Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9249
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙福杉
dc.contributor.authorYun-Chen Chiangen
dc.contributor.author江昀真zh_TW
dc.date.accessioned2021-05-20T20:14:33Z-
dc.date.available2012-07-24
dc.date.available2021-05-20T20:14:33Z-
dc.date.copyright2009-07-24
dc.date.issued2009
dc.date.submitted2009-07-17
dc.identifier.citationAbdi S, Lee DH, Chung JM (1998) The anti-allodynic effects of amitriptyline, gabapentin, and lidocaine in a rat model of neuropathic pain. Anesthesia and analgesia 87:1360-1366.
Alkire MT, Nathan SV (2005) Does the amygdala mediate anesthetic-induced amnesia? Basolateral amygdala lesions block sevoflurane-induced amnesia. Anesthesiology 102:754-760.
Aloisi AM, Zimmermann M, Herdegen T (1997) Sex-dependent effects of formalin and restraint on c-Fos expression in the septum and hippocampus of the rat. Neuroscience 81:951-958.
Aloisi AM, Porro CA, Cavazzuti M, Baraldi P, Carli G (1993) 'Mirror pain' in the formalin test: behavioral and 2-deoxyglucose studies. Pain 55:267-273.
Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn ResonMed 25:390-397.
Bingel U, Quante M, Knab R, Bromm B, Weiller C, Buchel C (2002) Subcortical structures involved in pain processing: evidence from single-trial fMRI. Pain 99:313-321.
Bolan PJ, Yacoub E, Garwood M, Ugurbil K, Harel N (2006) In vivo micro-MRI of intracortical neurovasculature. NeuroImage 32:62-69.
Branston NM (1995) Neurogenic control of the cerebral circulation. CerebrovascBrain Metab Rev 7:338-349.
Casey KL, Svensson P, Morrow TJ, Raz J, Jone C, Minoshima S (2000) Selective opiate modulation of nociceptive processing in the human brain. Journal of neurophysiology 84:525-533.
Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B, Rossier J, Hamel E (2004) Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J Neurosci 24:8940-8949.
Chang C, Shyu BC (2001) A fMRI study of brain activations during non-noxious and noxious electrical stimulation of the sciatic nerve of rats. Brain Res 897:71-81.
Chen CC, Shih YY, Mo KC, Yao NW, Lin ZJ, Huang CH, Shyu BC, Chang C (2009) Mapping dopaminergic denervation in Parkinson disease in vivo and in situ: the visualization of structural details by CBV-weighted fMRI. The 24th International Symposium on Cerebral Blood Flow, Metabolism, & Function, Chicago, IL.
Chen YC, Choi JK, Andersen SL, Rosen BR, Jenkins BG (2005a) Mapping dopamine D2/D3 receptor function using pharmacological magnetic resonance imaging. Psychopharmacology (Berl) 180:705-715.
Chen YI, Choi JK, Jenkins BG (2005b) Mapping interactions between dopamine and adenosine A2a receptors using pharmacologic MRI. Synapse (New York, NY 55:80-88.
Choi JK, Chen YI, Hamel E, Jenkins BG (2006) Brain hemodynamic changes mediated by dopamine receptors: Role of the cerebral microvasculature in dopamine-mediated neurovascular coupling. NeuroImage 30:700-712.
Chudler EH (1998) Response properties of neurons in the caudate-putamen and globus pallidus to noxious and non-noxious thermal stimulation in anesthetized rats. Brain research 812:283-288.
Chudler EH, Dong WK (1995) The role of the basal ganglia in nociception and pain. Pain 60:3-38.
Chudler EH, Sugiyama K, Dong WK (1993) Nociceptive responses in the neostriatum and globus pallidus of the anesthetized rat. Journal of neurophysiology 69:1890-1903.
Chugani HT, Hovda DA, Villablanca JR, Phelps ME, Xu WF (1991) Metabolic maturation of the brain: a study of local cerebral glucose utilization in the developing cat. JCerebBlood Flow Metab 11:35-47.
Cohen SR, Kimes AS, London ED (1991) Morphine decreases cerebral glucose utilization in limbic and forebrain regions while pain has no effect. Neuropharmacology 30:125-134.
Cohen Z, Bonvento G, Lacombe P, Hamel E (1996) Serotonin in the regulation of brain microcirculation. ProgNeurobiol 50:335-362.
