請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92550完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳忠幟 | zh_TW |
| dc.contributor.advisor | Chung-Chih Wu | en |
| dc.contributor.author | 張洁瑞 | zh_TW |
| dc.contributor.author | Chi-Jui Chang | en |
| dc.date.accessioned | 2024-04-10T16:13:48Z | - |
| dc.date.available | 2024-04-11 | - |
| dc.date.copyright | 2024-04-10 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-04-08 | - |
| dc.identifier.citation | Chapter 1
[1] J. C. Miñano, P. Benítez, J. Chaves, M. Hernández, O. Dross, and A. Santamaría, High-efficiency LED backlight optics designed with the flow-line method, SPIE, 5942, 6-17 (2005). [2] A. Travis, T. Large, N. Emerton, and S. Bathiche, Collimated light from a waveguide for a display backlight, Opt. Express, 17, 19714-19719 (2009). [3] D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, A multi-directional backlight for a wide-angle, glasses-free three-dimensional display, Nature, 495, 348–351 (2013). [4] W. Wan, W. Qiao, W. Huang, M. Zhu, Y. Ye, X. Chen, and L. Chen, Multiview holographic 3D dynamic display by combining a nano-grating patterned phase plate and LCD, Opt. Express, 25, 1114-1122 (2017). [5] X. Gao, X. Sang, S. Xing, X. Yu, B. Yan, B. Liu, and P. Wang, Full-parallax 3D light field display with uniform view density along the horizontal and vertical direction, Opt. Commun., 467, 125765 (2020). [6] T. Li, Q. Huang, S. Alfaro, A. Supikov, and R. Azuma, 68‐2: View‐Dependent Light‐Field Display that Supports Accommodation Using a Commercially‐Available High Pixel Density LCD Panel, SID Symp. Digest, 51(1), 1013-1016 (2020). [7] J.-J. Chen, T.-Y. Wang, K.-L. Huang, T.-S. Liu, Mi.-D. Tsai, and C.-T. Lin, Freeform lens design for LED collimating illumination, Opt. Express, 20, 10984-10995 (2012). [8] Q. Li, H. Deng, C. Yang, W. He, and F. Zhong, Locally controllable 2D/3D mixed display and image generation method, Opt. Express, 30, 22838-22847 (2022). [9] B. Berteloot, J. Beeckman, G. Stuyven, K. Vermeirsch, T. Blomme, K. Neyts, “75-3: Highly Collimated Backlight for Liquid Crystal Displays, SID Symp. Digest, 51, 1120-1123 (2020). [10] W. Wan, W. Qiao, W. Huang, M. Zhu, Y. Ye, X. Chen, and L. Chen, Multiview holographic 3D dynamic display by combining a nano-grating patterned phase plate and LCD, Opt. Express, 25, 1114-1122 (2017). [11] Y. Zhang, D. Yi, W. Qiao, and L. Chen, Directional backlight module based on pixelated nano-gratings, Opt. Commun., 459, 125034 (2020). [12] Y.-J. Wang, S.-H. Ouyang, W.-C. Chao, J.-G. Lu, and H.-P. D. Shieh, High directional backlight using an integrated light guide plate, Opt. Express, 23, 1567-1575 (2015). [13] M. Pope, H. Kallmann, and P. Magnante, Electroluminescence in organic crystals, J. Chem. Phys., 38, 2042-2043 (1963). [14] W. Helfrich, and W. G. Schneider, Recombination radiation in anthracene crystals, Phys. Rev. Lett., 14, 229-231 (1965). [15] C. W. Tang, and S. A. VanSlyke, Organic electroluminescent diodes, Appl. Phys. Lett., 51, 913-915 (1987). [16] D. Chen, Anti-reflection (AR) coatings made by sol–gel processes: a review, Sol. Energy