請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92488完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許麗 | zh_TW |
| dc.contributor.advisor | Li Xu | en |
| dc.contributor.author | 李招辰 | zh_TW |
| dc.contributor.author | Zhao-Chen Li | en |
| dc.date.accessioned | 2024-03-26T16:17:05Z | - |
| dc.date.available | 2024-03-27 | - |
| dc.date.copyright | 2024-03-26 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-11-30 | - |
| dc.identifier.citation | [1] M. B. Prince, "Silicon Solar Energy Converters," Journal of Applied Physics, vol. 26, no. 5, pp. 534-540, 1955.
[2] S. Nazir, A. Ali, A. Aftab, H. A. Muqeet, S. Mirsaeidi, and J.-M. Zhang, "Techno-Economic and Environmental Perspectives of Solar Cell Technologies: A Comprehensive Review," Energies, vol. 16, no. 13, p. 4959, 2023. [3] S. Bowden and C. Honsberg. "Doping." https://www.pveducation.org/pvcdrom/pn-junctions/doping (accessed Oct., 2023). [4] P. S. Exchange. "Electric Field Inside A P-N Junction." https://physics.stackexchange.com/questions/626502/electric-field-inside-a-p-n-junction (accessed Oct., 2023). [5] F. Peng et al., "Terrestrial Study of Bifacial Silicon Heterojunction Solar Modules," presented at the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 2018, pp. 1741-1744. [6] A. ur Rehman and S. H. Lee, "Advancements in N-Type Base Crystalline Silicon Solar Cells and Their Emergence in The Photovoltaic Industry," The Scientific World Journal, vol. 2013, p. 470347, 2013. [7] National Renewable Energy Laboratory. "Best Research-Cell Efficiency Chart." https://www.nrel.gov/pv/cell-efficiency.html (accessed Oct., 2023). [8] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009. [9] H. Min et al., "Perovskite Solar Cells with Atomically Coherent Interlayers on SnO2 Electrodes," Nature, vol. 598, no. 7881, pp. 444-450, 2021. [10] M. Wang et al., "Correlation between Radiation Resistance and Structural Factors of ABO3-type Perovskites," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 536, pp. 88-96, 2023. [11] A. Alhashmi, M. B. Kanoun, and S. Goumri-Said, "Machine Learning for Halide Perovskite Materials ABX3 (B = Pb, X = I, Br, Cl) Assessment of Structural Properties and Band Gap Engineering for Solar Energy," Materials, vol. 16, no. 7, 2023. [12] Y. Cai et al., "High-throughput Computational Study of Halide Double Perovskite Inorganic Compounds," Chemistry of Materials, vol. 31, no. 15, pp. 5392-5401, 2019. [13] E. L. da Silva, J. M. Skelton, S. C. Parker, and A. Walsh, "Phase Stability and Transformations in the Halide Perovskite CsSnI3," Physical Review B, vol. 91, no. 14, p. 144107, 2015. [14] T. Oku, "Crystal Structures of Perovskite Halide Compounds Used for Solar Cells," Reviews on Advanced Materials Science, vol. 59, no. 1, pp. 264-305, 2020. [15] P. Scajev et al., "Diffusion Enhancement in Highly Excited MAPbI3 Perovskite Layers with Additives," The Journal of Physical Chemistry Letters, vol. 9, no. 12, pp. 3167-3172, 2018. [16] G. Xing et al., "Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3," Science, vol. 342, no. 6156, pp. 344-347, 2013. [17] P. Pradid, K. Sanglee, N. Thongprong, and S. Chuangchote, "Carbon Electrodes in Perovskite Photovoltaics," Materials, vol. 