請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92541完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝學真 | zh_TW |
| dc.contributor.advisor | Hsyue-Jen Hsieh | en |
| dc.contributor.author | 許志勤 | zh_TW |
| dc.contributor.author | Chih-Chin Hsu | en |
| dc.date.accessioned | 2024-04-08T16:13:26Z | - |
| dc.date.available | 2024-04-09 | - |
| dc.date.copyright | 2024-04-08 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2024-03-27 | - |
| dc.identifier.citation | [1] Khademhosseini A and Langer R, A decade of progress in tissue engineering. Nature Protocols, 2016, 11, 1775-1781.
[2] 林哲民,以幾丁聚醣為基底之電紡纖維膜製備、特性分析及其於傷口敷料及藥物釋放之應用。國立台灣大學化學工程學研究所博士論文,2020. [3] Fathima N, Mamatha T, Qureshi HK, Anitha N, and Rao JV, Drug-excipient interaction and its importance in dosage form development. Journal of Applied Pharmaceutical Science, 2011, 1(6), 66-71. [4] Rajendran MAP, Allada R, and Sajid SS, Co-crystals for generic pharmaceuticals: an outlook on solid oral dosage formulations. Recent Advances in Drug Delivery and Formulation: Formerly Recent Patents on Drug Delivery & Formulation, 2021, 15(1), 15-36. [5] Thomas LH, Wales C, and Wilson CC, Selective preparation of elusive and alternative single component polymorphic solid forms through multi-component crystallisation routes. Chemical Communications, 2016, 52, 7372-7375. [6] Byrn S, Pfeiffer R, Ganey M, Hoiberg C, and Poochikian G, Pharmaceutical solids: a strategic approach to regulatory considerations. Pharmaceutical Research, 1995, 12, 945-954. [7] Hilden LR and Morris KR, Physics of amorphous solids. Journal of Pharmaceutical Sciences, 2004, 93(1), 3-12. [8] Khankari RK and Grant DJW, Pharmaceutical hydrates. Thermochimica Acta, 1995, 248, 61-79. [9] Vippagunta SR, Brittain HG, and Grant DJW, Crystalline solids. Advanced Drug Delivery Reviews, 2001, 48(1), 3-26. [10] U.S. Food and Drug Administration. Regulatory classification of pharmaceutical co-crystals. Center for Drug Evaluation and Research, 2018. [11] Chiou WL and Riegelman S, Pharmaceutical applications of solid dispersion systems. Journal of Pharmaceutical Sciences, 1971, 60(9), 1281-1302. [12] Newman A, Reutzel-Edens SM, and Zografi G, Coamorphous active pharmaceutical ingredient–small molecule mixtures: considerations in the choice of coformers for enhancing dissolution and oral bioavailability. Journal of Pharmaceutical Sciences, 2018, 107(1), 5-17. [13] Berry DJ and Steed JW, Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Advanced Drug Delivery Reviews, 2017, 117, 3-24. [14] Serajuddin ATM, Salt formation to improve drug solubility. Advanced Drug Delivery Reviews, 2007, 59(7), 603-616. [15] Yoshida K, Shimomura T, Ito K, and Hayakawa R, Inclusion complex formation of cyclodextrin and polyaniline. Langmuir, 1999, 15(4), 910-913. [16] Karagianni A, Malamatari M, and Kachrimanis K, Pharmaceutical cocrystals: New solid phase modification approaches for the formulation of APIs. Pharmaceutics, 2018, 10(1), 18. [17] Royal Society of Chemistry, RSC prospect, Inclusion compound, CHEBI:39022. [18] Tian B, Xiao D, Hei T, Ping R, Hua S, and Liu J, The application and prospects of cyclodextrin inclusion complexes and polymers in the food industry: A review. Polymer International, 2020, 69(7), 597-603. [19] Cid-Samamed A, Rakmai J, Mejuto JC, Simal-Gandara J, and Astray G, Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chemistry, 2022, 384, 132467. [20] Qiao X, Yang L, Hu X, Cao Y, Li Z, Xu J, and Xue C, Characterization and evaluation of inclusion complexes between astaxanthin esters with different molecular structures and hydroxypropyl-β-cyclodextrin. Food Hydrocolloids, 2021, 110, 106208. [21] Ananchenko GS, Udachin KA, Coleman AW, Polovyanenko DN, Bagryanskaya EG, and Ripmeester JA, Crystalline inclusion complex of a calixarene with a nitroxide. Chemical Communications, 2008, 2, 223-225. [22] Roy MN, Ekka D, Saha S, and Roy MC, Host–guest inclusion complexes of α and β-cyclodextrins with α-amino acids. RSC Advances, 2014, 4(80), 42383-42390. [23] Boczar D and Michalska K, Cyclodextrin inclusion complexes with antibiotics and antibacterial agents as drug-delivery systems—A pharmaceutical perspective. Pharmaceutics, 2022, 14(7), 1389. [24] Deng C, Cao C, Zhang Y, Hu J, Gong Y, Zheng M, and Zhou Y, Formation and stabilization mechanism of β-cyclodextrin inclusion complex with C10 aroma molecules. Food Hydrocolloids, 2022, 123, 107013. [25] Braga SS, Lysenko K, El-Saleh F, and Paz FAA, Cyclodextrin-efavirenz complexes investigated by solid state and solubility studies. Proceedings, 2021, 78(1), 15. [26] Ho S, Thoo YY, Young DJ, and Siow LF, Cyclodextrin encapsulated catechin: Effect of pH, relative humidity and various food models on antioxidant stability. LWT-Food Science and Technology, 2017, 85, 232-239. [27] Franzini R, Ciogli A, Gasparrini F, Ismail OH, and Villani C, Recent developments in chiral separations by supercritical fluid chromatography. Chiral Analysis, 2018, 607-629. [28] Przybyla MA, Yilmaz G, and Becer CR, Natural cyclodextrins and their derivatives for polymer synthesis. Polymer Chemistry, 2020, 11, 7582-7602. [29] Cheirsilp B and Rakmai J, Inclusion complex formation of cyclodextrin with its guest and their applications. Biology, Engineering and Medicine, 2016, 2, 1-6. [30] Sakurai M, Kitagawa M, Hoshi H, Inoue Y, and Chûjô R, A molecular orbital study of cyclodextrin (cyclomalto-oligosaccharide) inclusion complexes. III, dipole moments of cyclodextrins in various types of inclusion complex. Carbohydrate Research, 1990, 198(2), 181-191. [31] Saokham P, Muankaew C, Jansook P, and Loftsson T, Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules, 2018, 23(5), 1161. [32] da Silva Júnior WF, de Oliveira Pinheiro JG, Moreira CDLFA, de Souza FJJ, and de Lima ÁAN, Alternative technologies to improve solubility and stability of poorly water-soluble drugs. Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics, 2017, 281-305. [33] Řezanka M, Synthesis of substituted cyclodextrins. Environmental Chemistry Letters, 2019, 17(1), 49-63. [34] Liu JY, Zhang X, and Tian B, Selective modifications at the different positions of cyclodextrins: a review of strategies. Turkish Journal of Chemistry, 2020, 44(2), 261-278. [35] Crini G, Review: a history of cyclodextrins. Chemical Reviews, 2014, 114(21), 10940-10975. [36] Gutsche CD, Calixarenes. Royal Society of Chemistry, Cambridge, UK, 1989. [37] Moss GP, Smith PAS, and Tavernier D, Glossary of class names of organic compounds and reactive intermediates based on structure. Pure and Applied Chemistry, 1995, 67, 1307-1375. [38] Al Hujran TA, Magharbeh MK, Habashneh AY, Al-Dmour RS, Aboelela A, and Tawfeek HM, Insight into the inclusion complexation of fluconazole with sulfonatocalix[4]naphthalene in aqueous solution, solid-state, and its antimycotic activity. Molecules, 2022, 27(14), 4425. [39] Basilotta R, Mannino D, Filippone A, Casili G, Prestifilippo A, Colarossi L, Raciti G, Esposito E, and Campolo M, Role of calixarene in chemotherapy delivery strategies. Molecules, 2021, 26(13), 3963. [40] Bayrakcı M, Ertul Ş, and Yılmaz M, Solubilizing effect of the p-phosphonate calix[n]arenes towards poorly soluble drug molecules such as nifedipine, niclosamide and furosemide. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 74, 415-423. [41] Lagona J, Mukhopadhyay P, Chakrabarti S, and Isaacs L, The cucurbit[n]uril family. Angewandte Chemie International Edition, 2005, 44(31), 4844-4870. [42] Kim J, Jung I, Kim S, Lee E, Kang J, Sakamoto S, Yamaguchi K, and Kim K, New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n= 5, 7, and 8). Journal of the American Chemical Society, 2000, 122(3), 540-541. [43] Pattabiraman M, Natarajan A, Kaanumalle LS, and Ramamurthy V, Templating photodimerization of trans-cinnamic acids with cucurbit[8]uril and γ-cyclodextrin. Organic Letters, 2005, 7(4), 529-532. [44] Lim S, Kim H, Selvapalam N, Kim K, Cho SJ, Seo G, and Kim K, Cucurbit[6]uril: organic molecular porous material with permanent porosity, exceptional stability, and acetylene sorption properties. Angewandte Chemie International Edition, 2008, 47(18), 3352-3355. [45] Zhao Y, Buck DP, Morris DL, Pourgholami MH, Day AI, and Collins JG, Solubilisation and cytotoxicity of albendazole encapsulated in cucurbit[n]uril. Organic & Biomolecular Chemistry, 2008, 6, 4509-4515. [46] Wang R, Bardelang D, Waite M, Udachin KA, Leek DM, Yu K, Ratcliffe CI, and Ripmeester JA, Inclusion complexes of coumarin in cucurbiturils. Organic & Biomolecular Chemistry, 2009, 7, 2435-2439. [47] 胡博智,數種茶鹼共結晶及茶鹼水合物之製備及特性探討。國立台灣大學化學工程學研究所碩士論文,2020. [48] Villaverde J, Morillo E, Pérez-Martínez JI, Ginés JM, and Maqueda C, Preparation and characterization of inclusion complex of norflurazon and β-cyclodextrin to improve herbicide formulations. Journal of Agricultural and Food Chemistry, 2004, 52(4), 864-869. [49] Aljohani M, Enhancing the bioavailability of active pharmaceutical ingredients through cocrystallization and coamorphization. PhD Thesis, National University of Ireland, Galway, Ireland, 2019. [50] 蔡樺政,以溶劑輔助研磨法製備數種茶鹼/羧酸之共結晶及其性質分析。國立台灣大學化學工程學研究所碩士論文,2021. [51] Karathanos VT, Mourtzinos I, Yannakopoulou K, and Andrikopoulos NK, Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin. Food Chemistry, 2007, 101(2), 652-658. [52] Tamargo J, Le Heuzey JY, and Mabo P, Narrow therapeutic index drugs: a clinical pharmacological consideration to flecainide. European Journal of Clinical Pharmacology, 2015, 71, 549-567. [53] Babu NJ and Nangia A, Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Crystal Growth & Design, 2011, 11(7), 2662-2679. [54] Nekkanti V, Vabalaboina V, and Pillai R, Drug nanoparticles–An overview. The Delivery of Nanoparticles, 2012, 111-132. [55] Dizaj SM, Vazifehasl Z, Salatin S, Adibkia K, and Javadzadeh Y, Nanosizing of drugs: effect on dissolution rate. Research in Pharmaceutical Sciences, 2015, 10(2), 95-108. [56] 林亞萱,以乾式研磨法、溶劑輔助研磨法、溶劑蒸發法製備多種吲哚美辛共結晶及性質分析。國立台灣大學化學工程學研究所碩士論文,2022. [57] Alvani A and Shayanfar A, Solution stability of pharmaceutical cocrystals. Crystal Growth & Design, 2022, 22(10), 6323-6337. [58] Maeda H, Iga Y, and Nakayama H, Characterization of inclusion complexes of betahistine with β-cyclodextrin and evaluation of their anti-humidity properties. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 86, 337-342. [59] Chen X, Chen R, Guo Z, Li C, and Li P, The preparation and stability of the inclusion complex of astaxanthin with β-cyclodextrin. Food Chemistry, 2007, 101(4), 1580-1584. [60] Sun J, Hong H, Zhu N, Han L, and Suo Q, Effect of preparation methods on tosufloxacin tosylate/hydroxypropyl-β-cyclodextrin inclusion complex. Brazilian Journal of Pharmaceutical Sciences, 2023, 58. [61] Ahad A, Bin Jardan YA, Raish M, Al-Mohizea AM, and Al-Jenoobi FI, Hydroxypropyl-β-cyclodextrin for delivery of sinapic acid via inclusion complex prepared by solvent evaporation method. Processes, 2022, 10(10), 2046. [62] Bouhmaida N, Bonhomme F, Guillot B, Jelsch C, and Ghermani NE, Charge density and electrostatic potential analyses in paracetamol. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2009, 65(3), 363-374. [63] Sardo M, Santos SM, Babaryk AA, López C, Alkorta I, Elguero J, Claramunt RM, and Mafra L, Diazole-based powdered cocrystal featuring a helical hydrogen-bonded network: Structure determination from PXRD, solid-state NMR and computer modeling. Solid State Nuclear Magnetic Resonance, 2015, 65, 49-63. [64] Goud NR, Gangavaram S, Suresh K, Pal S, Manjunatha SG, Nambiar S, and Nangia A, Novel furosemide cocrystals and selection of high solubility drug forms. Journal of Pharmaceutical Sciences, 2012, 101(2), 664-680. [65] Chaudhary VB and Patel JK, Cyclodextrin inclusion complex to enhance solubility of poorly water soluble drugs: A review. International Journal of Pharmaceutical Sciences and Research, 2013, 4(1), 68-76. [66] Wong SN, Chan SWS, Peng X, Xuan B, Lee HW, Tong HHY, and Chow SF, Effects of the glass-forming ability and annealing conditions on cocrystallization behaviors via rapid solvent removal: A case study of voriconazole. Pharmaceutics, 2020, 12(12), 1209. [67] Lu E, Rodríguez-Hornedo N, and Suryanarayanan R, A rapid thermal method for cocrystal screening. CrystEngComm, 2008, 10, 665-668. [68] Coleman NJ and Craig DQM, Modulated temperature differential scanning calorimetry: a novel approach to pharmaceutical thermal analysis. International Journal of Pharmaceutics, 1996, 135(1-2), 13-29. [69] Wang H, Wang S, Zhu H, Wang S, and Xing J, Inclusion complexes of lycopene and β-cyclodextrin: Preparation, characterization, stability and antioxidant activity. Antioxidants, 2019, 8(8), 314. [70] 曾元兒、張凌,儀器分析。科學出版社,ISBN13 978-7-03-019488-6,2021. [71] Figueiras A, Carvalho RA, Ribeiro L, Torres-Labandeira JJ, and Veiga FJB, Solid-state characterization and dissolution profiles of the inclusion complexes of omeprazole with native and chemically modified β-cyclodextrin. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67(2), 531-539. [72] Benesi HA and Hildebrand JH, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. Journal of the American Chemical Society, 1949, 71(8), 2703–2707. [73] Job P, Formation and stability of inorganic complexes in solution. Annales de Chimie, 1928, 9, 113–203. [74] Higuchi T and Connors KA, Phase solubility techniques. Advanced Analytical Chemistry of Instrumentation, 1965, 4, 117-212. [75] Ravera M, Gabano E, Bianco S, Ermondi G, Caron G, Vallaro M, Pelosi G, Zanellato I, Bonarrigo I, Cassino C, and Osella D, Host–guest inclusion systems of Pt (IV)-bis(benzoato) anticancer drug candidates and cyclodextrins. Inorganica Chimica Acta, 2015, 432, 115-127. [76] William G, De magnete, magneticisque corporibus, et de magno magnete tellure; Physiologia nova, plurimis & argumentis, & experimentis demonstrata. London: Peter Short, 1600. [77] Rayleigh L, On the equilibrium of liquid conducting masses charged with electricity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1882, 14(87), 184-186. [78] Cooley JF, Improved methods of an apparatus for electrically separating the relatively volatile liquid component from the component of relatively fixed substances of composite fluids. Patent number GB 06385, 1900. [79] Tucker N, Stanger JJ, Staiger MP, Razzaq H, and Hofman K, The history of the science and technology of electrospinning from 1600 to 1995. Journal of Engineered Fibers and Fabrics, 2012, 7(2), 63-73. [80] Taylor GI, Disintegration of water drops in an electric field. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1964, 280, 383-397. [81] Baumgarten PK, Electrostatic spinning of acrylic microfibers. Journal of Colloid and Interface Science, 1971, 36(1), 71-79. [82] Larrondo L and Manley RSJ, Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. Journal of Polymer Science: Polymer Physics Edition, 1981, 19(6), 909-920. [83] Reneker DH, Yarin AL, Fong H, and Koombhongse S, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 2000, 87(9), 4531-4547. [84] Sharma GK and James NR, Electrospinning: The technique and applications. Recent Developments in Nanofibers Research, 2022. [85] Sas I, Gorga RE, Joines JA, and Thoney KA, Literature review on superhydrophobic self‐cleaning surfaces produced by electrospinning. Journal of Polymer Science Part B: Polymer Physics, 2012, 50(12), 824-845. [86] Rosell-Llompart J, Grifoll J, and Loscertales IG, Electrosprays in the cone-jet mode: From Taylor cone formation to spray development. Journal of Aerosol Science, 2018, 125, 2-31. [87] Huang ZM, Zhang YZ, Kotaki M, and Ramakrishna S, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003, 63(15), 2223-2253. [88] Niu H, Zhou H, and Wang H, Electrospinning: an advanced nanofiber production technology. Energy Harvesting Properties of Electrospun Nanofibers, 2019, 1, 1-44. [89] Cross MM, Viscosity, molecular weight and chain entanglement. Polymer, 1970, 11(5), 238-244. [90] Gupta P, Elkins C, Long TE, and Wilkes GL, Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer, 2005, 46(13), 4799-4810. [91] Koski A, Yim K, and Shivkumar S, Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 2004, 58(3-4), 493-497. [92] Doshi J and Reneker DH, Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 1995, 35(2-3), 151-160. [93] Sukigara S, Gandhi M, Ayutsede J, Micklus M, and Ko F, Regeneration of Bombyx mori silk by electrospinning—part 1: processing parameters and geometric properties. Polymer, 2003, 44(19), 5721-5727. [94] Deitzel JM, Kleinmeyer J, Harris D, and Tan NCB, The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 2001, 42(1), 261-272. [95] 蔡睿逸,以幾丁聚醣為主的多成分複合電紡纖維之製備及其特性探討與骨分化之應用。