Mater. Sol. Cells, 68, 313. -336 (2001). [17] K. Saxena, D.S. Mehta, V.K. Rai, R. Srivastava, G. Chauhan, M.N. Kamalasanan, Implementation of anti-reflection coating to enhance light out-coupling in organic light-emitting devices, J. Lumin., 128, 525 (2008). [18] Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures, Nat. Nanotechnol., 2, 770–774 (2007). [19] K. H. Kim, and Q-H. Park, Perfect anti-reflection from first principles, Sci Rep, 3, 1062 (2013). [20] O. Kazuhiro, and T. Kobayashi, P‐140: Novel ¼‐Wave Plate Film for OLED Panels, SID Symp. Digest, 46(1), 1687-1690 (2015). [21] B. C. Kim, Y. J. Lim, J. H. Song, J. H. Lee, K. U. Jeong, J. H. Lee, G. D. Lee, and S. H. Lee, Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display, Opt. Express, 22(107), A1725-A1730 (2014). Chapter 2 [1] D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, A multi-directional backlight for a wide-angle, glasses-free three-dimensional display, Nature, 495, 348–351 (2013). [2] P. Wang, X. Sang, X. Yu, X. Gao, B. Yan, B. Liu, L. Liu, C. Gao, Y. Le, Y. Li, and J. Du, Demonstration of a low-crosstalk super multi-view light field display with natural depth cues and smooth motion parallax, Opt. Express, 27, 34442-34453 (2019). [3] Y. Takaki and N. Nago, Multi-projection of lenticular displays to construct a 256-view super multi-view display, Opt. Express, 18, 8824-8835 (2010). [4] P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, Holographic three-dimensional telepresence using large-area photorefractive polymer, Nature, 468, 80–83 (2010). [5] J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, Three-dimensional display technologies of recent interest: principles, status, and issues, Appl. Opt., 50, H87-H115 (2011). [6] M. Zwicker, W. Matusik, F. Durand, H. Pfister, and C. Forlines, Antialiasing for automultiscopic 3D displays, ACM SIGGRAPH 2006 Sketches, 107-es (2006). [7] X. Gao, X. Sang, S. Xing, X. Yu, B. Yan, B. Liu, P. Wang, Full-parallax 3D light field display with uniform view density along the horizontal and vertical direction, Opt. Commun., 467, 125765 (2020). [8] Q. Li, H. Deng, C. Yang, W. He, and F. Zhong, Locally controllable 2D/3D mixed display and image generation method, Opt. Express, 30, 22838-22847 (2022). [9] Z. Li, C. Gao, H. Li, R. Wu, and X. Liu, Portable autostereoscopic display based on multi-directional backlight, Opt. Express, 30, 21478-21490 (2022). [10] W. Wan, W. Qiao, W. Huang, M. Zhu, Y. Ye, X. Chen, and L. Chen, Multiview holographic 3D dynamic display by combining a nano-grating patterned phase plate and LCD, Opt. Express, 25, 1114-1122 (2017). [11] Y. S. Hwang, F.-K. Bruder, T. Fäcke, S.-C. Kim, G. Walze, R. Hagen, and E.-S. Kim, Time-sequential autostereoscopic 3-D display with a novel directional backlight system based on volume-holographic optical elements, Opt. Express, 22, 9820-9838 (2014). [12] J.-L. Feng, Y.-J. Wang, S.-Y. Liu, D.-C. Hu, and J.-G. Lu, Three-dimensional display with directional beam splitter array, Opt. Express, 25, 1564-1572 (2017). [13] X. Hui, J. Liu, Y. Wan, and H. Lin, Realization of uniform and collimated light distribution in a single freeform-Fresnel double surface LED lens, Appl. Opt., 56, 4561-4565 (2017). [14] J.-J. Chen, T.-Y. Wang, K.-L. Huang, T.-S. Liu, Mi.-D. Tsai, and C.-T. Lin, Freeform lens design for LED collimating illumination, Opt. Express, 20, 10984-10995 (2012). [15] T. Suzuki, K. Endo, J. Kim, K. Tsuruda, and M. Sekiya, Metalens mounted on a resonant tunneling diode for collimated and directed terahertz waves, Opt. Express, 29, 18988-19000 (2021). [16] J.-W. Pan and C.-W. Fan, High luminance hybrid light guide plate for backlight module application, Opt. Express, 19, 20079-20087 (2011). [17] Y.-J. Wang, S.-H. Ouyang, W.-C. Chao, J.-G. Lu, and H.-P. D. Shieh, High directional backlight using an integrated light guide plate, Opt. Express, 23, 1567-1575 (2015). [18] Y. Zhang, D. Yi, W. Qiao, and L. Chen, Directional backlight module based on pixelated nano-gratings, Opt. Commun., 459, 125034 (2020). [19] Y. Zhang, E. Hua, X. Wu, F. Zhou, J. Shi, L. Chen, W. Qiao, A directional backlight covered with pixelated nano-grating arrays, SPIE, 10818, 71-76 (2018). [20] D. Grabovičkić, P. Benítez, J. C. Miñano, and J. Chaves, LED backlight designs with the flow-line method, Opt. Express, 20, A62-A68 (2012). [21] A. Travis, T. Large, N. Emerton, and S. Bathiche, Collimated light from a waveguide for a display backlight, Opt. Express, 17, 19714-19719 (2009). [22] K. Käläntär, A directional backlight with narrow angular luminance distribution for widening the viewing angle for an LCD with a front - surface light - scattering film, J. Soc. Inf. Disp, 20(3), 133-142 (2012). [23] Y. Gao, Z. Luo, R. Zhu, Q. Hong, S.-T. Wu, M.-C. Li, S.-L.Lee, and W.-C. Tsai, A High Performance Single-Domain LCD With Wide Luminance Distribution, J. Disp. Technol., 11, 315–324 (2015). [24] B.-L. Huang and T.-L. Guo, Integrated backlight module to provide a collimated and uniform planar light source, Appl. Opt., 55, 7307-7313 (2016). [25] T.-C. Teng and J.-C. Ke, A novel optical film to provide a highly collimated planar light source, Opt. Express, 21, 21444-21455 (2013). [26] T. Ishikawa and X.-D. Mi, P-82: New Design for a Highly Collimating Turning Film, SID Symp. Digest, 37(1), 514–517 (2006). [27] B. Berteloot, J. Beeckman, G. Stuyven, K. Vermeirsch, T. Blomme, K. Neyts, “75-3: Highly Collimated Backlight for Liquid Crystal Displays, SID Symp. Digest, 51(1), 1120-1123 (2020). [28] O. Cardona-Nunez, A. Cornejo-Rodriguez, R. Diaz-Uribe, A. Cordero-Davila, and J. Pedraza-Contreras, Conic that best fits an off-axis conic section, Appl. Opt., 25, 3585-3588 (1986). [29] Z. Cai, W. Qiu, G. Shao, and W. Wang, A new fabrication method for all-PDMS waveguides, Sens. Actuators A, Phys., 204, 44-47 (2013). [30] I. Moreno, Illumination uniformity assessment based on human vision, Opt. Lett., 35(23), 4030–4032 (2010). [31] Y.-S. Syu, C.-Y. Wu, and Y.-C. Lee, Double-Sided Freeform Lens for Light Collimation of Light Emitting Diodes, Appl. Sci., 9, 5452 (2019). [32] W. Zhang, Y. Chen, J. Cai, L. Deng, S. Xu, Y. Ye, Q. Yan, T. Guo, and E. Chen, Uniformity improvement of a mini-LED backlight by a quantum-dot color conversion film with nonuniform thickness, Opt. Lett., 48(21), 5643-5646 (2023). [33] E. Chen, H. Xie, J. Huang, H. Miu, G. Shao, Y. Li, T. Guo, S. Xu, and Y. Ye, Flexible/curved backlight module with quantum-dots microstructure array for liquid crystal displays, Opt. Express, 26(3), 3466-3482 (2018). Chapter 3 [1] G. Gu and S. Forrest, Design of flat-panel displays based on organic light-emitting devices, IEEE J. Sel. Top. Quantum Electron., 4, 83-99 (1998). [2] H. Kanno, Y. Hamada, H. Takahashi, Development of OLED with high stability and luminance efficiency by co-doping methods for full color displays, IEEE J. Sel. El. Top. Quant., 10(1), 30-36 (2004). [3] J. N. Bardsley, International OLED technology roadmap, IEEE J. Sel. El. Top. Quant., 10(1), 3-9 (2004). [4] C. Y. Lu, M. Jiao, W. K. Lee, C. Y. Chen, W. L. Tsai, C. Y. Lin, and C. C. Wu, Achieving Above 60% External Quantum Efficiency in Organic Light-Emitting Devices Using ITO-Free Low-Index Transparent Electrode and Emitters with Preferential Horizontal Emitting Dipoles, Adv. Funct. Mater., 26, 3250-3258 (2016). [5] T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, and C. C. Wu, Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid, Adv. Mater., 28, 6976-6983 (2016). [6] F. B. Dias, K.N. Bourdakos, V. Jankus, K. C. Moss, K. T. Kamtekar, V. Bhalla, J. Santos, M. R. Bryce, and A. P. Monkman, Triplet Harvesting with 100% Efficiency by Way of Thermally Activated Delayed Fluorescence in Charge Transfer OLED Emitters, Adv. Mater., 25, 3707-3714 (2013). [7] B. Geffroy, P. le Roy, and C. Prat, Organic light-emitting diode (OLED) technology: materials, devices and display technologies, Polym. Int. 55, 572–582 (2006). [8] D. Chen, Anti-reflection (AR) coatings made by sol–gel processes: a review, Sol. Energy Mater. Sol. Cells, 68, 313. -336 (2001). [9] K. Saxena, D.S. Mehta, V.K. Rai, R. Srivastava, G. Chauhan, M.N. Kamalasanan, Implementation of anti-reflection coating to enhance light out-coupling in organic light-emitting devices, J. Lumin., 128, 525 (2008). [10] Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures, Nat. Nanotechnol., 2, 770–774 (2007). [11] K. H. Kim, and Q-H. Park, Perfect anti-reflection from first principles, Sci Rep, 3, 1062 (2013). [12] O. Kazuhiro, and T. Kobayashi, P‐140: Novel ¼‐Wave Plate Film for OLED Panels, SID Symp. Digest, 46(1), 1687-1690 (2015). [13] B. C. Kim, Y. J. Lim, J. H. Song, J. H. Lee, K. U. Jeong, J. H. Lee, G. D. Lee, and S. H. Lee, Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display, Opt. Express, 22(107), A1725-A1730 (2014). [14] N. Koma, M. Hashizume, M. Yamamoto, and Y. Sato, P‐146L: Late‐News Poster: Development of Photochromic Circular Polarizer for OLEDs, SID Symp. Digest, 43(1), 1268–1271 (2012). [15] R. Singh, K. N. Unni, A. Solanki, and Deepak, Improving the contrast ratio of OLED displays: An analysis of various techniques, Opt. Mater., 34, 716-723 (2012). [16] H. Chen, G. Tan, and S.-T. Wu, Ambient contrast ratio of LCDs and OLED displays, Opt. Express, 25, 33643-33656 (2017). [17] G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, High ambient contrast ratio OLED and QLED without a circular polarizer, J. Phys. D Appl. Phys., 49(31), 315101 (2016). [18] J. H. Lee, C. C. Liao, P. J. Hu, and Y. Chang, High contrast ratio organic light-emitting devices based on CuPC as electron transport material, Synth. Met., 144, 279-283 (2004). [19] J. A. Dobrowolski, B. T. Sullivan, R. C. Bajcar, Optical interference, contrast-enhanced electroluminescent device, Appl. Opt., 31, 5988-5996 (1992). [20] Y. Kun, Y. Huimin, J. Shangzhong, A type of spectrophotometer with both SCI and SCE measurement structures, Optik, 125(17), 4672-4677 (2014). [21] F.L.S. Cuppo, A. García-Valenzuela, J.A. Olivares, Influence of surface roughness on the diffuse to near-normal viewing reflectance factor of coatings and its consequences on color measurements, Color Res. Appl., 38(3), 177-187 (2013). [22] W. Ji., M. R. Pointer, R. M. Luo, J. Dakin, Gloss as an aspect of the measurement of appearance, Opt. Soc. Am., 23, 22-23 (2006). [23] C. J. Bruegge, A. E. Stiegman, R. A. Rainen, and A. W. Springsteen, Use of Spectralon as a diffuse reflectance standard for in-flight calibration of Earth orbiting sensors, Opt. Eng., 32, 805-814 (1993). [24] G. T. Georgiev, and J. J. Butler, Long-term calibration monitoring of Spectralon diffusers BRDF in the air-ultraviolet, Appl. Opt. 46(32), 7892–7899 (2007). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92550 | - |
| dc.description.abstract | 如今,隨著科學技術的不斷進步,顯示技術日益精進,應用日益普及。然而,由於人們對智慧生活的迫切需求,新世代的顯示技術也持續開發中。例如,元宇宙和自駕車這兩項具代表性的前瞻性技術所需之顯示技術。相對應地,立體顯示和戶外應用顯示器之顯示需求相伴而生,如何避免立體像素間的串擾和更高的環境光反射引起的低對比度等都是這些應用需面對的挑戰。在本論文中,我們研究可用於立體顯示器之準直背光的光學設計和優化OLED的像素結構來降低環境光反射解決這些問題,以求能提高先進顯示技術的影像呈現品質。
在本論文的第一部分。 我們透過結合線性光源陣列和精心設計的柱面透鏡陣列,研究具有簡單堆疊架構的高度準直和均勻的背光。使用傳統側發光式背光或直下式mini-LED (mLED)陣列作為光源、NiFe(不鏽鋼)的遮罩和透過成型製造的柱面透鏡陣列進行實驗來驗證所提出的設計和模擬。透過控制光源發散和優化透鏡設計,實現了高度準直的背光源,其發散角非常窄為±1.45°~±2.61°,均勻性為93-96%,場型中大角度的漏光也透過結構設計將其最小化。我們提出的架構提供了一種方便將市售常見背光源轉換為高度準直背光源的便捷方法,而高反射遮罩的應用也有助於回收光能並增強亮度。 在本論文的第二部分,我們深入研究如何最小化OLED顯示器中之環境光反射,這是OLED顯示器在戶外應用中的關鍵因素,以往人們會避免在強烈太陽光下注視螢幕,但對於車用顯示器而言則是一個無法避免的問題。雖然在OLED顯示器中加入圓偏振片已被證明可以有效抑制環境光反射,但我們的研究顯示,與OLED像素陣列中常見的像素定義層(PDL)和光間隔層(PS)相關的表面起伏將會引發散射反射,這導致環境光反射顯著增加,特別是在較大視角下。透過本研究中實驗研究和模擬研究的結合,我們引入了OLED像素結構的最佳化設計,包括對PDL和PS結構的改進,以便減輕散射反射的不利影響。這些最佳化設計預計將非常有利於在不同視角下實現一致的低環境光反射,從而增強 OLED 顯示器的整體觀看體驗。 | zh_TW |
| dc.description.abstract | Nowadays, with the continuous advancement of science and technology, display technologies have been continuously improved and widely applied. With people's demand for more intelligent life, next generation technologies are also being developed in full swing. For instance, the emerging metaverse and autonomous vehicles require even more advanced display technologies. In these technologies, autostereoscopic display and outdoor displays are facing unprecedented challenges, such as crosstalks between voxels and low contrast caused by higher ambient light reflection. In this dissertation, we address these issues by investigating the optical design of collimated backlight for 3D display and optimizing the pixel structures of OLED for lower reflection, aiming to enhance the image quality of advanced display technologies.
In the first part of this dissertation. we study the highly collimated and uniform backlights with a simple stacking architecture, by combining linear light source arrays and carefully designed cylindrical lens arrays. Experiments were conducted to validate the design and simulation, using the conventional edge-lit backlight units (BLU) or the direct-lit mini-LED (mLED) arrays as light sources, the NiFe (stainless steel) barrier sheets, and cylindrical lens arrays fabricated by molding. Highly collimated backlights with small angular divergence of ±1.45°~±2.61°, decent uniformity of 93-96%, and minimal larger-angle sidelobes in emission patterns were achieved with controlled divergence of the light source and optimization of lens designs. The architecture we proposed provides a convenient way to convert available backlight sources into a highly collimated backlight, and the use of optically reflective barrier also helps recycle light energy and enhance the luminance. In the second part of this dissertation, we address the challenge of minimizing ambient light reflection for OLED displays, a crucial factor for the effectiveness of OLED displays in outdoor applications. In the past, people would avoid looking at the screen under strong sunlight, but this is an inevitable problem for automotive displays. While the incorporation of a circular polarizer in OLED displays has proven effective in suppressing ambient light reflection, our research reveals that the inherent surface undulations associated with pixel definition layers (PDL) and photo-spacers (PS), commonly found in OLED pixel arrays, can introduce scattering reflection. This results in an observable increase in ambient light reflection, particularly over larger viewing angles. Through a combination of experimental investigations and simulation studies presented in this research, we introduce optimized designs for OLED pixel structures, including improvements to PDL and PS structures, aimed at mitigating the adverse effects of scattering reflection. These optimized designs are anticipated to be highly advantageous in achieving consistently low ambient light reflection across various viewing angles, thereby enhancing the overall viewing experience of OLED displays. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-04-10T16:13:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-04-10T16:13:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 v ABSTRACT vii CONTENTS ix LIST OF FIGURES AND TABLES xi Chapter 1 Introduction 1 1.1 Overview of Collimated Backlight for Displays 1 1.2 Overview of Low Reflection Structures for OLED Displays 3 1.3 Dissertation Motivation and Organization 5 References 7 Figures of Chapter 1 11 Chapter 2 Stacking Architecture for Collimated Backlight Using Cylindrical Lens Sheet with Linear Light Sources or Edge-lit/Direct-lit BLU 16 2.1 Introduction 16 2.2 Design concept and simulations 19 2.3 Experiment and measurement 24 2.4 Conclusion 30 References 31 Figures of Chapter 2 36 Chapter 3 Optimizing OLED Pixel Structures for Consistently Low Ambient Light Reflection over Viewing Angles 52 3.1 Introduction 52 3.2 Methods 54 3.2.1 Experiment and issue defination 54 3.2.2 Simulation setting 55 3.3 Results and Discussions 57 3.4 Conclusion 60 References 61 Figures of Chapter 3 65 Chapter 4 Summary 73 4.1 Dissertation Summary 73 | - |
| dc.language.iso | en | - |
| dc.subject | OLED顯示器 | zh_TW |
| dc.subject | 環境光散射 | zh_TW |
| dc.subject | 抗反射 | zh_TW |
| dc.subject | 裸眼立體顯示 | zh_TW |
| dc.subject | 像素結構 | zh_TW |
| dc.subject | 準直背光 | zh_TW |
| dc.subject | 光能回收 | zh_TW |
| dc.subject | pixel structure | en |
| dc.subject | anti-reflection | en |
| dc.subject | ambient light scattering | en |
| dc.subject | OLED display | en |
| dc.subject | light energy recycling | en |
| dc.subject | collimated backlight | en |
| dc.subject | autostereoscopic display | en |
| dc.title | 顯示器背光源及畫素結構之先進光學設計與優化 | zh_TW |
| dc.title | Optical Designs and Optimization for Display Backlight and Pixel Structures | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 林建中;張志豪;林昶宇;蔡志宏;黃奕翔 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Chung Lin;Chih-Hao Chang;Chang-Yu Lin;Chih-Hung Tsai;Yi-Hsiang Huang | en |
| dc.subject.keyword | 裸眼立體顯示,準直背光,光能回收,OLED顯示器,環境光散射,抗反射,像素結構, | zh_TW |
| dc.subject.keyword | autostereoscopic display,collimated backlight,light energy recycling,OLED display,ambient light scattering,anti-reflection,pixel structure, | en |
| dc.relation.page | 74 | - |
| dc.identifier.doi | 10.6342/NTU202400831 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-04-08 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | 2029-04-02 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 3.92 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