14, no. 20, p. 5989, 2021. [18] Q. Wang et al., "Enhanced Performance of Perovskite Solar Cells via Low‐Temperature‐Processed Mesoporous SnO2," Advanced Materials Interfaces, vol. 7, no. 4, p. 1901866, 2020. [19] B. Roose et al., "Mesoporous SnO2 Electron Selective Contact Enables UV-stable Perovskite Solar Cells," Nano Energy, vol. 30, pp. 517-522, 2016. [20] M. S. G. Hamed and G. T. Mola, "Mixed Halide Perovskite Solar Cells: Progress and Challenges," Critical Reviews in Solid State and Materials Sciences, vol. 45, no. 2, pp. 85-112, 2019. [21] S. Bowden and C. Honsberg. "IV Curve." https://www.pveducation.org/pvcdrom/solar-cell-operation/iv-curve (accessed Oct., 2023). [22] S. Bowden and C. Honsberg. "Quantum Efficiency." https://www.pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency (accessed Oct., 2023). [23] S. Bowden and C. Honsberg. "Fill Factor." PVEdcuation. https://www.pveducation.org/pvcdrom/solar-cell-operation/fill-factor (accessed Oct., 2023). [24] M. K. da Silva, M. S. Gul, and H. Chaudhry, "Review on the Sources of Power Loss in Monofacial and Bifacial Photovoltaic Technologies," Energies, vol. 14, no. 23, p. 7935, 2021. [25] X. Li, W. Ye, X. Zhou, F. Huang, and D. Zhong, "Increased Efficiency for Perovskite Photovoltaics Based on Aluminum-Doped Zinc Oxide Transparent Electrodes via Surface Modification," The Journal of Physical Chemistry C, vol. 121, no. 19, pp. 10282-10288, 2017. [26] Z. Liu, P. You, C. Xie, G. Tang, and F. Yan, "Ultrathin and Flexible Perovskite Solar Cells with Graphene Transparent Electrodes," Nano Energy, vol. 28, pp. 151-157, 2016. [27] J. Zhang et al., "High‐Performance ITO‐Free Perovskite Solar Cells Enabled by Single‐Walled Carbon Nanotube Films," Advanced Functional Materials, vol. 31, no. 37, p. 2104396, 2021. [28] L. Zhang, F. Jiang, B. Wu, C. Lv, and M. Wu, "A One-Step Synthesis of Ultra-Long Silver Nanowires with Ultra-High Aspect Ratio Above 2000 and Its Application in Flexible Transparent Conductive Electrodes," Nanotechnology, vol. 32, no. 10, p. 105710, 2021. [29] P. Zhang et al., "Silver Nanowires: Synthesis Technologies, Growth Mechanism and Multifunctional Applications," Materials Science and Engineering: B, vol. 223, pp. 1-23, 2017. [30] T. Y. Jin et al., "High‐Performance Flexible Perovskite Solar Cells Enabled by Low‐Temperature ALD‐Assisted Surface Passivation," Advanced Optical Materials, vol. 6, no. 24, p. 1801153, 2018. [31] J. Jin et al., "Efficient and Stable Flexible Perovskite Solar Cells Based on Graphene-AgNWs Substrate and Carbon Electrode without Hole Transport Materials," Journal of Power Sources, vol. 482, p. 228953, 2021. [32] H. Xie et al., "Mechanical Stability Study on PEDOT:PSS-Based ITO-Free Flexible Perovskite Solar Cells," ACS Applied Energy Materials, vol. 5, no. 3, pp. 3081-3091, 2022. [33] I. Verboven et al., "Ultrasonic Spray Coating of Silver Nanowire‐Based Electrodes for Organic Light‐Emitting Diodes," Advanced Engineering Materials, vol. 24, no. 3, p. 2100808, 2021. [34] N. Kooy, K. Mohamed, L. T. Pin, and O. S. Guan, "A Review of Roll-to-Roll Nanoimprint Lithography," Nanoscale Research Letters, vol. 9, no. 1, p. 320, 2014. [35] M. Xie et al., "Super-Flexible Perovskite