.3 位移計配置 22 2.6 實驗控制與載重歷時 22 2.7 材料性質試驗 23 2.7.1 鋼板拉伸試驗 23 2.7.2 混凝土抗壓試驗 23 2.7.3 鋼筋抗拉試驗 24 第三章 實驗結果分析與討論 25 3.1 實驗觀察 25 3.1.1 試體一 25 3.1.2 試體二 27 3.1.3 試體三 28 3.1.4 試體四 30 3.2 各試體反應分析與比較 32 3.2.1 試驗與計算強度比較 32 3.2.2 遲滯迴圈與背骨曲線分析 32 3.2.3 試體割線勁度比較 36 3.3 桿件內力計算 37 3.3.1 主筋應變量分析 37 3.3.2 鋼翼板撓曲強度計算 40 3.3.3 鋼腹板剪力強度計算 42 3.4 試體破壞模式分析與討論 45 3.5 小結 48 第四章 不同接合形式之梁試體耐震行為比較 50 4.1 前言 50 4.2 不同接合形式對梁試體反應影響 50 4.2.1 遲滯迴圈 50 4.2.2 韌性比 50 4.2.3 消散能量 51 4.2.4 接頭彎矩貢獻 52 4.2.5 剪力傳遞貢獻 53 4.3 試體間耐震行為比較 53 4.3.1 試體一與試體四 54 4.3.2 試體二與試體三 55 4.3.3 試體三與試體四 56 4.4 改良與設計 58 第五章 結論與建議 60 5.1 結論 60 5.2 建議 61 參考文獻 63 附錄A 鋼構試體設計圖 143 附錄B 鋼構試體製造施工圖 149 附錄C 細部設計計算書 156 附錄D 改良試體設計算例 162 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 梁柱接頭 | zh_TW |
| dc.subject | 鋼短梁 | zh_TW |
| dc.subject | 鋼骨鋼筋混凝土 | zh_TW |
| dc.subject | 耐震設計 | zh_TW |
| dc.subject | 剪力板 | zh_TW |
| dc.subject | 轉換續接 | zh_TW |
| dc.subject | Steel reinforced concrete | en |
| dc.subject | Beam-column connection | en |
| dc.subject | Shear plate | en |
| dc.subject | Transition joint | en |
| dc.subject | Steel short beam | en |
| dc.subject | Seismic design | en |
| dc.title | 內灌混凝土鋼柱與鋼骨鋼筋混凝土梁或鋼筋混凝土梁之子構架耐震行為 | zh_TW |
| dc.title | Seismic Behavior of Subassemblages with a Concrete Filled Steel Box Column and Steel-Reinforced Concrete Beams or Reinforced Concrete Beams | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡克銓;黃世建;劉郁芳 | zh_TW |
| dc.contributor.oralexamcommittee | Keh-Chyuan Tsai;Shyh-Jiann Hwang;Yu-Fang Liu | en |
| dc.subject.keyword | 鋼骨鋼筋混凝土,梁柱接頭,剪力板,轉換續接,鋼短梁,耐震設計, | zh_TW |
| dc.subject.keyword | Steel reinforced concrete,Beam-column connection,Shear plate,Transition joint,Steel short beam,Seismic design, | en |
| dc.relation.page | 163 | - |
| dc.identifier.doi | 10.6342/NTU202400843 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-04-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-06-30 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 25.35 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
