請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92558
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡坤諭 | zh_TW |
dc.contributor.advisor | Kuen-Yu Tsai | en |
dc.contributor.author | 陳詠平 | zh_TW |
dc.contributor.author | Yung-Ping Chen | en |
dc.date.accessioned | 2024-04-12T16:14:35Z | - |
dc.date.available | 2024-04-13 | - |
dc.date.copyright | 2024-04-12 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-04-02 | - |
dc.identifier.citation | Brian L. Stevens, Frank L. Lewis, and Eric N. Johnson. “Aircraft Control and Simulation, Third Edition”, John Wiley & Sons, 1992, ISBN: 978-1-118-87098-3
MathWorks, Matlab, Simulink, 3DOF Wind Axes, Equations of Motion, Available: https://www.mathworks.com/help/aeroblks/3dofwindaxes.html MathWorks, Matlab, Simulink, NASA HL-20 Lifting Body Airframe, Available: https://www.mathworks.com/help/aeroblks/nasa-hl-20-lifting-body-airframe.html NASA, Vortex-lattice utilization, NASA SP-405, NASA-Langley, Washington, 1976. MathWorks, Matlab, Simulink, Aerospace Toolbox Documentation, Available: https://www.mathworks.com/help/aeroblks Hassan K. Khalil, “Nonlinear Systems, Third Edition”, Pearson Education, 2001, ISBN: 978-0130673893 Michael V. Cook, “Flight Dynamics Principles, Third Edition”, Elsevier, 2012, ISBN: 9780080982762 Michael V. Cook, “Flight Dynamics Principles, Second edition”, Elsevier, 2007, ISBN: 978-0-7506-6927-6 MathWorks, Matlab, Simulink, Model Linearizer Documentation, Available: https://www.mathworks.com/help/slcontrol/ug/modellinearizer-app.html Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini, “Feedback Control of Dynamic Systems, Eighth Edition”, Pearson Education, 2019, ISBN: 978-0-13-468571-7 John Hodgkinson, “Aircraft Handling Qualities”, Blackwell Science, 1999, ISBN: 9780632038169 George Emery Cooper, Robert J. Harper, NASA, “The use of pilot ratings in evaluation of aircraft handling qualities”, May, 1969. G. F. Franklin, J. D. Powell, and M. L. Workman, “Digital Control of Dynamic Systems, Third Edition”, Pearson Education, 1998, ISBN: 978-0-9791226-2-0 U.S. Military, “Military Specification for the Flying Qualities of Piloted Airplanes, MIL-F-8785C”, 1980 Andrew Coates, “Jane’s world sailplanes and motor gliders”, Ziff-Davis Publishing Company, London, 1978, ISBN: 978-0871650214 Flow5, Documentation and Resources, Project files used in the tutorials, Fuse_test.fl5, Available: https://flow5.tech/index.php/flow5/sample-page/documentation-and-resources/ B. Yuksek, A. Vuruskan, U. Ozdemir, M. A. Yukselen, G. Inalhan, “Transition Flight Modeling of a Fixed-Wing VTOL UAV”, Faculty of Aeronautics and Astronautics, Istanbul Technical University, Springer, Journal of Intelligent & Robotic Systems, 2016 Haowei Gu, Ximin Lyu, Zexiang Li, Shaojie Shen, and Fu Zhang, “Development and Experimental Verification of a Hybrid Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicle (UAV)”, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, IEEE, ICUAS, 2017, Miami, FL, USA Wei Zhao, Craig Underwood, “Robust transition control of a Martian coaxial tiltrotor aerobot”, Acta Astronautica, Surrey Space Centre, University of Surrey, Elsevier, 28 February, 2014, UK Francesco Sabatino, “Quadrotor control: modeling, nonlinear control design and simulation”, KTH Electrical Engineering, Stockholm, Sweden, June 2015 Samir Bouabdallah, Roland Siegwart, “Full Control of a Quadrotor”, Swiss Federal Institute of Technology, ETHZ, IEEE/RSJ International Conference on Intelligent Robots and Systems, DOI: 10.1109/IROS.2007.4399042, 2007 A. Das, K. Subbarao, and F. Lewis, “Dynamic inversion with zero-dynamics stabilisation for quadrotor control, Control Theory & Applications”, IET, 3(3):303–314, 2009. Aslihan Vuruskan, Burak Yuksek, Ugur Ozdemir, Adil Yukselen, Gokhan Inalhan, “Dynamic Modeling of a Fixed-Wing VTOL UAV”, International Conference on Unmanned