Darland T, Heinricher MM, Grandy DK (1998) Orphanin FQ/nociceptin: a role in pain and analgesia, but so much more. Trends in neurosciences 21:215-221.
Dauge V, Kalivas PW, Duffy T, Roques BP (1992) Effect of inhibiting enkephalin catabolism in the VTA on motor activity and extracellular dopamine. Brain research 599:209-214.
de la Fuente-Fernandez R, Schulzer M, Stoessl AJ (2002) The placebo effect in neurological disorders. Lancet Neurol 1:85-91.
Devine DP, Leone P, Pocock D, Wise RA (1993) Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies. The Journal of pharmacology and experimental therapeutics 266:1236-1246.
Di Chiara G, Imperato A (1988) Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. The Journal of pharmacology and experimental therapeutics 244:1067-1080.
Dixon AL, Prior M, Morris PM, Shah YB, Joseph MH, Young AM (2005) Dopamine antagonist modulation of amphetamine response as detected using pharmacological MRI. Neuropharmacology 48:236-245.
Elmer GI, Pieper JO, Rubinstein M, Low MJ, Grandy DK, Wise RA (2002) Failure of intravenous morphine to serve as an effective instrumental reinforcer in dopamine D2 receptor knock-out mice. J Neurosci 22:RC224.
Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462-464.
Frahm J, Bruhn H, Merboldt KD, Hanicke W (1992) Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. JMagn ResonImaging 2:501-505.
Franklin KB, Abbott FV, English MJ, Jeans ME, Tasker RA, Young SN (1990) Tryptophan-morphine interactions and postoperative pain. Pharmacology, biochemistry, and behavior 35:157-163.
Gold MS, Thut PD (2001) Lithium increases potency of lidocaine-induced block of voltage-gated Na+ currents in rat sensory neurons in vitro. The Journal of pharmacology and experimental therapeutics 299:705-711.
Gozzi A, Ceolin L, Schwarz A, Reese T, Bertani S, Crestan V, Bifone A (2007) A multimodality investigation of cerebral hemodynamics and autoregulation in pharmacological MRI. Magnetic resonance imaging 25:826-833.
Gysling K, Wang RY (1983) Morphine-induced activation of A10 dopamine neurons in the rat. Brain research 277:119-127.
Hagelberg N, Kajander JK, Nagren K, Hinkka S, Hietala J, Scheinin H (2002) Mu-receptor agonism with alfentanil increases striatal dopamine D2 receptor binding in man. Synapse (New York, NY 45:25-30.
Hagelberg N, Jaaskelainen SK, Martikainen IK, Mansikka H, Forssell H, Scheinin H, Hietala J, Pertovaara A (2004a) Striatal dopamine D2 receptors in modulation of pain in humans: a review. Eur J Pharmacol 500:187-192.
Hagelberg N, Aalto S, Kajander J, Oikonen V, Hinkka S, Nagren K, Hietala J, Scheinin H (2004b) Alfentanil increases cortical dopamine D2/D3 receptor binding in healthy subjects. Pain 109:86-93.
Harel N, Lee SP, Nagaoka T, Kim DS, Kim SG (2002) Origin of negative blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab 22:908-917.
Heeger DJ, Ress D (2002) What does fMRI tell us about neuronal activity? NatRevNeurosci 3:142-151.
Heiss WD, Herholz K (2006) Brain receptor imaging. JNuclMed 47:302-312.
Henry DJ, Wise RA, Rompre PP, White FJ (1992) Acute depolarization block of A10 dopamine neurons: interactions of morphine with dopamine antagonists. Brain research 596:231-237.
Hommer DW, Pert A (1983) The actions of opiates in the rat substantia nigra: an electrophysiological analysis. Peptides 4:603-608.
Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577-580.
Hyder F, Kida I, Behar KL, Kennan RP, Maciejewski PK, Rothman DL (2001) Quantitative functional imaging of the brain: towards mapping neuronal activity by BOLD fMRI. NMR Biomed 14:413-431.
Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer's disease. Nature reviews 5:347-360.
Jacobs AH, Li H, Winkeler A, Hilker R, Knoess C, Ruger A, Galldiks N, Schaller B, Sobesky J, Kracht L, Monfared P, Klein M, Vollmar S, Bauer B, Wagner R, Graf R, Wienhard K, Herholz K, Heiss WD (2003) PET-based molecular imaging in neuroscience. Eur J Nucl Med Mol Imaging 30:1051-1065.
Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483-488.
Keller PJ, Drayer BP, Fram EK, Williams KD, Dumoulin CL, Souza SP (1989) MR angiography with two-dimensional acquisition and three-dimensional display. Work in progress. Radiology 173:527-532.
Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. ProcNatlAcadSciUSA 89:5675-5679.
Lamas X, Farre M, Moreno V, Cami J (1994) Effects of morphine in postaddict humans: a meta-analysis. Drug and alcohol dependence 36:147-152.
Lin MT, Wu JJ, Tsay BL (1984) Effects of kainic acid injections in the striatum on physiologic and behavioral functions in conscious rats. Experimental neurology 83:71-83.
Lindauer U, Villringer A, Dirnagl U (1993) Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics. AmJPhysiol 264:H1223-H1228.
Liu ZM, Schmidt KF, Sicard KM, Duong TQ (2004) Imaging oxygen consumption in forepaw somatosensory stimulation in rats under isoflurane anesthesia. Magn Reson Med 52:277-285.
Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150-157.
Lok J, Gupta P, Guo S, Kim WJ, Whalen MJ, van Leyen K, Lo EH (2007) Cell-cell signaling in the neurovascular unit. Neurochemical research 32:2032-2045.
Lorenz J, Minoshima S, Casey KL (2003) Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126:1079-1091.
Lowe AS, Beech JS, Williams SC (2007) Small animal, whole brain fMRI: Innocuous and nociceptive forepaw stimulation. NeuroImage 35:719-728.
Magnusson JE, Fisher K (2000) The involvement of dopamine in nociception: the role of D(1) and D(2) receptors in the dorsolateral striatum. Brain research 855:260-266.
Maldonado R, Saiardi A, Valverde O, Samad TA, Roques BP, Borrelli E (1997) Absence of opiate rewarding effects in mice lacking dopamine D2 receptors. Nature 388:586-589.
Malisza KL, Gregorash L, Turner A, Foniok T, Stroman PW, Allman AA, Summers R, Wright A (2003) Functional MRI involving painful stimulation of the ankle and the effect of physiotherapy joint mobilization. Magnetic resonance imaging 21:489-496.
Mansikka H, Erbs E, Borrelli E, Pertovaara A (2005) Influence of the dopamine D2 receptor knockout on pain-related behavior in the mouse. Brain research 1052:82-87.
Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1987) Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci 7:2445-2464.
Mao J, Mayer DJ, Price DD (1993) Patterns of increased brain activity indicative of pain in a rat model of peripheral mononeuropathy. J Neurosci 13:2689-2702.
Martikainen IK, Hagelberg N, Mansikka H, Hietala J, Nagren K, Scheinin H, Pertovaara A (2005) Association of striatal dopamine D2/D3 receptor binding potential with pain but not tactile sensitivity or placebo analgesia. Neuroscience letters 376:149-153.
Martin JR, Takemori AE (1985) Increased sensitivity to dopamine agonists following a single dose of morphine or levorphanol in mice. Eur J Pharmacol 119:75-84.
Martin JR, Takemori AE (1987) Further evidence that a single dose of an opiate can increase dopamine receptor sensitivity in mice. Eur J Pharmacol 135:203-209.
Mason P (2005) Deconstructing endogenous pain modulations. Journal of neurophysiology 94:1659-1663.
Matsumura A, Mizokawa S, Tanaka M, Wada Y, Nozaki S, Nakamura F, Shiomi S, Ochi H, Watanabe Y (2003) Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography. Neuroimage 20:2040-2050.
McMahon SB, Koltzenburg M (2005) Wall and Melzack's Textbook of Pain: Churchill Livingstone.
Moleman P, van Valkenburg CF, vd Krogt JA (1984) Effects of morphine on dopamine metabolism in rat striatum and limbic structures in relation to the activity of dopaminergic neurones. Naunyn Schmiedebergs Arch Pharmacol 327:208-213.
Morrow TJ, Paulson PE, Danneman PJ, Casey KL (1998) Regional changes in forebrain activation during the early and late phase of formalin nociception: analysis using cerebral blood flow in the rat. Pain 75:355-365.