Solar Cells with High Power-Per-Weight on 17 μm Thick PET Substrate Utilizing Printed Ag Nanowires Bottom and Top Electrodes," Flexible and Printed Electronics, vol. 4, no. 3, p. 034002, 2019. [36] I. R. Cisneros-Contreras, A. L. Muñoz-Rosas, and A. Rodríguez-Gómez, "Resolution Improvement in Haacke's Figure of Merit for Transparent Conductive Films," Results in Physics, vol. 15, p. 102695, 2019. [37] M. J. Uddin, J. Hassan, and D. Douroumis, "Thermal Inkjet Printing: Prospects and Applications in the Development of Medicine," Technologies, vol. 10, no. 5, p. 108, 2022. [38] Y. H. Wang, X. Yang, D. X. Du, and X. F. Zhang, "A Comprehensive Study of High-Performance of Flexible Transparent Conductive Silver Nanowire Films," Journal of Materials Science: Materials in Electronics, vol. 30, no. 14, pp. 13238-13246, 2019. [39] S. K. Duan, Q. L. Niu, J. F. Wei, J. B. He, Y. A. Yin, and Y. Zhang, "Water-Bath Assisted Convective Assembly of Aligned Silver Nanowire Films for Transparent Electrodes," Physical Chemistry Chemical Physics, vol. 17, no. 12, pp. 8106-8112, 2015. [40] L. Shi, "Flexible Transparent Silver Nanowires Conductive Films Fabricated with Spin‐Coating Method," Micro & Nano Letters, vol. 18, no. 1, p. 12151, 2022. [41] J. Shojaeiarani, D. S. Bajwa, N. M. Stark, T. M. Bergholz, and A. L. Kraft, "Spin Coating Method Improved the Performance Characteristics of Films Obtained from Poly(lactic acid) and Cellulose Nanocrystals," Sustainable Materials and Technologies, vol. 26, p. 00212, 2020. [42] H. Koga, M. Nogi, N. Komoda, T. T. Nge, T. Sugahara, and K. Suganuma, "Uniformly Connected Conductive Networks on Cellulose Nanofiber Paper for Transparent Paper Electronics," NPG Asia Materials, vol. 6, no. 3, p. 93, 2014. [43] J. Kwon et al., "Recent Progress in Silver Nanowire Based Flexible/Wearable Optoelectronics," Journal of Materials Chemistry C, vol. 6, no. 28, pp. 7445-7461, 2018. [44] J. Hwang, Y. Shim, S.-M. Yoon, S. H. Lee, and S.-H. Park, "Influence of Polyvinylpyrrolidone (PVP) Capping Layer on Silver Nanowire Networks: Theoretical and Experimental Studies," RSC Advances, vol. 6, no. 37, pp. 30972-30977, 2016. [45] M. Lagrange, D. P. Langley, G. Giusti, C. Jimenez, Y. Brechet, and D. Bellet, "Optimization of Silver Nanowire-based Transparent Electrodes: Effects of Density, Size and Thermal Annealing," Nanoscale, vol. 7, no. 41, pp. 17410-17423, 2015. [46] V. Cardoso and O. J. Dias, "Rayleigh-plateau and Gregory-laflamme Instabilities of Black Strings," Physical Review Letters, vol. 96, no. 18, p. 181601, 2006. [47] W. H. Chung, Y. R. Jang, Y. T. Hwang, S. H. Kim, and H. S. Kim, "The Surface Plasmonic Welding of Silver Nanowires via Intense Pulsed Light Irradiation Combined with NIR for Flexible Transparent Conductive Films," Nanoscale, vol. 12, no. 34, pp. 17725-17737, 2020. [48] J. H. Seo et al., "Cold Isostatic-Pressured Silver Nanowire Electrodes for Flexible Organic Solar Cells via Room-Temperature Processes," Advanced Materials, vol. 29, no. 30, p. 1701479, 2017. [49] W. Xiong et al., "Highly Conductive, Air-Stable Silver Nanowire@Iongel Composite Films toward Flexible Transparent Electrodes," Advanced Materials, vol. 28, no. 33, pp. 7167-7172, 2016. [50] Y. Jin et al., "Long-Term Stable Silver Nanowire Transparent Composite as Bottom Electrode for Perovskite Solar Cells," Nano Research, vol. 11, no. 4, pp. 1998-2011, 2018. [51] C. Liang, X. Sun, W. Su, Y. Hu, and J. a. Duan, "Fast Welding of Silver Nanowires for Flexible Transparent Conductive Film by Spatial Light Modulated Femtosecond Laser," Advanced Engineering Materials, vol. 23, no. 12, p. 2100584, 2021. [52] P. Lee et al., "Rapid and Effective Electrical Conductivity Improvement of the Ag NW-Based Conductor by Using the Laser-Induced Nano-Welding Process," Micromachines, vol. 8, no. 5, p. 164, 2017. [53] L. Xu, W. C. Weng, and Y. C. Yeh, "Continuous Wave Laser Nanowelding Process of Ag Nanowires on Flexible Polymer Substrates," Nanomaterials, vol. 11, no. 10, p. 2511, 2021. [54] B.-Q. Lin, C.-P. Huang, K.-Y. Tian, P.-H. Lee, W.-F. Su, and L. Xu, "Laser Patterning Technology Based on Nanosecond Pulsed Laser for Manufacturing Bifacial Perovskite Solar Modules," International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 10, no. 1, pp. 123-139, 2022. [55] 黃章柏, "奈秒脈衝雷射雕刻技術應用於可撓性鈣鈦礦太陽能電池模組的製造," 碩士論文, 機械工程學研究所, 國立台灣大學, 台北市, 2023. [56] 葉穎縉, "奈米銀線作為透明電極應用於半透明鈣鈦礦太陽能電池之高溶劑塗布法的技術開發," 碩士論文, 機械工程學研究所, 國立台灣大學, 台北市, 2021. [57] Y.-T. Luo, Z.-H. Zhou, Z.-B. Huang, J.-Y. Juang, and L. Xu, "Facile and Versatile Fabrication Process for AgNW/GZO Transparent Composite Electrodes for Photovoltaic Applications by Atmospheric Pressure Plasma Jet," Applied Surface Science, vol. 635, p. 157767, 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92488 | - |
| dc.description.abstract | 隨著光伏科技的發展及光電產業的興起,人們大量使用觸控面板、穿戴裝置及智慧顯示器等光電產品,使得透明光電材料受到重視;其中作為透明導電薄膜(transparent conductive film, TCF),奈米銀線具有高導電度、高穿透率及可彎曲性等特性而具有極高的潛力取代傳統的透明氧化物薄膜(transparent conductive oxide, TCO),將奈米銀線作為鈣鈦礦太陽能電池的前電極是其重要的應用之一,而鈣鈦礦太陽能電池是一種新型太陽能電池,具有光電轉換效率高、製造成本低等優點。
本實驗透過真空抽氣法的方式將奈米銀線沉積於玻璃以及可撓性基材上,並利用自架532 nm波長的連續波雷射焊接奈米銀線薄膜,在不影響穿透率的情況下有效的降低奈米銀線之間的接觸電阻,使得薄膜導電性增加,最終以玻璃為基材的奈米銀線薄膜片電阻值從45.82 ohm/sq降至10.97 ohm/sq,得到76.06%的片電阻下降百分率後仍然保持89%的穿透率。接著,我們利用大氣電漿(atmospheric pressure plasma jet, APPJ)系統將氧化鋅摻雜(GZO)沉積於奈米銀線導電薄膜上,以抑止當使用奈米銀線薄膜作為鈣鈦礦太陽能電池電極時銀離子躍遷至鈣鈦礦層與碘離子反應而生成的不導電物質—碘化銀,透過改變電漿頭掃描速度來調整GZO厚度,最終在311 nm的GZO厚度下成功製備出有效的元件。 最後,我們將經雷射加工處理的奈米銀線薄膜作為前電極,配合GZO保護層製備出平均8.37%、最高9.24%光電轉換效率的鈣鈦礦太陽能電池。與未加入雷射加工的奈米銀線鈣鈦礦太陽能電池進行比較後,串聯電阻的下降和並聯電阻的提高使填充因子提高了8.92%,而由於改善了薄膜的導電性又同時降低了粗糙度,開路電壓和短路電流的乘積也獲得了3.34%的提升,實現出一種快速、製作成本低且有效率的方式來提升光伏電池性質。 | zh_TW |
| dc.description.abstract | With the development and rise of photovoltaic technology and the optoelectronics industry, there is a substantial usage of optoelectronic products such as touch panels, wearable devices, and smart displays. As a result, transparent conductive films (TCF) have gained significant importance. Among these, silver nanowires are highly promising due to their high conductivity, transparency, and flexibility, making them a potential replacement for traditional transparent conductive oxide (TCO) films. One of the important applications is to be the front electrode of perovskite solar cells (PVSCs). Perovskite solar cells have attracted many researchers effort in recent years, which showed a high photo-electric conversion efficiency (PCE) and low cost of fabrication process.