國立台灣大學化學工程學研究所博士論文,2014. [96] Wu X, Oleschuk RD, and Cann NM, Characterization of microstructured fibre emitters: in pursuit of improved nano electrospray ionization performance. Analyst, 2012, 137, 4150-4161. [97] Yao L, Haas TW, Guiseppi-Elie A, Bowlin GL, Simpson DG, and Wnek GE, Electrospinning and stabilization of fully hydrolyzed poly(vinyl alcohol) fibers. Chemistry of Materials, 2003, 15(9), 1860-1864. [98] Baji A, Mai YW, Wong SC, Abtahi M, and Chen P, Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Composites Science and Technology, 2010, 70(5), 703-718. [99] Hayati I, Bailey AI, and Tadros TF, Investigations into the mechanisms of electrohydrodynamic spraying of liquids: I. Effect of electric field and the environment on pendant drops and factors affecting the formation of stable jets and atomization. Journal of Colloid and Interface Science, 1987, 117(1), 205-221. [100] Lee CK, Kim SI, and Kim SJ, The influence of added ionic salt on nanofiber uniformity for electrospinning of electrolyte polymer. Synthetic Metals, 2005, 154(1-3), 209-212. [101] Reneker DH and Yarin AL, Electrospinning jets and polymer nanofibers. Polymer, 2008, 49(10), 2387-2425. [102] D’amato AR, Bramson MTK, Puhl DL, Johnson J, Corr DT, and Gilbert RJ, Solvent retention in electrospun fibers affects scaffold mechanical properties. Electrospinning, 2018, 2, 15-28. [103] Avossa J, Herwig G, Toncelli C, Itel F, and Rossi RM, Electrospinning based on benign solvents: Current definitions, implications and strategies. Green Chemistry, 2022, 24, 2347-2375. [104] Huang YS, Kuo CC, Huang CC, Jang SC, Tsen WC, Chuang FS, Chen BY, Chen JJ, Chow JD, and Shu YC, Novel highly aligned, double-layered, hollow fibrous polycarbonate membranes with a perfectly tightly packed pentagonal pore structure fabricated using the electrospinning process. RSC Advances, 2015, 5(108), 88857-88865. [105] 邱柏勛,提升抗菌性之四級銨鹽化幾丁聚醣合成及幾丁聚醣複合電紡纖維膜之製備與特性探討。國立台灣大學化學工程學研究所碩士論文,2021. [106] Beachley V and Wen X, Effect of electrospinning parameters on the nanofiber diameter and length. Materials Science and Engineering: C, 2009, 29(3), 663-668. [107] Can-Herrera LA, Oliva AI, Dzul-Cervantes MAA, Pacheco-Salazar OF, and Cervantes-Uc JM, Morphological and mechanical properties of electrospun polycaprolactone scaffolds: Effect of applied voltage. Polymers, 2021, 13(4), 662. [108] Hekmati AH, Rashidi A, Ghazisaeidi R, and Drean JY, Effect of needle length, electrospinning distance, and solution concertration on morphological properties of polyamide-6 electrospun nanowebs. Textile Research Journal, 2013, 83(14), 1452-1466. [109] Ding C, Fang H, Duan G, Zou Y, Chen S, and Hou H, Investigating the draw ratio and velocity of an electrically charged liquid jet during electrospinning. RSC Advances, 2019, 9, 13608-13613. [110] He H, Kara Y, and Molnar K, Effect of needle characteristic on fibrous PEO produced by electrospinning. Resolution and Discovery, 2019, 4(1), 7-11. [111] Mo XM, Xu CY, Kotaki M, and Ramakrishna S, Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials, 2004, 25(10), 1883-1890. [112] Acik G, Cansoy CE, and Kamaci M, Effect of flow rate on wetting and optical properties of electrospun poly(vinyl acetate) micro-fibers. Colloid and Polymer Science, 2019, 297, 77-83. [113] Katsogiannis KAG, Vladisavljević GT, and Georgiadou S, Porous electrospun polycaprolactone fibers: Effect of process parameters. Journal of Polymer Science Part B: Polymer Physics, 2016, 54(18), 1878-1888. [114] Hardick O, Stevens B, and Bracewell DG, Nanofibre fabrication in a temperature and humidity controlled environment for improved fibre consistency. Journal of Materials Science, 2011, 46, 3890-3898. [115] De Vrieze S, Van Camp T, Nelvig A, Hagström B, Westbroek P, and De Clerck K, The effect of temperature and humidity on electrospinning. Journal of Materials Science, 2009, 44, 1357-1362. [116] Lübbert C and Peukert W, The mass transfer at Taylor cones. Journal of Aerosol Science, 2018, 123, 39-51. [117] Szewczyk PK and Stachewicz U, The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Advances in Colloid and Interface Science, 2020, 286, 102315. [118] Nezarati RM, Eifert MB, and Cosgriff-Hernandez E, Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Engineering Part C: Methods, 2013, 19(10), 810-819. [119] Sun Y, Cheng S, Lu W, Wang Y, Zhang P, and Yao Q, Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Advances, 2019, 9, 25712-25729. [120] Valipouri A, Production scale up of nanofibers: A review. Journal of Textiles and Polymers, 2017, 5(1), 8-16. [121] Ali U, Wang X, and Lin T, Effect of nozzle polarity and connection on electrospinning of polyacrylonitrile nanofibers. The Journal of the Textile Institute, 2012, 103(11), 1160-1168. [122] Akampumuza O, Gao H, Zhang H, Wu D, and Qin XH, Raising nanofiber output: The progress, mechanisms, challenges, and reasons for the pursuit. Macromolecular Materials and Engineering, 2017, 303(1), 1700269. [123] Wang S, Yang Y, Zhang Y, Fei X, Zhou C, Zhang Y, Li Y, Yang Q, and Song Y, Fabrication of large-scale superhydrophobic composite films with enhanced tensile properties by multinozzle conveyor belt electrospinning. Journal of Applied Polymer Science, 2014, 131(1), 39735. [124] 鄭立昌,添加石墨烯之羥丙基甲基纖維素/幾丁聚醣/聚氧化乙烯電紡複合纖維膜製備及其特性探討。國立台灣大學化學工程學研究所碩士論文,2018. [125] Salehhudin HS, Mohamad EN, Mahadi WNL, and Afifi AM, Multiple-jet electrospinning methods for nanofiber processing: A review. Materials and Manufacturing Processes, 2018, 33(5), 479-498. [126] Qin X, Coaxial electrospinning of nanofibers. Electrospun Nanofibers, 2017, 41-71. [127] Han D and Steckl AJ, Coaxial electrospinning formation of complex polymer fibers and their applications. ChemPlusChem, 2019, 84(10), 1453-1497. [128] Yu DG, Chian W, Wang X, Li XY, Li Y, and Liao YZ, Linear drug release membrane prepared by a modified coaxial electrospinning process. Journal of Membrane Science, 2013, 428, 150-156. [129] Sasithorn N, Martinová L, Horáková J, and Mongkholrattanasit R, Fabrication of silk fibroin nanofibres by needleless electrospinning. Electrospinning: Material, Techniques, and Biomedical Applications, IntechOpen, 2016, Chapter 5. [130] 黃章鳴,添加咖啡酸或黃連素之幾丁聚醣複合電紡纖維膜之製備與抗菌特性探討。