Neugebauer V (2007) The amygdala: different pains, different mechanisms. Pain 127:1-2.
Nieoullon A, Coquerel A (2003) Dopamine: a key regulator to adapt action, emotion, motivation and cognition. Curr Opin Neurol 16 Suppl 2:S3-9.
Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. ProcNatlAcadSciUSA 87:9868-9872.
Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. ProcNatlAcadSciUSA 89:5951-5955.
Park JA, Choi KS, Kim SY, Kim KW (2003) Coordinated interaction of the vascular and nervous systems: from molecule- to cell-based approaches. Biochemical and biophysical research communications 311:247-253.
Paxinos G, Watson C (1998) The Rat Brain in stereotaxic coordinates: San Diego: Academic Press.
Pelissier T, Laurido C, Hernandez A, Constandil L, Eschalier A (2006) Biphasic effect of apomorphine on rat nociception and effect of dopamine D2 receptor antagonists. Eur J Pharmacol 546:40-47.
Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700-704.
Phelps ME (2000) PET: the merging of biology and imaging into molecular imaging. J Nucl Med 41:661-681.
Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. AnnNeurol 6:371-388.
Piepponen TP, Mikkola JA, Ruotsalainen M, Jonker D, Ahtee L (1999) Characterization of the decrease of extracellular striatal dopamine induced by intrastriatal morphine administration. Br J Pharmacol 127:268-274.
Pinto-Ribeiro F, Ansah OB, Almeida A, Pertovaara A (2008) Influence of arthritis on descending modulation of nociception from the paraventricular nucleus of the hypothalamus. Brain research 1197:63-75.
Qi J, Leahy RM, Cherry SR, Chatziioannou A, Farquhar TH (1998) High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Phys Med Biol 43:1001-1013.
Rooney KF, Armstrong RA, Sewell RD (1991) Increased dopamine receptor sensitivity in the rat following acute administration of sufentanil, U50,488H and D-Ala2-D-Leu5-enkephalin. Naunyn Schmiedebergs Arch Pharmacol 343:458-462.
Rykaczewska-Czerwinska M (2006) Antinociceptive effect of lidocaine in rats. Pharmacol Rep 58:961-965.
Schwartz WJ, Smith CB, Davidsen L, Savaki H, Sokoloff L, Mata M, Fink DJ, Gainer H (1979) Metabolic mapping of functional activity in the hypothalamo-neurohypophysial system of the rat. Science 205:723-725.
Scremin OU (1995) Cerebral vascular system. In: Paxions, G (Ed), . In: The Rat Nervous System (Paxions G, ed), pp 3-35. San Diego (CA): Academic Press.
Shah YB, Haynes L, Prior MJ, Marsden CA, Morris PG, Chapman V (2005) Functional magnetic resonance imaging studies of opioid receptor-mediated modulation of noxious-evoked BOLD contrast in rats. Psychopharmacology (Berl) 180:761-773.
Shih YY, Chang C, Chen JC, Jaw FS (2008a) BOLD fMRI mapping of brain responses to nociceptive stimuli in rats under ketamine anesthesia. Med Eng Phys.
Shih YY, Chang C, Chen JC, Jaw FS (2008b) BOLD fMRI mapping of brain responses to nociceptive stimuli in rats under ketamine anesthesia. Med Eng Phys.
Shih YY, Chang C, Chen JC, Jaw FS (2008c) BOLD fMRI mapping of brain responses to nociceptive stimuli in rats under ketamine anesthesia. Med Eng Phys 30:953-958.
Shih YY, Chen YY, Chen JC, Chang C, Jaw FS (2007) ISPMER: Integrated System for Combined PET, MRI, and Electrophysiological Recording in Somatosensory Studies in Rats. Nucl Instrum Meth A 580:938-943.
Shih YY, Chen YY, Chen CC, Chen JC, Chang C, Jaw FS (2008d) Whole-brain functional magnetic resonance imaging mapping of acute nociceptive responses induced by formalin in rats using atlas registration-based event-related analysis. J Neurosci Res 86:1801-1811.
Shih YY, Chen YY, Chen CC, Chen JC, Chang C, Jaw FS (2008e) Whole brain fMRI mapping of acute nociceptive responses induced by formalin in rats using atlas registration based event related analysis. J of Neurosci Res.