In this experiment, silver nanowires were deposited on glass and flexible substrates using a vacuum filtration method. Subsequently, a continuous wave laser at a wavelength of 532 nm was used to nano-weld the silver nanowire films. This process effectively reduced the contact resistance between the silver nanowires without compromising transparency, resulting in an increase in electric conductivity. The sheet resistance of the silver nanowire film on a glass substrate was reduced from 45.82 ohms/square to 10.97 ohms/square, achieving a relative 76.06% reduction in sheet resistance while maintaining the same transparency of 89% (at 550 nm). Furthermore, an atmospheric pressure plasma jet (APPJ) system was employed to deposit gallium-doped zinc oxide (GZO) on the substrate with the silver nanowire conductive film. The purpose of GZO film is to inhibit the formation of non-conductive silver iodide resulting from the migration of silver ions to the perovskite layer when using the silver nanowire film as an electrode in perovskite solar cells. By adjusting the plasma head scanning speed, the thickness of the GZO layer was well controlled, and the thickness of 311 nm was chosen to be the barrier between silver nanowires and perovskite layer. Finally, the laser-processed silver nanowire film was used as the front electrode, along with the GZO protective layer, to fabricate perovskite solar cells with an average photovoltaic conversion efficiency of 8.37% and a maximum of 9.24%. Compared to perovskite solar cells without laser processing, the decrease in series resistance and the increase in shunt resistance led to relative 8.92% improvement in the fill factor. Additionally, due to the enhanced film conductivity and decreased roughness of silver nanowires film, the product of open-circuit voltage and short-circuit current also get a 3.34% increase, demonstrating a rapid, cost-effective, and efficient approach for photovoltaic cell production. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-26T16:17:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-26T16:17:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv 目次 vii 圖次 x 表次 xv Chapter 1緒論 1 1.1. 太陽能電池發展與介紹 1 1.1.1. 太陽能電池光電原理 2 1.1.2. 太陽能電池的種類 3 1.2. 鈣鈦礦太陽能電池介紹 7 1.2.1. 鈣鈦礦太陽能電池簡介與演進 7 1.2.2. 鈣鈦礦材料結構簡介 7 1.2.3. 鈣鈦礦太陽能電池結構 10 1.3. 太陽能光伏性質介紹 12 1.3.1. 短路電流(Short Circuit Current, Jsc) 12 1.3.2. 開路電壓(Open Circuit Voltage, Voc) 14 1.3.3. 填充因子(Fill Factor, FF) 15 1.3.4. 光電轉換效率(Photovoltaic Conversion Efficiency, PCE) 16 Chapter 2 文獻回顧 17 2.1. 透明導電膜作為太陽能電池前電極之選擇 17 2.1.1. 透明導電氧化物薄膜(Transparent Conductive Oxide, TCO) 17 2.1.2. 奈米碳材料薄膜(Carbon Nanomaterials) 18 2.1.3. 