Aircraft Systems (ICUAS), May 27-30, 2014. Orlando, FL, USA. Beaufort Wind Scale A. Deperrois, Flow5, “Triangle-based Galerkin panel methods”, Rev. 1.0, November 2019 Michael J. Carley, “Analytical Formulae for Potential Integrals on Triangles”, Journal of Applied Mechanics, DOI: 10.1115/1.4007853, 2013 S. Nintcheu Fata, “Explicit expressions for 3D boundary integrals in potential theory”, Computer Science and Mathematics Division, Oak Ridge National Laboratory, Elsevier, Journal of Computational and Applied Mathematics, 2009 Flow5, “Type 5 Analysis Documentation, beta polars”, Available: https://flow5.tech/docs/flow5_doc/Analysis/T5_polars.html MathWorks, Matlab, Simulink, Linearize, Simulink Control Design, Linearization, Available: https://ww2.mathworks.cn/help/slcontrol/ug/linearize.html Sih-Shian Chiou, “VTOL BWB UAV Preliminary Design and Control of Low Speed Transition Flight”, NTU, Electrical Engineering, Taiwan, February 2022 Mordecai Avriel, “Nonlinear Programming: Analysis and Methods”, Dover Publishing, 2003, ISBN: 0-486-43227-0 Abner Asignacion, Jr, Satoshi Suzuki, Ryusuke Noda, Toshiyuki Nakata, and Hao Liu, “Frequency-Based Wind Gust Estimation for Quadrotors Using a Nonlinear Disturbance Observer”, IEEE, Robotics and Automation Letters, VOL. 7, NO. 4, October 2022 S. Watkins, M. Thompson, B. Loxton, and M. Abdulrahim, “On low altitude flight through the atmospheric boundary layer”, Sage Journals, International Journal of Micro Air Vehicles, vol. 2, no. 2, pp. 55–68, Jun, 2010 Jo˜ao P. Hespanha, “Lecture notes on LQR/LQG controller design”, University of Zielona Góra, February 27, 2005 K-Tri Tech. Inc, KTM-Q9109T datasheet, Available: https://www/%E5%B7%9D%E7%8F%A9%E7%A7%91%E6%8A%80%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8/services-products/KTM-Q9109T MAD motor, MAD X5008 G-CCW datasheet, MAD components, Available: https://www.madmotor.cn/?page_id=49092 John F. Guilmartin, “Unmanned Aerial Vehicle”, Encyclopedia Britannica, Inc. NASA, Unmanned Aerial Vehicles, Ikhana Predator B, Available: https://www.nasa.gov/image-article/ikhana-nasa-predator-b-unmanned-aircraft/ MathWorks, Matlab, Quadrotor Figure, Available: https://www.mathworks.com/help/uav/ref/quadrotor.html Zheng Ma, Song Ming Jiao, “Research on the attitude control of quad-rotor UAV based on active disturbance rejection control”, IEEE, International Conference on Control Science and Systems Engineering (ICCSSE), Department of Automation North China Electric Power University, Baoding, China, 2017 Suhail Ahmad Suhail, M. A. Bazaz, Shoeb Hussain, “Altitude and Attitude Control of a Quadcopter Using Linear Active Disturbance Rejection Control”, IEEE International Conference on Computing, Power and Communication Technologies (GUCON), Galgotias University, Greater Noida, UP, India, 2019 Li Ding, Qing He, Chengjun Wang, Rongzhi Qi, “Disturbance Rejection Attitude Control for a Quadrotor: Theory and Experiment”, Hindawi, International Journal of Aerospace Engineering, 2021 Ferit ÇAKICI, M. Kemal LEBLEBİCİOĞLU, “Control System Design of a Vertical Take-off and Landing Fixed-Wing UAV”, Electrical and Electronics Engineering Department, Middle East Technical University, Ankara Turkey, Elsevier, IFAC, 2016 Guillaume J.J. Ducard, Mike Allenspach, “Review of designs and flight control techniques of hybrid and convertible VTOL UAVs”, Elsevier, Aerospace Science and Technology, 2021 Yaoming Zhoua, Haoran Zhaoa, Yaolong Liu, “An evaluative review of the VTOL technologies for unmanned and manned aerial vehicles”, Elsevier, Computer Communications Journal, 2020 Adnan S. Saeed, Ahmad Bani Younes, Shafiqul Islam, Jorge Dias, Lakmal Seneviratne, Guowei Cai, “A Review on the Platform Design, Dynamic Modeling and Control of Hybrid UAVs”, Khalifa University of Science, Technology and Research, Abu Dhabi, UAE, IEEE, International Conference on Unmanned