Shih YY, Chiang YC, Chen JC, Huang CH, Chen YY, Liu RS, Chang C, Jaw FS (2008f) Brain nociceptive imaging in rats using (18)f-fluorodeoxyglucose small-animal positron emission tomography. Neuroscience 155:1221-1226.
Shih YY, Chen CC, Shyu BC, Lin ZJ, Chiang YC, Jaw FS, Chen YY, Chang C (2009) A new scenario for negative functional magnetic resonance imaging signals: endogenous neurotransmission. J Neurosci 29:3036-3044.
Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nature neuroscience 9:569-577.
Shmuel A, Yacoub E, Pfeuffer J, Van de Moortele PF, Adriany G, Hu X, Ugurbil K (2002) Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36:1195-1210.
Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. ProcNatlAcadSciUSA 95:316-321.
Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. Journal of neurochemistry 28:897-916.
Sora I, Takahashi N, Funada M, Ujike H, Revay RS, Donovan DM, Miner LL, Uhl GR (1997) Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proceedings of the National Academy of Sciences of the United States of America 94:1544-1549.
Spanagel R, Herz A, Shippenberg TS (1990) The effects of opioid peptides on dopamine release in the nucleus accumbens: an in vivo microdialysis study. J Neurochem 55:1734-1740.
Tien LT, Park Y, Fan LW, Ma T, Loh HH, Ho IK (2003) Increased dopamine D2 receptor binding and enhanced apomorphine-induced locomotor activity in mu-opioid receptor knockout mice. Brain Res Bull 61:109-115.
Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K (1992) The formalin test: an evaluation of the method. Pain 51:5-17.
Tuor UI, McKenzie E, Tomanek B (2002) Functional magnetic resonance imaging of tonic pain and vasopressor effects in rats. Magn ResonImaging 20:707-712.
Tuor UI, Malisza K, Foniok T, Papadimitropoulos R, Jarmasz M, Somorjai R, Kozlowski P (2000) Functional magnetic resonance imaging in rats subjected to intense electrical and noxious chemical stimulation of the forepaw. Pain 87:315-324.
Willis WD, Westlund KN (1997) Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol 14:2-31.
Willis WD, Jr. (2007) The somatosensory system, with emphasis on structures important for pain. Brain Res Rev 55:297-313.
Wu EX, Tang H, Jensen JH (2004) Applications of ultrasmall superparamagnetic iron oxide contrast agents in the MR study of animal models. NMR Biomed 17:478-483.
Yaksh TL, Al-Rodhan NR, Jensen TS (1988) Sites of action of opiates in production of analgesia. Progress in brain research 77:371-394.
Zadina JE, Hackler L, Ge LJ, Kastin AJ (1997) A potent and selective endogenous agonist for the mu-opiate receptor. Nature 386:499-502.
Zanzonico P (2004) Positron emission tomography: a review of basic principles, scanner design and performance, and current systems. SeminNuclMed 34:87-111.
Zhao F, Zhao T, Zhou L, Wu Q, Hu X (2008a) BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat. NeuroImage 39:248-260.