國立台灣大學化學工程學研究所碩士論文,2022. [131] Ng JJ and Supaphol P, Rotating-disk electrospinning: Needleless electrospinning of poly(caprolactone), poly(lactic acid) and poly(vinyl alcohol) nanofiber mats with controlled morphology. Journal of Polymer Research, 2018, 25, 155. [132] Deitzel JM, Kleinmeyer JD, Hirvonen JK, and Beck Tan NC, Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer, 2001, 42(19), 8163-8170. [133] Lee YS and Arinzeh TL, Electrospun Nanofibrous Materials for Neural Tissue Engineering. Polymers, 2011, 3(1), 413-426. [134] Gonzales RR, Park MJ, Tijing L, Han DS, Phuntsho S, and Shon HK, Modification of nanofiber support layer for thin film composite forward osmosis membranes via layer-by-layer polyelectrolyte deposition. Membranes, 2018, 8(3), 70. [135] De Prá MAA, Ribeiro-do-Valle RM, Maraschin M, and Veleirinho B, Effect of collector design on the morphological properties of polycaprolactone electrospun fibers. Materials Letters, 2017, 193, 154-157. [136] Silva ACQ, Silvestre AJD, Vilela C, and Freire CSR, Natural polymers-based materials: A contribution to a greener future. Molecules, 2021, 27(1), 94. [137] Sionkowska A, Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Progress in Polymer Science, 2011, 36(9), 1254-1276. [138] Celebioglu A and Uyar T, Electrospinning of nanofibers from non-polymeric systems: polymer-free nanofibers from cyclodextrin derivatives. Nanoscale, 2012, 4, 621-631. [139] Sill TJ and von Recum HA, Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 2008, 29(13), 1989-2006. [140] Repanas A, Wolkers WF, Gryshkov O, Kalozoumis P, Mueller M, Zernetsch H, Korossis S, and Glasmacher B, Coaxial electrospinning as a process to engineer biodegradable polymeric scaffolds as drug delivery systems for anti-inflammatory and anti-thrombotic pharmaceutical agents. Clinical & Experimental Pharmacology, 2015, 5(5), 1000192. [141] Ruys AJ, Biomimetic biomaterials: Structure and applications. Woodhead Publishing, 2013. [142] Patel NR and Gohil PP, A review on biomaterials: Scope, applications & human anatomy significance. International Journal of Emerging Technology and Advanced Engineering, 2012, 2(4), 91-101. [143] 宋信文、陳松青,"生醫材料簡介",生物產業技術概論,國立清華大學,ISBN13 978-9-57-289860-4,2003. [144] He X, Feng B, Huang C, Wang H, Ge Y, Hu R, Yin M, Xu Z, Wang W, Fu W, and Zheng J, Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering. International Journal of Nanomedicine, 2015, 10, 2089-2099. [145] Islam S, Bhuiyan MAR, and Islam MN, Chitin and chitosan: Structure, properties and applications in biomedical engineering. Journal of Polymers and the Environment, 2017, 25, 854-866. [146] Chen PH, Kuo TY, Liu FH, Hwang YH, Ho MH, Wang DM, Lai JY, and Hsieh HJ, Use of dicarboxylic acids to improve and diversify the material properties of porous chitosan membranes. Journal of Agricultural and Food Chemistry, 2008, 56(19), 9015-9021. [147] Brugnerotto J, Lizardi J, Goycoolea FM, Argüelles-Monal W, Desbrières J, and Rinaudo M, An infrared investigation in relation with chitin and chitosan characterization. Polymer, 2001, 42(8), 3569-3580. [148] Sogias IA, Khutoryanskiy VV, and Williams AC, Exploring the factors affecting the solubility of chitosan in water. Macromolecular Chemistry and Physics, 2010, 211(4), 426-433. [149] Chung YC and Chen CY, Antibacterial characteristics and activity of acid-soluble chitosan. Bioresource Technology, 2008, 99(8), 2806-2814. [150] Thompson MS, Vadala TP, Vadala ML, Lin Y, and Riffle JS, Synthesis and applications of heterobifunctional poly(ethylene oxide) oligomers. Polymer, 2008, 49(2), 345-373. [151] Zarrintaj P, Saeb MR, Jafari SH, and Mozafari M, Application of compatibilized polymer blends in biomedical fields. Compatibilization of Polymer Blends, 2020, Chapter 18, 511-537. [152] Lu JW, Zhu YL, Guo ZX, Hu P, and Yu J, Electrospinning of sodium alginate with poly(ethylene oxide). Polymer, 2006, 47(23), 8026-8031. [153] Ma L, Deng L, and Chen J, Applications of poly(ethylene oxide) in controlled release tablet systems: a review. Drug Development and Industrial Pharmacy, 2014, 40(7), 845-851. [154] DE MELO EB, A QSAR study of matrix metalloproteinases type 2 (MMP-2) inhibitors with cinnamoyl pyrrolidine derivatives. Scientia Pharmaceutica, 2012, 80(2), 265-282. [155] Quinde-Axtell Z and Baik BK, Phenolic compounds of barley grain and their implication in food product discoloration. Journal of Agricultural and Food Chemistry, 2006, 54(26), 9978-9984. [156] Rodrigues JL, Araújo RG, Prather KLJ, Kluskens LD, and Rodrigues LR, Heterologous production of caffeic acid from tyrosine in Escherichia coli. Enzyme and Microbial Technology, 2015, 71, 36-44. [157] Khan F, Bamunuarachchi NI, Tabassum N, and Kim YM, Caffeic acid and its derivatives: antimicrobial drugs toward microbial pathogens. Journal of Agricultural and Food Chemistry, 2021, 69(10), 2979-3004. [158] Perumal S, Mahmud R, and Ismail S, Mechanism of action of isolated caffeic acid and epicatechin 3-gallate from Euphorbia hirta against Pseudomonas aeruginosa. Pharmacognosy Magazine, 2017, 13, S311-S315. [159] Vertuccio L, Guadagno L, D’Angelo A, Viola V, Raimondo M, and Catauro M, Sol-gel synthesis of caffeic acid entrapped in silica/polyethylene glycol based organic-inorganic hybrids: drug delivery and biological properties. Applied Sciences, 2023, 13(4), 2164. [160] Wusigale, Wang T, Hu Q, Xue J, Khan MA, Liang L, and Luo Y, Partition and stability of folic acid and caffeic acid in hollow zein particles coated with chitosan. International Journal of Biological Macromolecules, 2021, 183, 2282-2292. [161] Zhang M, Li J, Zhang L, and Chao J, Preparation and spectral investigation of inclusion complex of caffeic acid with hydroxypropyl-β-cyclodextrin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 71(5), 1891-1895. [162] Noreña-Caro D and Alvarez-Láinez M, Experimental design as a tool for the manufacturing of filtering media based on electrospun polyacrylonitrile/β-cyclodextrin fibers. International Journal on Interactive Design and Manufacturing (IJIDeM), 2016, 10, 153-164. [163] de Miranda JC, Martins TEA, Veiga F, and Ferraz HG, Cyclodextrins and ternary complexes: technology to improve solubility of poorly soluble drugs. Brazilian Journal of Pharmaceutical Sciences, 2011, 47(4), 665-681. [164] Kurkov SV and Loftsson T, Cyclodextrins. International Journal of Pharmaceutics, 2013, 453(1), 167-180. [165] Jansook P, Ogawa N, and Loftsson T, Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. International Journal of Pharmaceutics, 2018, 535(1-2), 272-284. [166] Pinho E, Soares G, and Henriques M, Evaluation of antibacterial activity of caffeic acid encapsulated by β-cyclodextrins. Journal of Microencapsulation, 2015, 32(8), 804-810. [167] Narayanan V, Alam M, Ahmad N, Balakrishnan SB, Ganesan V, Shanmugasundaram E, Rajagopal B, and Thambusamy S, Electrospun poly (vinyl alcohol) nanofibers incorporating caffeic acid/cyclodextrins through the supramolecular assembly for antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 249, 119308. [168] Catauro M, Barrino F, Poggetto GD, Crescente G, Piccolella S, and Pacifico S, New SiO2/caffeic acid hybrid materials: Synthesis, spectroscopic characterization, and bioactivity. Materials, 2020, 13(2), 394. [169] Zanardi C, Ferrari E, Pigani L, Arduini F, and Seeber R, Development of an electrochemical sensor for NADH determination based on a caffeic acid redox mediator supported on carbon black. Chemosensors, 2015, 3(2), 118-128. [170] Le Person A, Lacoste AS, and Cornard JP, Photo-degradation of trans-caffeic acid in aqueous solution and influence of complexation by metal ions. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 265, 10-19. [171] Joshi RS, Wagh TP, Sharma N, Mulani FA, Sonavane U, Thulasiram HV, Joshi R, Gupta VS, and Giri AP, Way toward “dietary pesticides”: Molecular investigation of insecticidal action of caffeic acid against Helicoverpa armigera. Journal of Agricultural and Food Chemistry, 2014, 62(45), 10847-10854. [172] Genaro-Mattos TC, Maurício ÂQ, Rettori D, Alonso A, and Hermes-Lima M, Antioxidant activity of caffeic acid against iron-induced free radical generation—A chemical approach. PLoS One, 2015, 10(6), e0129963. [173] Holzwarth U and Gibson N, The Scherrer equation versus the ''Debye-Scherrer equation''. Nature Nanotechnology, 2011, 6, 534. [174] Shiozawa R, Inoue Y, Murata I, and Kanamoto I, Effect of antioxidant activity of caffeic acid with cyclodextrins using ground mixture method. Asian Journal of Pharmaceutical Sciences, 2018, 13(1), 24-33. [175] Gatiatulin AK, Grishin IA, Buzyurov AV, Mukhametzyanov TA, Ziganshin MA, and Gorbatchuk VV, Determination of melting parameters of cyclodextrins using fast scanning calorimetry. International Journal of Molecular Sciences, 2022, 23(21), 13120. [176] Bilal M, de Brauer C, Claudy P, Germain P, and Létoffé JM, β-Cyclodextrin hydration: a calorimetric and gravimetric study. Thermochimica Acta, 1995, 249, 63-73. [177] IR Spectrum Table & Chart, Merck https://www.sigmaaldrich.com/TW/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table [178] Yuan C, Liu B, and Liu H, Characterization of hydroxypropyl-β-cyclodextrins with different substitution patterns via FTIR, GC–MS, and TG–DTA. Carbohydrate Polymers, 2015, 118, 36-40. [179] Aly AM, Qato MK, and Ahmad MO, Enhancement of the dissolution rate and bioavailability of glipizide through cyclodextrin inclusion complex. Pharmaceutical Technology, 2003, 54-63. [180] Apelblat A, Vraneš M, Gadžurić S, and Bešter-Rogač M, Conductivity study with caffeinate anion - Caffeic acid and its sodium and potassium salts. Journal of Molecular Liquids, 2020, 300, 112219. [181] Salles THC, Lombello CB, and d''Ávila MA, Electrospinning of gelatin/poly (vinyl pyrrolidone) blends from water/acetic acid solutions. Materials Research, 2015, 18(3), 509-518. [182] Yadav S, Shire SJ, and Kalonia DS, Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies. Journal of Pharmaceutical Sciences, 2010, 99(12), 4812-4829. [183] Wang W, Bo S, Li S, and Qin W, Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation. International Journal of Biological Macromolecules, 1991, 13(5), 281-285. [184] Álvarez E, Vázquez G, Sánchez-Vilas M, Sanjurjo B, and Navaza JM, Surface tension of organic acids + water binary mixtures from 20 °C to 50 °C. Journal of Chemical & Engineering Data, 1997, 42(5), 957-960. [185] Hsin WL, Sheng YJ, Lin SY, and Tsao HK, Surface tension increment due to solute addition. Physical Review E, 2004, 69(3), 031605. [186] Szejtli J and Budai ZS, Acid hydrolysis of β-cyclodextrin. Acta Chimica Academiae Scientiarum Hungaricae, 1976, 91(1), 73-80. [187] Al-Shammiri M, Evaporation rate as a function of water salinity. Desalination, 2002, 150(2), 189-203. [188] Stan D, Codrici E, Enciu AM, Olewnik-Kruszkowska E, Gavril G, Ruta LL, Moldovan C, Brincoveanu O, Bocancia-Mateescu LA, Mirica AC, Stan D, and Tanase C, Exploring the impact of alginate—PVA ratio and the addition of bioactive substances on the performance of hybrid hydrogel membranes as potential wound dressings. Gels, 2023, 9(6), 476. [189] Bren A, Park JO, Towbin BD, Dekel E, Rabinowitz JD, and Alon U, Glucose becomes one of the worst carbon sources for E. coli on poor nitrogen sources due to suboptimal levels of cAMP. Scientific Reports, 2016, 6, 24834. [190] Minimal Inhibitory Concentrations and Antimicrobial Dosing: How are they related? Lablogatory, 2016. https://labmedicineblog.com/2016/10/20/minimal-inhibitory-concentrations-and-antimicrobial-dosing-how-are-they-related/ [191] Xu T, Zhu H, Liu R, Wu X, Chang G, Yang Y, and Yang Z, The protective role of caffeic acid on bovine mammary epithelial cells and the inhibition of growth and biofilm formation of Gram-negative bacteria isolated from clinical mastitis milk. Frontiers in Immunology, 2022, 13, 1005430. [192] Kostić M, Ivanov M, Stojković D, Ćirić A, and Soković M, Antibacterial and antibiofilm activity of selected polyphenolic compounds: An in vitro study on Staphylococcus aureus. Lekovite Sirovine, 2020, 40, 57-61. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92541 | - |
| dc.description.abstract | 咖啡酸為肉桂酸的衍生物,具有良好的抗菌性質,然而其物化性質有待改善,包括溶解度、溶解速率、穩定性等等。為了提升咖啡酸的物化性質及抗菌效果,本研究使用3種方法製備咖啡酸與β-環糊精之包合物(inclusion complex, IC),並藉由XRD、DSC、FT-IR方法證實藉由溶劑蒸發法能夠成功製備包合物。同時,包合物的形成能夠有效提升咖啡酸在pH=7.4磷酸鹽緩衝溶液中的溶解度與溶解速率:溶解度增加至1.5倍且溶解速率提升至3倍。
為了將抗菌藥物咖啡酸應用在傷口敷材,本研究使用含有生物相容性佳的天然高分子幾丁聚醣、機械性質佳的人工合成高分子聚氧化乙烯之電紡纖維膜作為咖啡酸的載體,測試在相同製程參數與環境條件下,不同咖啡酸在電紡纖維膜中的濃度對電紡製程與纖維膜的性質影響。實驗結果發現,隨著纖維膜中咖啡酸濃度的增加,電紡液的黏度會大幅下降,使得電紡製程變得愈來愈困難,電紡液液滴明顯且產率由將近9成大幅下降至不到3成。與此同時,纖維的直徑變小,機械強度變差,且纖維更加的疏水。雖說高濃度的咖啡酸有助於纖維膜的抗菌效果,使細菌存活率降至幾乎為0%。然而其過低產率使之不符經濟效益。因此後續決定選用幾丁聚醣與咖啡酸重量比1:0.001作為含有咖啡酸-β-環糊精包合物的纖維組成比例。 在最後的部分,本研究將咖啡酸-β-環糊精包合物、幾丁聚醣、聚氧化乙烯共同製備成電紡纖維膜,以期提升咖啡酸的物化性質。然而,酸性的電紡液會使得β-環糊精在電紡液配製過程中發生水解反應,產生單醣、雙醣、寡醣等醣類,連帶影響電紡液中的溶劑揮發速率下降,造成纖維中顆粒狀缺陷結構增加。同時,纖維的產率減少、機械強度也不佳。在抗菌方面,由於β-環糊精會水解成細菌所需的糖類,反倒促進了細菌的增生。 綜上所述,雖然β-環糊精的包合能夠有效提升咖啡酸的溶解度及溶解速率,理應能有效提升咖啡酸的抗菌效果。然而當咖啡酸-β-環糊精包合物應用在幾丁聚醣電紡纖維製程時,酸性電紡液卻會使得β-環糊精水解成醣類,反而促進了細菌的繁殖。因此未來如果要製備含有咖啡酸-β-環糊精包合物的電紡纖維膜,可以考慮選用中性的溶劑進行電紡液的配製。如此一來,應能將完整的包合物連同高分子一同電紡成纖維膜,並有效提升藥物的抗菌效果,以期能發展成為具有臨床應用價值的傷口敷材。 | zh_TW |
| dc.description.abstract | Caffeic acid is a derivative of cinnamic acid, which has good antibacterial properties, but its physicochemical properties need to be improved, including solubility, dissolution rate, stability, and so on. To improve the physicochemical properties and antibacterial activity of caffeic acid, three methods were used in this study to prepare the inclusion complex (IC) of caffeic acid with β-cyclodextrin. Later, some techniques like XRD, DSC, and FT-IR were applied to confirm that the IC could be successfully prepared by solvent evaporation method. Besides, the formation of inclusion complex could effectively improve the solubility and dissolution rate of caffeic acid in pH=7.4 phosphate buffered saline: the solubility increased to 1.5 times and the dissolution rate up to 3 times.
In order to apply the antibacterial drug caffeic acid to wound dressings, this study used an electrospun fiber membrane containing natural polymer chitosan with good biocompatibility and synthetic polymer poly(ethylene oxide) with good mechanical properties as the carrier of caffeic acid. Under the same process parameters and environmental conditions, the effects of different concentrations of caffeic acid in the electrospun fiber membrane on the electrospinning process and the properties of the membrane were tested. The experimental results showed that as the concentration of caffeic acid in the fiber membrane increased, the viscosity of the electrospinning solution would drop significantly, making the electrospinning process more difficult. The droplet of the electrospinning solution was obvious and the percentage yield decreased from nearly 90% to less than 30%. Meanwhile, the diameter of the fiber became smaller, the mechanical strength became worse, and the membrane possessed more hydrophobic. Although the high concentration of caffeic acid contributed to the better antibacterial activity of the fiber membrane, where the bacterial survival rate was reduced to almost 0%. However, its low percentage yield made it uneconomical. Therefore, it was later decided to choose chitosan and caffeic acid at a weight ratio of 1:0.001 as the composition ratio of fibers containing caffeic acid-β-cyclodextrin inclusion complex. In the final part of this study, caffeic acid-β-cyclodextrin inclusion complex, chitosan, and poly(ethylene oxide) were co-prepared into an electrospun membrane for the purpose of enhancing the physicochemical properties of caffeic acid. Nonetheless, the acidic electrospinning solution would lead to the hydrolysis of β-cyclodextrin into sugars like oligosaccharides during the preparation process of the electrospinning solution, which would decrease the solvent evaporation rate of the electrospinning solution, resulting in an increase of some defects like beaded structures in the fibers. At the same time, the yield of the fiber was reduced and the mechanical strength turned out to be poor. As for the antibacterial activity, since β-cyclodextrin underwent hydrolysis into sugars required by bacteria, it would actually foster the proliferation of bacteria. In summary, although the inclusion of β-cyclodextrin can effectively improve the solubility and dissolution rate of caffeic acid, it should be able to enhance the antibacterial activity of caffeic acid. However, when the inclusion complex was used in the electrospinning process, the acidic solution would hydrolyze the β-cyclodextrin into sugars, which in turn promoted the reproduction of bacteria. Therefore, if electrospun membranes containing caffeic acid-β-cyclodextrin inclusion complex are to be prepared in the future, neutral solvents can be considered for the preparation of electrospinning solutions. In this way, it may be possible to electrospin the inclusion complex together with the polymer into membrane, and effectively improve the antibacterial effect of the drug, so as to be developed into a wound dressing material with clinical application value. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-04-08T16:13:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-04-08T16:13:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝………………………………………………………………………………………I
摘要……………………………………………………………………………………III Abstract………………………………………………………………………………V 目次…………………………………………………………………………………VII 圖次………………………………………………………………………………XII 表次………………………………………………………………………………XIX 縮寫與符號說明……………………………………………………………………XXI 中英名詞對照表…………………………………………………………………XXV 第1章緒論…………………………………………………………………………1 1.1研究背景與動機…………………………………………………………….…1 1.2研究流程與架構…………………………………………………………….…4 第2章文獻回顧…………………………………………………………….…………7 2.1 活性藥物成分的固體形式……………………………………………………7 2.1.1 包合物的定義與組成…………………………………………………8 2.1.1.1 環糊精包合物…………………………………………………10 2.1.1.2 其他包合物……………………………………………………12 2.1.2 包合物的物化性質…………………………………………………14 2.1.2.1 熔點……………………………………………………………14 2.1.2.2 溶解度…………………………………………………………15 2.1.2.3 溶解速率………………………………………………………16 2.1.2.4 穩定性…………………………………………………………17 2.1.3 包合物的製備方法…………………………………………………18 2.1.4 包合物的鑑定方法…………………………………………………19 2.1.4.1 X光繞射分析(XRD)…………………………………………20 2.1.4.2 差示掃描熱量分析(DSC)……………………………………20 2.1.4.3 傅立葉轉換紅外光吸收光譜測定(FT-IR)…………………21 2.1.4.4 紫外光-可見光分光光度法(UV-Vis)………………………21 2.1.5 包合物的應用………………………………………………………25 2.2 靜電紡絲法…………………………………………………………………26 2.2.1 靜電紡絲法的發展及原理…………………………………………26 2.2.2 靜電紡絲技術之製程變因…………………………………………28 2.2.2.1 溶液性質………………………………………………………29 2.2.2.2 操作參數………………………………………………………32 2.2.2.3 環境因素………………………………………………………34 2.2.3 靜電紡絲裝置分類…………………………………………………36 2.2.3.1 噴絲頭種類……………………………………………………36 2.2.3.2 收集器類型……………………………………………………40 2.2.4 靜電紡絲材料種類…………………………………………………42 2.2.4.1 高分子材料……………………………………………………42 2.2.4.2 小分子材料……………………………………………………43 2.2.5 靜電紡絲技術的生醫應用與優點…………………………………44 2.3 生醫材料……………………………………………………………………45 2.3.1 幾丁聚醣(chitosan)…………………………………………………46 2.3.2 聚氧化乙烯(polyethylene oxide)……………………………………47 2.3.3 咖啡酸(caffeic acid)…………………………………………………48 2.3.4 β-環糊精(beta-cyclodextrin)…………………………………………49 第3章實驗藥品、儀器與方法……………………………………………………51 3.1 實驗材料……………………………………………………………………51 3.2 實驗儀器……………………………………………………………………53 3.3 實驗方法……………………………………………………………………56 3.3.1 咖啡酸穩定性測試…………………………………………………56 3.3.2 咖啡酸-β-環糊精包合物之包合比例測定…………………………58 3.3.3 咖啡酸-β-環糊精包合物製備………………………………………60 3.3.3.1 物理混合物製備………………………………………………60 3.3.3.2 溶劑輔助研磨法………………………………………………61 3.3.3.3 共沉澱法………………………………………………………62 3.3.3.4 溶劑蒸發法……………………………………………………63 3.3.4 咖啡酸-β-環糊精包合物性質分析…………………………………64 3.3.4.1 X光繞射分析(XRD)…………………………………………65 3.3.4.2 差示掃描熱量分析(DSC)……………………………………66 3.3.4.3 傅立葉轉換紅外光吸收光譜測定(FT-IR)…………………67 3.3.4.4 溶解度測定……………………………………………………68 3.3.4.5 溶解曲線測定…………………………………………………70 3.3.4.6 穩定性測定……………………………………………………70 3.3.5 電紡溶液配製………………………………………………………71 3.3.6 電紡溶液物化性質分析……………………………………………75 3.3.6.1 導電度測定……………………………………………………75 3.3.6.2 黏度測定………………………………………………………75 3.3.6.3 表面張力測定…………………………………………………76 3.3.7 靜電紡絲纖維膜製備………………………………………………77 3.3.7.1 靜電紡絲設備及製程參數……………………………………77 3.3.7.2電紡纖維膜製備………………………………………………80 3.3.8 電紡纖維膜特性分析………………………………………………82 3.3.8.1 膜材厚度重量及產率分析……………………………………82 3.3.8.2 掃描式電子顯微鏡(SEM)觀察型態…………………………83 3.3.8.3 纖維直徑與孔洞大小分析……………………………………85 3.3.8.4 機械強度分析…………………………………………………86 3.3.8.5 膨潤性質測定…………………………………………………87 3.3.8.6 親疏水性分析…………………………………………………88 3.3.8.7 藥物釋放應用…………………………………………………89 3.3.8.8 電紡纖維膜抗菌性測定-體外抗細菌生長測試……………91 第4章結果與討論…………………………………………………………………93 4.1 咖啡酸穩定性分析…………………………………………………………93 4.2 咖啡酸-β-環糊精包合物之包合比例分析………………………………100 4.3 咖啡酸-β-環糊精包合物性質分析………………………………………107 4.3.1 X光繞射分析(XRD)………………………………………………108 4.3.2差示掃描熱量分析(DSC)…………………………………………112 4.3.3傅立葉轉換紅外光吸收光譜測定(FT-IR) ………………………114 4.3.4 溶解度分析…………………………………………………………116 4.3.5 溶解曲線分析………………………………………………………118 4.3.6 穩定性分析…………………………………………………………119 4.4 電紡溶液物化性質分析……………………………………………………120 4.4.1 溶液導電度分析……………………………………………………122 4.4.2 溶液黏度分析………………………………………………………124 4.4.3 溶液表面張力分析…………………………………………………128 4.5 電紡纖維膜性質分析………………………………………………………130 4.5.1纖維膜厚度重量及產率分析………………………………………132 4.5.2纖維膜型態探討……………………………………………………135 4.5.3纖維膜直徑與孔洞大小分析………………………………………138 4.5.4纖維膜機械性質……………………………………………………143 4.5.5纖維膜膨潤性質……………………………………………………145 4.5.6纖維膜親疏水性……………………………………………………147 4.5.7纖維膜藥物釋放分析………………………………………………150 4.5.8電紡纖維膜抗菌性測定-體外抗細菌生長測試……………………154 第5章結論與未來研究方向………………………………………………………163 5.1 結論…………………………………………………………………………163 5.2 未來研究方向………………………………………………………………166 參考文獻……………………………………………………………………………169 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 抗菌效果 | zh_TW |
| dc.subject | 包合物 | zh_TW |
| dc.subject | 靜電紡絲 | zh_TW |
| dc.subject | 咖啡酸 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | β-環糊精 | zh_TW |
| dc.subject | antibacterial activity | en |
| dc.subject | chitosan | en |
| dc.subject | caffeic acid | en |
| dc.subject | β-cyclodextrin | en |
| dc.subject | inclusion complex | en |
| dc.subject | electrospinning | en |
| dc.title | 添加咖啡酸與β-環糊精包合物之幾丁聚醣複合電紡纖維膜之製備、特性分析及生醫應用 | zh_TW |
| dc.title | Preparation and Characterization of Chitosan Composite Electrospun Fibrous Membranes Containing Caffeic Acid/β-Cyclodextrin Inclusion Complex for Biomedical Application | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王大銘;謝子陽 | zh_TW |
| dc.contributor.oralexamcommittee | Da-Ming Wang;Tzu-Yang Hsien | en |
| dc.subject.keyword | 幾丁聚醣,咖啡酸,β-環糊精,包合物,靜電紡絲,抗菌效果, | zh_TW |
| dc.subject.keyword | chitosan,caffeic acid,β-cyclodextrin,inclusion complex,electrospinning,antibacterial activity, | en |
| dc.relation.page | 185 | - |
| dc.identifier.doi | 10.6342/NTU202400819 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-03-28 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2029-03-27 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 9.42 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