Aircraft Systems (ICUAS), 2015 Jianjian Liang, Qing Fei, Bo Wang, Qingbo Geng, “Tailsitter VTOL Flying Wing Aircraft Attitude Control”, School of Automation, Beijing Institute of Technology Beijing, China, IEEE, Youth Academic Annual Conference of Chinese Association of Automation (YAC), 2016 Zhong Liu, Didier Theilliol, Liying Yang, Yuqing He, Jianda Han, “Transition Control of Tilt Rotor Unmanned Aerial Vehicle Based on Multi-Model Adaptive Method”, State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, IEEE, International Conference on Unmanned Aircraft Systems (ICUAS), 2017 Duc Anh Ta, Isabelle Fantoni, Rogelio Lozano, “Modeling and Control of a Tilt tri-rotor Airplane”, Univ. de Tech. de Compiègne, France, IEEE, American Control Conference (ACC), 2012 S. Verling, J. Zilly, “Modeling and control of a VTOL glider”, Swiss Federal Institute of Technology, Autonomous Systems Lab, ETH Zürich, 2013 Ahmad Ansari, Ningyuan Zhang, Dennis S. Bernstein, “Retrospective Cost Adaptive PID Control of Quadcopter/Fixed-Wing Mode Transition in a VTOL Aircraft”, Aerospace Engineering Department, University of Michigan, Aerospace Research Center, AIAA Guidance, Navigation, and Control Conference, 2018 Akshay Mathur, M. Atkins, “Design, Modeling and Hybrid Control of a QuadPlane”, University of Michigan, Ann Arbor, Aerospace Research Center, Conference: AIAA Scitech 2021 Forum, 2021 A. Misra, S. Jayachandran, S. Kenche, A. Katoch, A. Suresh, E. Gundabattini, “A Review on Vertical Take-Off and Landing (VTOL) Tilt-Rotor and Tilt Wing Unmanned Aerial Vehicles (UAVs)”, School of Mechanical Engineering, Vellore Institute of Technology (VIT), India, Hindawi, Journal of Engineering, 2022 Simon Wilks, Roman Bapst, Andreas Antener, Sander Smeets, PX4 standard VTOL transition algorithm, Firmware Version: v.1.14.0, PX4 Development Team, Available:https://github.com/PX4/PX4-Autopilot/blob/main/src/modules/vtol_att_control/standard.cpp H.-G. Giesseler, M. Kopf, P. Varutti, T. Faulwasser, R. Findeisen, “Model Predictive Control for Gust Load Alleviation”, IFAC, Nonlinear Model Predictive Control Conference, International Federation of Automatic Control, Noordwijkerhout, 2012 Xilin Yang, Luis Mejias, Timothy Molloy, “Nonlinear H∞ Control of UAVs for Collision Avoidance in Gusty Environments”, Springer, Journal of Intelligent & Robotic Systems, 2013 Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, “Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, First Edition”, Prentice Hall, 1997, ISBN: 978-0132610667 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92558 | - |
dc.description.abstract | 近年來無人機產業發展十分蓬勃,而發展方向主要分為多旋翼機以及定翼機,前者的優點為可執行垂直起降以及定點懸停 ; 缺點為低航程距離與持續飛行時間,後者的優點為適合長距離與長時間飛行 ; 缺點則為需要起降跑道。為了彌補多旋翼機以及定翼機彼此的缺點並結合兩者的優點,近年有許多定旋翼複合構型之開發出現,而此構型之無人機也將成為未來商業與軍事應用趨勢。
本研究主要著重於發展新型的定旋翼複合構型無人機之轉換控制策略。首先,透過現有的固定翼機構型進行空氣動力學模擬。並在將固定翼機與四旋翼整合後,建立了定旋翼複合構型無人機的完整非線性六自由度動態模擬模型。 接著,本研究進一步設計了一種名為「動態飽和」的新型控制策略,以完成垂直起飛、飛行模式轉換和高速巡航等任務,並在隨後將此策略的性能與其他應用於相同定旋翼複合構型的傳統策略進行比較。同時為了增強無人機的抗風性,本文在後續章節根據傳統四旋翼機的構型進行了陣風干擾估測與消除的技術研發,以利未來將此抗風技術擴展至定旋翼複合構型。 | zh_TW |
dc.description.abstract | In recent years, the unmanned aerial vehicle (UAV) industry has experienced significant growth. And the development primarily divided into multirotor and fixed-wing aircraft. Multirotors offer advantages such as vertical takeoff and landing (VTOL) capability and hovering at a fixed point, but they suffer from limited flight range and endurance. On the other hand, fixed-wing aircraft are suitable for long-distance and long-duration flights but require runways for takeoff and landing. To overcome the disadvantages of multirotors and fixed-wing aircraft and combine the advantages of both, there has been a surge in the research of hybrid configurations known as fixed-wing VTOL UAVs. These UAVs are expected to play a crucial role in future commercial and military applications.
This study mainly focuses on the development of new transition control strategy for fixed-wing VTOL UAVs. It begins by performing aerodynamic simulations based on existing fixed-wing aircraft configurations. After integrating the fixed-wing aircraft with a quadrotor, a complete nonlinear six-degree-of-freedom dynamic simulation model of the fixed-wing VTOL UAV is established. The research then proceeds to design a new control strategy called “Dynamic Saturation” to accomplish tasks such as vertical takeoff, flight mode transitions, and high-speed cruising. Subsequently, the performance of this strategy is compared with other conventional strategies applied to fixed-wing VTOL UAV. Furthermore, to enhance the UAV''s gust alleviation capabilities, this thesis explores techniques for wind gust disturbance estimation and rejection based on the traditional quadrotor configuration. These techniques serve as a foundation for extending gust alleviation capabilities to the fixed-wing VTOL configuration in the future. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-04-12T16:14:35Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-04-12T16:14:35Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 I
Acknowledgement II Abstract III 摘要 IV Statement of Contributions V Table of Contents VIII List of Figures XI List of Tables XX Chapter 1. Introduction 1 1.1 Unmanned Aerial Vehicles (UAVs) 1 1.2 VTOL (Vertical Take-Off and Landing) UAVs 2 1.3 Transition Flights 4 1.4 Flying Quality Requirement 5 1.5 Trim Condition (Trim Point) of Aircrafts 6 1.6 Linearization at Trim Point 8 1.7 Nonlinear System Simulation with Look-up Tables 10 1.8 Nonlinear 1-DoF Mass-Spring System 11 1.9 Brief Outline of Linear Quadratic Regulator (LQR) Optimal Control 19 1.10 Scope of Discussion 22 Chapter 2. Establishment of Fixed-Wing VTOL UAV Mathematical Model 23 2.1 Nonlinear 3-DoF Longitudinal Aircraft Simulation Model 23 2.2 Nonlinear 6-DoF Aircraft Simulation Model 31 2.3 Aircraft Model & Aerodynamic Analysis - T51 Dart Sailplane 42 2.4 Validation of Nonlinear 3-DoF Longitudinal Model 52 2.5 Validation of Nonlinear 6-DoF Model 60 2.6 Design & Dynamic Model of a New Fixed-Wing VTOL UAV Model 78 Chapter 3. VTOL & Transition Flight Control of Fixed-Wing VTOL UAV 83 3.1 Survey on VTOL & Transition Flight Control 83 3.2 Establishment and Overview of Flight Tasks 91 3.3 VTOL and Transition Flight Control Strategy Flow 93 3.4 Controller Design of Strategy 2 97 3.5 Simulation Result of Strategy 2 107 3.6 Comparison of Transition Performance of Strategy 2 and Strategy 4 119 3.7 Comparison of Nonlinear and Linear Models in Transition Process 123 3.8 Wind Disturbance Effect on Strategy 2 Controllers 126 3.9 Conclusion and Discussion of VTOL and Transition control 140 Chapter 4. Modeling and Disturbance Rejection of Quadrotor Drone 142 4.1 Survey on Wind Gust Alleviation Problems 142 4.2 Dynamic Model of Quadrotor Drone 145 4.3 LQR Controller Design of Quadrotor Drone 150 4.4 Disturbance Rejection Control of Quadrotor 153 4.5 A brief outline of Optimal Estimation 157 4.6 Estimator Design on Quadrotor Drone 159 4.7 Simulation Setting & Result of Disturbance Rejection on Quadrotor 160 4.8 Conclusion and Discussion of Disturbance Rejection Structure 171 Chapter 5. Conclusions and Future Works 174 5.1 Conclusions 174 5.2 Future Works 175 Appendix A. Transition Control of Unified Control Approach 177 Appendix B. Transition Control of Divide and Conquer by Switching 187 Appendix C. Derivation of Linear Quadratic Regulator Optimal Control 194 Appendix D. Dynamic Saturation with Step Functions 198 Reference 205 | - |
dc.language.iso | en | - |
dc.title | 定旋翼複合無人機轉換控制設計與四旋翼無人機抗風控制設計 | zh_TW |
dc.title | Transition Control Design for Fixed-Wing VTOL UAVs and Gust Alleviation Control for Quadrotor UAVs | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張時中;王大中;詹劭勳 | zh_TW |
dc.contributor.oralexamcommittee | Shi-Chung Chang;Ta-Chung Wong;Shau-Shiun Jan | en |
dc.subject.keyword | 無人機,定旋翼複合,轉換控制策略,動態飽和,干擾估測與消除,抗風, | zh_TW |
dc.subject.keyword | Unmanned aerial vehicle (UAV),Fixed-wing VTOL,Transition control strategy,Dynamic Saturation,Disturbance estimation and rejection,Gust alleviation, | en |
dc.relation.page | 211 | - |
dc.identifier.doi | 10.6342/NTU202400822 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-04-02 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電機工程學系 | - |
dc.date.embargo-lift | 2029-03-27 | - |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 10.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。