奈米金屬線薄膜(Metallic Nanowires) 19 2.1.4. 複合式導電薄膜(Composite Conductive Film) 19 2.2. 奈米銀線之成膜塗布法 20 2.2.1. 噴霧式塗佈法(Spray Coating) 20 2.2.2. 噴墨印刷法(Ink-jet Printing) 21 2.2.3. 棒塗佈法(Bar Coating) 22 2.2.4. 浸入式塗佈法(Dip Coating) 23 2.2.5. 旋轉塗佈法(Spin Coating) 24 2.2.6. 真空抽氣過濾法(Vacuum Filtration) 25 2.3. 奈米銀線薄膜電極之後處理 26 2.3.1. 熱退火(Thermal Annealing) 26 2.3.2. 等離子焊接(Plasmonic Welding) 27 2.3.3. 機械壓製(Mechanical Pressing) 28 2.3.4. 化學塗層(Chemical Coating) 29 2.3.5. 雷射波焊接(Laser Nano-welding) 31 Chapter 3 實驗方法與實驗架構 33 3.1. 實驗方法與步驟 33 3.1.1. 奈米銀線膜製備 33 3.1.2. 連續波雷射焊接奈米銀線膜 36 3.1.3. 氧化鋅摻雜鎵保護層製備 38 3.1.4. 鈣鈦礦太陽能電池製備 42 3.2. 實驗雷射基台架設與介紹 44 3.2.1. 雷射光路架設 45 3.2.2. 振鏡掃瞄系統 47 3.2.3. 雷射功率設定 48 3.2.4. 振鏡圖形與參數設定 50 3.2.5. 雷射光斑 52 3.3. 實驗用藥品製備 55 3.3.1. GZO溶液 55 3.3.2. NiOx溶液 55 3.3.3. CH3NH3PbI3 (MAPbI3)前驅溶液 55 3.3.4. PC61BM溶液 55 3.3.5. PEI介面修飾層溶液 55 Chapter 4 結果與討論 56 4.1. 奈米銀線薄膜表面質量密度與片電阻 56 4.2. 連續波雷射焊接加工奈米銀線薄膜對於片電阻之影響 61 4.2.1. 連續波雷射焊接加工PET/奈米銀線薄膜 61 4.2.2. 連續波雷射焊接加工玻璃/奈米銀線薄膜 67 4.3. 在鈣鈦礦太陽能電池上的應用 75 4.3.1. 鈣鈦礦太陽能電池的製備 76 4.3.2. 加入保護層後Glass-AgNWs鈣鈦礦太陽能電池 77 4.3.3. 雷射焊接加工奈米銀線鈣鈦礦太陽能電池效率 82 Chapter 5結論與未來展望 85 5.1. 結論 85 5.2. 未來展望 86 參考文獻 87 附錄一 實驗儀器原理及介紹 94 附錄二 實驗儀器列表 100 附錄三 實驗用化學物質列表 102 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 氧化鋅摻雜鎵 | zh_TW |
| dc.subject | 噴射式大氣電漿系統 | zh_TW |
| dc.subject | 保護層 | zh_TW |
| dc.subject | 奈米銀線 | zh_TW |
| dc.subject | 鈣鈦礦太陽能電池 | zh_TW |
| dc.subject | 連續波雷射焊接技術 | zh_TW |
| dc.subject | Gallium-Doped Zinc Oxide (GZO) | en |
| dc.subject | Perovskite Solar Cells | en |
| dc.subject | Silver Nanowires | en |
| dc.subject | Continuous Wave Laser Welding Technology | en |
| dc.subject | Atmospheric Pressure Plasma Jet System | en |
| dc.subject | Protective Layer | en |
| dc.title | 連續波雷射技術焊接奈米銀線薄膜應用於提升鈣鈦礦太陽能電池之效能 | zh_TW |
| dc.title | Improvement of Perovskite Solar Cell with Silver Nanowires by CW Laser Nano-Welding Technology | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林明澤;劉建豪 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Tzer Lin;Chien-Hao Liu | en |
| dc.subject.keyword | 鈣鈦礦太陽能電池,奈米銀線,連續波雷射焊接技術,噴射式大氣電漿系統,保護層,氧化鋅摻雜鎵, | zh_TW |
| dc.subject.keyword | Perovskite Solar Cells,Silver Nanowires,Continuous Wave Laser Welding Technology,Atmospheric Pressure Plasma Jet System,Protective Layer,Gallium-Doped Zinc Oxide (GZO), | en |
| dc.relation.page | 103 | - |
| dc.identifier.doi | 10.6342/NTU202304459 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-11-30 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2026-12-01 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 此日期後於網路公開 2026-12-01 | 5.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