Zhao F, Williams M, Meng X, Welsh DC, Coimbra A, Crown ED, Cook JJ, Urban MO, Hargreaves R, Williams DS (2008b) BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation. NeuroImage 40:133-147.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9249-
dc.description.abstract由於大腦對於疼痛機制的調節非常複雜,要能夠了解各個腦區的對於痛覺的調節作用便需要同時得知神經活動於時間和空間上的變化。近幾年來,功能性造影技術大量的應用在痛覺研究中。功能性磁振照影和正子電腦斷層是最常見的非侵入式造影技術。這兩種造影技術可以反應腦血流相關動態變化及分子間作用等相關訊息,以利於我們將結果類推至大腦中神經之活動。然而在疼痛刺激下,腦部產生之自主止痛的調節作用可能會對疼痛訊息產生干預。其中,又以多巴胺及類嗎啡系統在痛覺緩解作用中佔了相當重要的角色。本論文利用氟-18標定去氧葡萄糖正子照影及腦血量權重功能性磁振照影,觀察大鼠痛覺反應下血液動力參數變化和代謝的反應。基於全腦神經代謝活動與特定腦區內生性神經傳導物質所調控的神經血管偶和反應等實驗結果,我們探討在這些功能性訊號中類嗎啡蛋白所扮演的調停角色。藉此,提出利用功能性照影技術時需要注意神經傳遞物質及自體調節現象對於影像訊號的影響。zh_TW
dc.description.abstractDue to the complexity of the pain processing in brain, understanding the antinociceptive modulation within brain areas raises a need for simultaneously detecting the spatiotemporal patterns of neuronal activities. In the last decades, arising consciousness of pain using in vivo imaging techniques have dramatically increased. Functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) are the most commonly used techniques providing non-invasive, in vivo measurement of the cerebral hemodynamics as well as molecular processes. However, the antinociceptive effect of the autoregulation may shadow the functional signal under nociception. Among all, dopamine and opioid system are considered to play significant roles in pain modulation, in which endogenous opioid peptides potentially act as a positive regulator. This thesis utilizes cerebral blood volume weighted fMRI and 18F-fluorodeoxyglucose microPET to capture nociception induced hemodynamic responses and metabolic features in the rodent brain. Stating from the investigation of the whole brain neuronal activation to the specific cerebral region with neuronal vascular coupling due to endogenous neurotransmitters, the intervention of opioids in the signal of functional imaging was interpreted. The study highlights the awareness of the endogenous neurotransmission and self-regulation interference in in vivo functional studies of pain.en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:14:33Z (GMT). No. of bitstreams: 1
ntu-98-R97548008-1.pdf: 3646160 bytes, checksum: 6d23237f03f48199fc5738fab415b44d (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContent
1. Introduction…………………………………………………1
1.1 Preface………………………………………………………1
1.2 Outline of opioid system …………………………… 2
1.3 Opioid systems and dopaminergic neuron…………… 6
1.4 Pain and functional imaging……………………… 9
1.5 Objectives………………………………………………… 11
2. Whole Brain Imaging of Morphine Anti-nociception Effect in Rats Using FDG18 microPET……………………………… 12
2.1 Introduction …………………………………………… 13
2.2 Materials and methods………………………………… 15
2.2.1 Subjects………………………………………………… 15
2.2.2 Image experiments…………………………………… 15
2.2.3 Data analysis………………………………………… 16
2.3 Results…………………………………………… 18
2.3.1 Formalin-induced nociceptive maps…………… 18
2.3.2 Antinociceptive effects of lidocaine and morphine…18
2.4 Discussion & Conclusion……………………………… 22
3. Involvement of Opioid Peptides in Negative fMRI Signal……25
3.1 Introduction………………………………………………25
3.2 Materials and methods………………………………… 26
3.2.1 Subjects……………………………………………… 26
3.2.2 fMRI experiments: Animal preparation…………… 26
3.2.3 fMRI experiments: pharmacological MRI……………27
3.2.4 fMRI experiments: Data acquisitions ………28
3.2.5 fMRI experiments: Data analysis………………… 29
3.2.6 Histological experiments: Fos immunohistochemistry of the CPu…30
3.2.7 Electrophysiological recording…………………… 31
3.3 Results …………………………………………………32
3.3.1 CBV changes during graded electrical stimulation…32
3.3.2 Neural activity of the CPu induced by nociceptive electrical stimulation...............................33
3.3.3 Effects of dopamine D2/D3 antagonist on striatal vasoconstriction ...34
3.3.4 The lesion of the substantia nigra (SN) with 6-hydroxydopamine(6-OHDA) diminishes the striatal vasoconstriction……………………34
3.3.5 Effects of morphine on striatal vasoconstriction… ……………………35
3.3.6 The interaction of MOR and D2/D3 systems on striatal vasoconstriction…………………………………36
3.4 Discussion& Conclusion……………………………………46
References…………………………………………………………56 Abbreviation………………………………………………………62
Appendix……………………………………………………………64
dc.language.isoen
dc.title多模式功能性造影研究中嗎啡類蛋白對傷害覺反應之調停zh_TW
dc.titleMulti-modality functional imaging of opioid intervention in nociceptionen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.coadvisor張程
dc.contributor.oralexamcommittee葉子成,黃國書,林發暄
dc.subject.keyword微型正子電腦斷層造影,功能性磁振造影,嗎啡,痛覺,zh_TW
dc.subject.keywordfMRI,microPET,opioids,pain,en
dc.relation.page64
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-07-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf3.56 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved