請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92475
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳明汝 | zh_TW |
dc.contributor.advisor | Ming-Ju Chen | en |
dc.contributor.author | 蔡靜雯 | zh_TW |
dc.contributor.author | Ching-Wen Tsai | en |
dc.date.accessioned | 2024-03-26T16:13:13Z | - |
dc.date.available | 2024-03-27 | - |
dc.date.copyright | 2024-03-26 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-09-04 | - |
dc.identifier.citation | 李鎧衣 (2020)。Lactobacillus paracasei PS23發酵乳製作應用於預防結腸炎之機能性探討 [碩士論文,國立臺灣大學]。https://doi.org/10.6342/NTU202003176
何宜 (2015,2月10日)。2014犬貓十大死因出爐!癌症雙冠。社團法人中華民國動物保護協會。https://www.apatw.org/project-article/2867 王鴻源、楊式光 (2020)。發炎性腸道疾病病友手冊 (成人版)。社團法人台灣發炎性腸道疾病學會、社團法人台灣腸治久安協會。 黃筱雯、陳明汝 (2018–2021)。篩選潛力益生菌株應用於伴侶動物腎臟保健 (計畫編號:109農科-17.1.7-牧-U1(7)) [補助]。行政院農業委員會。 黃筱雯 (2023)。結合多體學探討複合乳酸菌應用於預防及治療慢性腎臟病之研究 [未出版博士論文]。國立臺灣大學。 Bäckhed, F. (2013). Meat-metabolizing bacteria in atherosclerosis. Nature medicine, 19(5), 533-534. https://doi.org/10.1038/nm.3178 Bartges J. W. (2012). Chronic kidney disease in dogs and cats. The Veterinary clinics of North America. Small animal practice, 42(4), 669–vi. https://doi.org/10.1016/j.cvsm.2012.04.008 Benjamin, S. E., & Drobatz, K. J. (2020). Retrospective evaluation of risk factors and treatment outcome predictors in cats presenting to the emergency room for constipation. Journal of feline medicine and surgery, 22(2), 153–160. https://doi.org/10.1177/1098612X19832663 Bermingham, E. N., Young, W., Butowski, C. F., Moon, C. D., Maclean, P. H., Rosendale, D., Cave, N. J., & Thomas, D. G. (2018). The fecal microbiota in the domestic cat (Felis catus) is influenced by interactions between age and diet; a five year longitudinal study. Frontiers in microbiology, 9, 1231. https://doi.org/10.3389/fmicb.2018.01231 Boudeau, J., Glasser, A.-L., Julien, S., Colombel, J.-F., & Darfeuille-Michaud, A. (2003). Inhibitory effect of probiotic Escherichia coli strain Nissle 1917 on adhesion to and invasion of intestinal epithelial cells by adherent-invasive E. coli strains isolated from patients with Crohn's disease. Alimentary pharmacology & therapeutics, 18(1), 45–56. https://doi.org/10.1046/j.1365-2036.2003.01638.x Brans, M., Daminet, S., Mortier, F., Duchateau, L., Lefebvre, H. P., & Paepe, D. (2021). Plasma symmetric dimethylarginine and creatinine concentrations and glomerular filtration rate in cats with normal and decreased renal function. Journal of veterinary internal medicine, 35(1), 303–311. https://doi.org/10.1111/jvim.15975 Brosius, F. C. III., Alpers, C. E., Bottinger, E. P., Breyer, M. D., Coffman, T. M., Gurley, S. B., Harris, R., Kakoki, M., Kretzler, M., Leiter, E. H., Levi, M., McIndoe, R. A., Sharma, K., Smithies, O., Susztak, K., Takahashi, N., & Takahashi, T. (2009). Mouse models of diabetic nephropathy. Journal of the American Society of Nephrology, 20(12), 2503-2512. https://doi.org/10.1681/ASN.2009070721 Cai, H., Su, S., Li, Y., Zhu, Z., Guo, J., Zhu, Y., Guo, S., Qian, D., & Duan, J. (2019). Danshen can interact with intestinal bacteria from normal and chronic renal failure rats. Biomedicine & Pharmacotherapy, 109, 1758-1771. https://doi.org/10.1016/j.biopha.2018.11.047 Camilleri, M., Lyle, B. J., Madsen, K. L., Sonnenburg, J., Verbeke, K., & Wu, G. D. (2019). Role for diet in normal gut barrier function: developing guidance within the framework of food-labeling regulations. American journal of physiology. Gastrointestinal and liver physiology, 317(1), G17–G39. https://doi.org/10.1152/ajpgi.00063.2019 Carlström, M., Moretti, C. H., Weitzberg, E., & Lundberg, J. O. (2020). Microbiota, diet and the generation of reactive nitrogen compounds. Free radical biology & medicine, 161, 321–325. https://doi.org/10.1016/j.freeradbiomed.2020.10.025 Chang, C.-J., Wang, P.-C., Huang, T.-C., & Taniguchi, A. (2019). Change in renal glomerular collagens and glomerular filtration barrier-related proteins in a dextran sulfate sodium-induced colitis mouse model. International journal of molecular sciences, 20(6), 1458. https://doi.org/10.3390/ijms20061458 Chassaing, B., Aitken, J. D., Malleshappa, M., & Vijay‐Kumar, M. (2014). Dextran sulfate sodium (DSS)‐induced colitis in mice. Current protocols in immunology, 104(1), 15-25. https://doi.org/10.1002/0471142735.im1525s104 Chelakkot, C., Ghim, J., & Ryu, S. H. (2018). Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental & molecular medicine, 50(8), 1–9. https://doi.org/10.1038/s12276-018-0126-x Chen, C.-L., Hsu, P.-Y., & Pan, T.-M. (2019). Therapeutic effects of Lactobacillus paracasei subsp. paracasei NTU 101 powder on dextran sulfate sodium-induced colitis in mice. Journal of Food and Drug Analysis, 27(1), 83-92. https://doi.org/10.1016/j.jfda.2018.05.004 Chen, H., Dunaevich, A., Apfelbaum, N., Kuzi, S., Mazaki-Tovi, M., Aroch, I., & Segev, G. (2020). Acute on chronic kidney disease in cats: etiology, clinical and clinicopathologic findings, prognostic markers, and outcome. Journal of veterinary internal medicine, 34(4), 1496–1506. https://doi.org/10.1111/jvim.15808 Chen, Y. P., Hsiao, P. J., Hong, W. S., Dai, T. Y., & Chen, M. J. (2012). Lactobacillus kefiranofaciens M1 isolated from milk kefir grains ameliorates experimental colitis in vitro and in vivo. Journal of Dairy Science, 95(1), 63-74. https://doi.org/10.3168/jds.2011-4696 Corica, D., & Romano, C. (2016). Renal involvement in inflammatory bowel diseases. Journal of Crohn's & colitis, 10(2), 226–235. https://doi.org/10.1093/ecco-jcc/jjv138 Coufal, S., Galanova, N., Bajer, L., Gajdarova, Z., Schierova, D., Jiraskova Zakostelska, Z., Kostovcikova, K., Jackova, Z., Stehlikova, Z., Drastich, P., Tlaskalova-Hogenova, H., & Kverka, M. (2019). Inflammatory bowel disease types differ in markers of inflammation, gut barrier and in specific anti-bacterial response. Cells, 8(7), 719. https://doi.org/10.3390/cells8070719 Deng, M., Wu, X., Duan, X., Xu, J., Yang, X., Sheng, X., Lou, P., Shao, C., Lv, C., & Yu, Z. (2021). Lactobacillus paracasei L9 improves colitis by expanding butyrate-producing bacteria that inhibit the IL-6/STAT3 signaling pathway. Food & function, 12(21), 10700-10713. https://doi.org/10.1039/D1FO02077C Doi, K., Yuen, P. S. T., Eisner, C., Hu, X., Leelahavanichkul, A., Schnermann, J., & Star, R. A. (2009). Reduced production of creatinine limits its use as marker of kidney injury in sepsis. Journal of the American Society of Nephrology, 20(6), 1217–1221. https://doi.org/10.1681/ASN.2008060617 Ducasa, G., Hazime, H., Fernandez, I., Brito, N., Santander, A., Burgueno, J., & Abreu, M. (2022). Chronic colitis in mice induces kidney injury: translational implications for IBD. Inflammatory Bowel Diseases, 162, S38. Eddington, H., Hoefield, R., Sinha, S., Chrysochou, C., Lane, B., Foley, R. N., Hegarty, J., New, J., O'Donoghue, D. J., Middleton, R. J., & Kalra, P. A. (2010). Serum phosphate and mortality in patients with chronic kidney disease. Clinical journal of the American Society of Nephrology, 5(12), 2251–2257. https://doi.org/10.2215/CJN.00810110 Elinav, E., Strowig, T., Kau, A. L., Henao-Mejia, J., Thaiss, C. A., Booth, C. J., Peaper, D. R., Bertin, J., Eisenbarth, S. C., Gordon, J. I., & Flavell, R. A. (2011). NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell, 145(5), 745–757. https://doi.org/10.1016/j.cell.2011.04.022 Evenepoel, P., Meijers, B. K., Bammens, B. R., & Verbeke, K. (2009). Uremic toxins originating from colonic microbial metabolism. Kidney international, 76, S12–S19. https://doi.org/10.1038/ki.2009.402 Fagagnini, S., Heinrich, H., Rossel, J.-B., Biedermann, L., Frei, P., Zeitz, J., Spalinger, M., Battegay, E., Zimmerli, L., Vavricka, S. R., Rogler, G., Scharl, M., & Misselwitz, B. (2017). Risk factors for gallstones and kidney stones in a cohort of patients with inflammatory bowel diseases. PloS one, 12(10), e0185193. https://doi.org/10.1371/journal.pone.0185193 Fang, C.-Y., Lu, J.-R., Chen, B.-J., Wu, C., Chen, Y.-P., & Chen, M.-J. (2014). Selection of uremic toxin-reducing probiotics in vitro and in vivo. Journal of Functional Foods, 7, 407-415. https://doi.org/10.1016/j.jff.2014.01.018 Fujimori, S., Tatsuguchi, A., Gudis, K., Kishida, T., Mitsui, K., Ehara, A., Kobayashi, T., Sekita, Y., Seo, T., & Sakamoto, C. (2007). High dose probiotic and prebiotic cotherapy for remission induction of active Crohn's disease. Journal of gastroenterology and hepatology, 22(8), 1199–1204. https://doi.org/10.1111/j.1440-1746.2006.04535.x Ghouri, Y. A., Tahan, V., & Shen, B. (2020). Secondary causes of inflammatory bowel diseases. World journal of gastroenterology, 26(28), 3998–4017. https://doi.org/10.3748/wjg.v26.i28.3998 Greenfield, S. M., Punchard, N. A., Teare, J. P., & Thompson, R. P. (1993). Review article: the mode of action of the aminosalicylates in inflammatory bowel disease. Alimentary pharmacology & therapeutics, 7(4), 369–383. https://doi.org/10.1111/j.1365-2036.1993.tb00110.x Hall, J. A., Yerramilli, M., Obare, E., Yerramilli, M., & Jewell, D. E. (2014). Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in cats with chronic kidney disease. Journal of veterinary internal medicine, 28(6), 1676–1683. https://doi.org/10.1111/jvim.12445 Handl, S., Dowd, S. E., Garcia-Mazcorro, J. F., Steiner, J. M., & Suchodolski, J. S. (2011). Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS microbiology ecology, 76(2), 301–310. https://doi.org/10.1111/j.1574-6941.2011.01058.x Hooda, S., Boler, B. M. V., Kerr, K. R., Dowd, S. E., & Swanson, K. S. (2013). The gut microbiome of kittens is affected by dietary protein: carbohydrate ratio and associated with blood metabolite and hormone concentrations. British Journal of Nutrition, 109(9), 1637-1646. https://doi.org/10.1017/S0007114512003479 Hu, X., Ouyang, S., Xie, Y., Gong, Z., & Du, J. (2020). Characterizing the gut microbiota in patients with chronic kidney disease. Postgraduate medicine, 132(6), 495–505. https://doi.org/10.1080/00325481.2020.1744335 Huang, H., Li, K., Lee, Y., & Chen, M. (2021). Preventive effects of Lactobacillus mixture against chronic kidney disease progression through enhancement of beneficial bacteria and downregulation of gut-derived uremic toxins. Journal of Agricultural and Food Chemistry, 69(26), 7353–7366. https://doi.org/10.1021/acs.jafc.1c01547 Ikee, R., Sasaki, N., Yasuda, T., & Fukazawa, S. (2020). Chronic kidney disease, gut dysbiosis, and constipation: a burdensome triplet. Microorganisms, 8(12), 1862. https://doi.org/10.3390/microorganisms8121862 Imam, T., Park, S., Kaplan, M. H., & Olson, M. R. (2018). Effector T helper cell subsets in inflammatory bowel diseases. Frontiers in immunology, 9, 1212. https://doi.org/10.3389/fimmu.2018.01212 aInternational Renal Interest Society. (2023). IRIS staging of CKD (modified 2023). Author. http://www.iris-kidney.com/pdf/2_IRIS_Staging_of_CKD_2023.pdf bInternational Renal Interest Society. (2023). Treatment recommendations for CKD in cats (modified 2023). Author. http://www.iris-kidney.com/pdf/IRIS_CAT_Treatment_Recommendations_2023.pdf Jeong, Y. J., Kim, D. H., & Lee, K. W. (2022). Homeostasis effects of fermented Maillard reaction products by Lactobacillus gasseri 4M13 in dextran sulfate sodium‐induced colitis mice. Journal of the Science of Food and Agriculture, 102(1), 434-444. https://doi.org/10.1002/jsfa.11374 Jones, S. E., Quimby, J. M., Summers, S. C., Adams, S. M., Caney, S. M., & Rudinsky, A. J. (2022). Survey of defecation habits in apparently healthy and chronic kidney disease cats. Journal of feline medicine and surgery, 24(2), 131–141. https://doi.org/10.1177/1098612X211012684 Khan, I., Ullah, N., Zha, L., Bai, Y., Khan, A., Zhao, T., Che, T., & Zhang, C. (2019). Alteration of gut microbiota in inflammatory bowel disease (IBD): cause or consequence? IBD treatment targeting the gut microbiome. Pathogens, 8(3), 126. https://doi.org/10.3390/pathogens8030126 Kielstein, J. T., Salpeter, S. R., Bode-Boeger, S. M., Cooke, J. P., & Fliser, D. (2006). Symmetric dimethylarginine (SDMA) as endogenous marker of renal function--a meta-analysis. Nephrology Dialysis Transplantation, 21(9), 2446–2451. https://doi.org/10.1093/ndt/gfl292 Kikuchi, E., Miyamoto, Y., Narushima, S., & Itoh, K. (2002). Design of species-specific primers to identify 13 species of Clostridium harbored in human intestinal tracts. Microbiology and immunology, 46(5), 353–358. https://doi.org/10.1111/j.1348-0421.2002.tb02706.x Kim, D. H., Kim, S., Ahn, J. B., Kim, J. H., Ma, H. W., Seo, D. H., Che, X., Park, K. C., Yong, J. J., Kim, S. Y., Lee, H. C., Lee, J.-Y., Kim, T. I., Kim, W. H., Kim, S. W., & Cheon, J. H. (2020). Lactobacillus plantarum CBT LP3 ameliorates colitis via modulating T cells in mice. International journal of medical microbiology, 310(2), 151391. https://doi.org/10.1016/j.ijmm.2020.151391 Kim, J. J., Shajib, M. S., Manocha, M. M., & Khan, W. I. (2012). Investigating intestinal inflammation in DSS-induced model of IBD. Journal of visualized experiments: JoVE, (60), 3678. https://doi.org/10.3791/3678 Kim, S. M., & Song, I. H. (2020). The clinical impact of gut microbiota in chronic kidney disease. The Korean journal of internal medicine, 35(6), 1305–1316. https://doi.org/10.3904/kjim.2020.411 Kim, W.-K., Jang, Y. J., Seo, B., Han, D. H., Park, S., & Ko, G. (2019). Administration of Lactobacillus paracasei strains improves immunomodulation and changes the composition of gut microbiota leading to improvement of colitis in mice. Journal of Functional Foods, 52, 565-575. https://doi.org/10.1016/j.jff.2018.11.035 Koppe, L., Mafra, D., & Fouque, D. (2015). Probiotics and chronic kidney disease. Kidney international, 88(5), 958–966. https://doi.org/10.1038/ki.2015.255 Korman, R. M., & White, J. D. (2013). Feline CKD: current therapies - what is achievable?. Journal of feline medicine and surgery, 15(1_suppl), 29–44. https://doi.org/10.1177/1098612X13495241 Kruis, W., Schütz, E., Fric, P., Fixa, B., Judmaier, G., & Stolte, M. (1997). Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Alimentary pharmacology & therapeutics, 11(5), 853–858. https://doi.org/10.1046/j.1365-2036.1997.00225.x Laflamme, D. P., & Hannah, S. S. (2013). Discrepancy between use of lean body mass or nitrogen balance to determine protein requirements for adult cats. Journal of feline medicine and surgery, 15(8), 691–697. https://doi.org/10.1177/1098612X12474448 Lee, Y.-J., Li, K.-Y., Wang, P. J., Huang, H. W., & Chen, M. J. (2020). Alleviating chronic kidney disease progression through modulating the critical genus of gut microbiota in a cisplatin-induced Lanyu pig model. Journal of food and drug analysis, 28(1), 103–114. https://doi.org/10.1016/j.jfda.2019.10.001 Lim, Y. J., Sidor, N. A., Tonial, N. C., Che, A., & Urquhart, B. L. (2021). Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: mechanisms and therapeutic targets. Toxins, 13(2), 142. https://doi.org/10.3390/toxins13020142 Lippi, I., Perondi, F., Ceccherini, G., Marchetti, V., & Guidi, G. (2017). Effects of probiotic VSL#3 on glomerular filtration rate in dogs affected by chronic kidney disease: a pilot study. The Canadian veterinary journal, 58(12), 1301–1305. Liu, Y.-W., Su, Y.-W., Ong, W.-K., Cheng, T.-H., & Tsai, Y.-C. (2011). Oral administration of Lactobacillus plantarum K68 ameliorates DSS-induced ulcerative colitis in BALB/c mice via the anti-inflammatory and immunomodulatory activities. International immunopharmacology, 11(12), 2159–2166. https://doi.org/10.1016/j.intimp.2011.09.013 Liu, B., Lin, Q., Yang, T., Zeng, L., Shi, L., Chen, Y., & Luo, F. (2015). Oat β-glucan ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Food & function, 6(11), 3454–3463. https://doi.org/10.1039/C5FO00563A Liu, X., Mao, B., Gu, J., Wu, J., Cui, S., Wang, G., Zhao, J., Zhang, H., & Chen, W. (2021). Blautia-a new functional genus with potential probiotic properties?. Gut microbes, 13(1), 1–21. https://doi.org/10.1080/19490976.2021.1875796 Lopez-Giacoman, S., & Madero, M. (2015). Biomarkers in chronic kidney disease, from kidney function to kidney damage. World journal of nephrology, 4(1), 57–73. https://doi.org/10.5527/wjn.v4.i1.57 Lu, P.-H., Yu, M.-C., Wei, M.-J., & Kuo, K.-L. (2021). The Therapeutic strategies for uremic toxins control in chronic kidney disease. Toxins, 13(8), 573. https://doi.org/10.3390/toxins13080573 Markowiak-Kopeć, P., & Śliżewska, K. (2020). The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients, 12(4), 1107. https://doi.org/10.3390/nu12041107 Matsuda, K., Tsuji, H., Asahara, T., Kado, Y., & Nomoto, K. (2007). Sensitive quantitative detection of commensal bacteria by rRNA-targeted reverse transcription-PCR. Applied and environmental microbiology, 73(1), 32–39. https://doi.org/10.1128/AEM.01224-06 Matsuki, T., Watanabe, K., Fujimoto, J., Miyamoto, Y., Takada, T., Matsumoto, K., Oyaizu, H., & Tanaka, R. (2002). Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Applied and environmental microbiology, 68(11), 5445–5451. https://doi.org/10.1128/AEM.68.11.5445-5451.2002 Maynard, C. L., & Weaver, C. T. (2009). Intestinal effector T cells in health and disease. Immunity, 31(3), 389–400. https://doi.org/10.1016/j.immuni.2009.08.012 Meddings, J. (2008). The significance of the gut barrier in disease. Gut, 57(4), 438–440. https://doi.org/10.1136/gut.2007.143172 Meineri, G., Saettone, V., Radice, E., Bruni, N., Martello, E., & Bergero, D. (2021). The synergistic effect of prebiotics, probiotics and antioxidants on dogs with chronic kidney disease. Italian Journal of Animal Science, 20(1), 1079–1084. https://doi.org/10.1080/1828051X.2021.1940323 Mennigen, R., Nolte, K., Rijcken, E., Utech, M., Loeffler, B., Senninger, N., & Bruewer, M. (2009). Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. American journal of physiology. Gastrointestinal and liver physiology, 296(5), G1140–G1149. https://doi.org/10.1152/ajpgi.90534.2008 Miner-Williams, W. M., & Moughan, P. J. (2016). Intestinal barrier dysfunction: implications for chronic inflammatory conditions of the bowel. Nutrition research reviews, 29(1), 40–59. https://doi.org/10.1017/S0954422416000019 Morgan, X. C., Tickle, T. L., Sokol, H., Gevers, D., Devaney, K. L., Ward, D. V., Reyes, J. A., Shah, S. A., LeLeiko, N., Snapper, S. B., Bousvaros, A., Korzenik, J., Sands, B. E., Xavier, R. J., & Huttenhower, C. (2012). Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome biology, 13(9), R79. https://doi.org/10.1186/gb-2012-13-9-r79 Nabity, M. B., Lees, G. E., Boggess, M. M., Yerramilli, M., Obare, E., Yerramilli, M., Rakitin, A., Aguiar, J., & Relford, R. (2015). Symmetric dimethylarginine assay validation, stability, and evaluation as a marker for the early detection of chronic kidney disease in dogs. Journal of veterinary internal medicine, 29(4), 1036–1044. https://doi.org/10.1111/jvim.12835 Nair, A., Morsy, M. A., & Jacob, S. (2018). Dose translation between laboratory animals and human in preclinical and clinical phases of drug development. Drug development research, 79(8), 373–382. https://doi.org/10.1002/ddr.21461 Nakabayashi, I., Nakamura, M., Kawakami, K., Ohta, T., Kato, I., Uchida, K., & Yoshida, M. (2011). Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrology Dialysis Transplantation, 26(3), 1094–1098. https://doi.org/10.1093/ndt/gfq624 Nazzal, L., Roberts, J., Singh, P., Jhawar, S., Matalon, A., Gao, Z., Holzman, R., Liebes, L., Blaser, M. J., & Lowenstein, J. (2017). Microbiome perturbation by oral vancomycin reduces plasma concentration of two gut-derived uremic solutes, indoxyl sulfate and p-cresyl sulfate, in end-stage renal disease. Nephrology Dialysis Transplantation, 32(11), 1809–1817. https://doi.org/10.1093/ndt/gfx029 Neirynck, N., Vanholder, R., Schepers, E., Eloot, S., Pletinck, A., & Glorieux, G. (2013). An update on uremic toxins. International urology and nephrology, 45(1), 139–150. https://doi.org/10.1007/s11255-012-0258-1 Neurath, M. F. (2014). Cytokines in inflammatory bowel disease. Nature reviews. Immunology, 14(5), 329–342. https://doi.org/10.1038/nri3661 Ni, J., Wu, G. D., Albenberg, L., & Tomov, V. T. (2017). Gut microbiota and IBD: causation or correlation?. Nature reviews. Gastroenterology & hepatology, 14(10), 573–584. https://doi.org/10.1038/nrgastro.2017.88 Oikonomou, K., Kapsoritakis, A., Eleftheriadis, T., Stefanidis, I., & Potamianos, S. (2011). Renal manifestations and complications of inflammatory bowel disease. Inflammatory bowel diseases, 17(4), 1034–1045. https://doi.org/10.1002/ibd.21468 Palmquist, R. (2006). A preliminary clinical evaluation of Kibow Biotics,® a probiotic agent, on feline azotemia. Journal of the American Holistic Veterinary Medical Association, 24, 23–27 Pan, L., Han, P., Ma, S., Peng, R., Wang, C., Kong, W., Cong, L., Fu, J., Zhang, Z., Yu, H., Wang, Y., & Jiang, J. (2020). Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia. Acta pharmaceutica Sinica. B, 10(2), 249–261. https://doi.org/10.1016/j.apsb.2019.10.007 Pan, T., Guo, H. Y., Zhang, H., Liu, A. P., Wang, X. X., & Ren, F. Z. (2014). Oral administration of Lactobacillus paracasei alleviates clinical symptoms of colitis induced by dextran sulphate sodium salt in BALB/c mice. Beneficial microbes, 5(3), 315–322. https://doi.org/10.3920/BM2013.0041 Park, S., Chun, J., Han, K. D., Soh, H., Choi, K., Kim, J. H., Lee, J., Lee, C., Im, J. P., & Kim, J. S. (2018). Increased end-stage renal disease risk in patients with inflammatory bowel disease: a nationwide population-based study. World journal of gastroenterology, 24(42), 4798–4808. https://doi.org/10.3748/wjg.v24.i42.4798 Parker, V. J. (2021). Nutritional management for dogs and cats with chronic kidney disease. The Veterinary clinics of North America. Small animal practice, 51(3), 685–710. https://doi.org/10.1016/j.cvsm.2021.01.007 Pasala, S., & Carmody, J. B. (2017). How to use… serum creatinine, cystatin C and GFR. Archives of disease in childhood. Education and practice edition, 102(1), 37–43. https://doi.org/10.1136/archdischild-2016-311062 Perše, M., & Cerar, A. (2012). Dextran sodium sulphate colitis mouse model: traps and tricks. Journal of biomedicine & biotechnology, 2012, 718617. https://doi.org/10.1155/2012/718617 Polzin, D. J. (2011). Chronic kidney disease in small animals. The Veterinary clinics of North America. Small animal practice, 41(1), 15–30. https://doi.org/10.1016/j.cvsm.2010.09.004 Polzin, D. J., & Churchill, J. A. (2016). Controversies in veterinary nephrology: renal diets are indicated for cats with international renal interest society chronic kidney disease stages 2 to 4: the pro view. The Veterinary clinics of North America. Small animal practice, 46(6), 1049-1065. https://doi.org/10.1016/j.cvsm.2016.06.005 Quimby, J., Gowland, S., Carney, H. C., DePorter, T., Plummer, P., & Westropp, J. (2021). 2021 AAHA/AAFP feline life stage guidelines. Journal of feline medicine and surgery, 23(3), 211–233. https://doi.org/10.1177/1098612X21993657 Ranganathan, P., Jayakumar, C., Manicassamy, S., & Ramesh, G. (2013). CXCR2 knockout mice are protected against DSS-colitis-induced acute kidney injury and inflammation. American journal of physiology. Renal physiology, 305(10), F1422–F1427. https://doi.org/10.1152/ajprenal.00319.2013 Rembacken, B. J., Snelling, A. M., Hawkey, P. M., Chalmers, D. M., & Axon, A. T. (1999). Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet, 354(9179), 635–639. https://doi.org/10.1016/s0140-6736(98)06343-0 Ren, Z., Fan, Y., Li, A., Shen, Q., Wu, J., Ren, L., Lu, H., Ding, S., Ren, H., Liu, C., Liu, W., Gao, D., Wu, Z., Guo, S., Wu, G., Liu, Z., Yu, Z., & Li, L. (2020). Alterations of the human gut microbiome in chronic kidney disease. Advanced science, 7(20), 2001936. https://doi.org/10.1002/advs.202001936 Reynolds, B. S., & Lefebvre, H. P. (2013). Feline CKD: Pathophysiology and risk factors--what do we know?. Journal of feline medicine and surgery, 15(1_suppl), 3–14. https://doi.org/10.1177/1098612X13495234 Rinttilä, T., Kassinen, A., Malinen, E., Krogius, L., & Palva, A. (2004). Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. Journal of applied microbiology, 97(6), 1166–1177. https://doi.org/10.1111/j.1365-2672.2004.02409.x Rishniw, M., & Wynn, S. G. (2011). Azodyl, a synbiotic, fails to alter azotemia in cats with chronic kidney disease when sprinkled onto food. Journal of feline medicine and surgery, 13(6), 405–409. https://doi.org/10.1016/j.jfms.2010.12.015 Ritchie, L. E., Steiner, J. M., & Suchodolski, J. S. (2008). Assessment of microbial diversity along the feline intestinal tract using 16S rRNA gene analysis. FEMS microbiology ecology, 66(3), 590–598. https://doi.org/10.1111/j.1574-6941.2008.00609.x Rosner, M. H., Reis, T., Husain-Syed, F., Vanholder, R., Hutchison, C., Stenvinkel, P., Blankestijn, P. J., Cozzolino, M., Juillard, L., Kashani, K., Kaushik, M., Kawanishi, H., Massy, Z., Sirich, T. L., Zuo, L., & Ronco, C. (2021). Classification of uremic toxins and their role in kidney failure. Clinical journal of the American Society of Nephrology, 16(12), 1918–1928. https://doi.org/10.2215/CJN.02660221 Roura, X. (2019). Risk factors in dogs and cats for development of chronic kidney disease. https://www.iris-kidney.com/education/education/risk_factors.html Rukavina Mikusic, N. L., Kouyoumdzian, N. M., & Choi, M. R. (2020). Gut microbiota and chronic kidney disease: evidences and mechanisms that mediate a new communication in the gastrointestinal-renal axis. Pflugers Archiv - European journal of physiology, 472(3), 303–320. https://doi.org/10.1007/s00424-020-02352-x Rysz, J., Franczyk, B., Ławiński, J., Olszewski, R., Ciałkowska-Rysz, A., & Gluba-Brzózka, A. (2021). The impact of CKD on uremic toxins and gut microbiota. Toxins, 13(4), 252. https://doi.org/10.3390/toxins13040252 Rysz, J., Gluba-Brzózka, A., Franczyk, B., Jabłonowski, Z., & Ciałkowska-Rysz, A. (2017). Novel biomarkers in the diagnosis of chronic kidney disease and the prediction of its outcome. International journal of molecular sciences, 18(8), 1702. https://doi.org/10.3390/ijms18081702 Sampaio-Maia, B., Simões-Silva, L., Pestana, M., Araujo, R., & Soares-Silva, I. J. (2016). The role of the gut microbiome on chronic kidney disease. Advances in applied microbiology, 96, 65–94. https://doi.org/10.1016/bs.aambs.2016.06.002 Sargent, H. J., Elliott, J., & Jepson, R. E. (2021). The new age of renal biomarkers: does SDMA solve all of our problems?. Journal of Small Animal Practice, 62(2), 71-81. https://doi.org/10.1111/jsap.13236 Scherk, M. A., & Laflamme, D. P. (2016). Controversies in veterinary nephrology: renal diets are indicated for cats with international renal interest society chronic kidney disease stages 2 to 4: the con view. The Veterinary clinics of North America. Small animal practice, 46(6), 1067–1094. https://doi.org/10.1016/j.cvsm.2016.06.007 Schulman, G., Agarwal, R., Acharya, M., Berl, T., Blumenthal, S., & Kopyt, N. (2006). A multicenter, randomized, double-blind, placebo-controlled, dose-ranging study of AST-120 (Kremezin) in patients with moderate to severe CKD. American journal of kidney diseases, 47(4), 565–577. https://doi.org/10.1053/j.ajkd.2005.12.036 Shackelford, C., Long, G., Wolf, J., Okerberg, C., & Herbert, R. (2002). Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies. Toxicologic pathology, 30(1), 93–96. https://doi.org/10.1080/01926230252824761 Sherman, P. M., Ossa, J. C., & Johnson-Henry, K. (2009). Unraveling mechanisms of action of probiotics. Nutrition in clinical practice, 24(1), 10–14. https://doi.org/10.1177/0884533608329231 Subramaniam, S., & Fletcher, C. (2018). Trimethylamine N-oxide: breathe new life. British journal of pharmacology, 175(8), 1344–1353. https://doi.org/10.1111/bph.13959 Sumida, K., Molnar, M. Z., Potukuchi, P. K., Thomas, F., Lu, J. L., Matsushita, K., Yamagata, K., Kalantar-Zadeh, K., & Kovesdy, C. P. (2017). Constipation and Incident CKD. Journal of the American Society of Nephrology, 28(4), 1248–1258. https://doi.org/10.1681/ASN.2016060656 Summers, S. C., Quimby, J. M., Isaiah, A., Suchodolski, J. S., Lunghofer, P. J., & Gustafson, D. L. (2019). The fecal microbiome and serum concentrations of indoxyl sulfate and p-cresol sulfate in cats with chronic kidney disease. Journal of veterinary internal medicine, 33(2), 662–669. https://doi.org/10.1111/jvim.15389 Torii, T., Kanemitsu, K., Wada, T., Itoh, S., Kinugawa, K., & Hagiwara, A. (2010). Measurement of short-chain fatty acids in human faeces using high-performance liquid chromatography: specimen stability. Annals of clinical biochemistry, 47(5), 447–452. https://doi.org/10.1258/acb.2010.010047 Tursi, A., Brandimarte, G., Papa, A., Giglio, A., Elisei, W., Giorgetti, G. M., Forti, G., Morini, S., Hassan, C., Pistoia, M. A., Modeo, M. E., Rodino', S., D'Amico, T., Sebkova, L., Sacca', N., Di Giulio, E., Luzza, F., Imeneo, M., Larussa, T., … Gasbarrini, A. (2010). Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. The American journal of gastroenterology, 105(10), 2218–2227. https://doi.org/10.1038/ajg.2010.218 Vajravelu, R. K., Copelovitch, L., Osterman, M. T., Scott, F. I., Mamtani, R., Lewis, J. D., & Denburg, M. R. (2020). Inflammatory bowel diseases are associated with an increased risk for chronic kidney disease, which decreases with age. Clinical gastroenterology and hepatology, 18(10), 2262–2268. https://doi.org/10.1016/j.cgh.2019.10.043 Vervloet, M. G., Sezer, S., Massy, Z. A., Johansson, L., Cozzolino, M., Fouque, D., & ERA–EDTA Working Group on Chronic Kidney Disease–Mineral and Bone Disorders and the European Renal Nutrition Working Group (2017). The role of phosphate in kidney disease. Nature reviews. Nephrology, 13(1), 27–38. https://doi.org/10.1038/nrneph.2016.164 Wang, I. K., Yen, T. H., Hsieh, P. S., Ho, H. H., Kuo, Y. W., Huang, Y. Y., Kuo, Y. L., Li, C. Y., Lin, H. C., & Wang, J. Y. (2021). Effect of a probiotic combination in an experimental mouse model and clinical patients with chronic kidney disease: a pilot study. Frontiers in nutrition, 8, 661794. https://doi.org/10.3389/fnut.2021.661794 Wang, X., Yang, S., Li, S., Zhao, L., Hao, Y., Qin, J., Zhang, L., Zhang, C., Bian, W., Zuo, L., Gao, X., Zhu, B., Lei, X. G., Gu, Z., Cui, W., Xu, X., Li, Z., Zhu, B., Li, Y., … Ren, F. (2020). Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut, 69(12), 2131–2142. https://doi.org/10.1136/gutjnl-2019-319766 Wirtz, S., Neufert, C., Weigmann, B., & Neurath, M. F. (2007). Chemically induced mouse models of intestinal inflammation. Nature protocols, 2(3), 541–546. https://doi.org/10.1038/nprot.2007.41 Wirtz, S., Popp, V., Kindermann, M., Gerlach, K., Weigmann, B., Fichtner-Feigl, S., & Neurath, M. F. (2017). Chemically induced mouse models of acute and chronic intestinal inflammation. Nature protocols, 12(7), 1295–1309. https://doi.org/10.1038/nprot.2017.044 Wong, J., Piceno, Y. M., DeSantis, T. Z., Pahl, M., Andersen, G. L., & Vaziri, N. D. (2014). Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. American journal of nephrology, 39(3), 230–237. https://doi.org/10.1159/000360010 Wu, H. J., & Wu, E. (2012). The role of gut microbiota in immune homeostasis and autoimmunity. Gut microbes, 3(1), 4–14. https://doi.org/10.4161/gmic.19320 Wu, M. J., Chang, C. S., Cheng, C. H., Chen, C. H., Lee, W. C., Hsu, Y. H., Shu, K. H., & Tang, M. J. (2004). Colonic transit time in long-term dialysis patients. American journal of kidney diseases, 44(2), 322–327. https://doi.org/10.1053/j.ajkd.2004.04.048 Xia, Y., Chen, Y., Wang, G., Yang, Y., Song, X., Xiong, Z. Zhang, H., Lai, P., Wang, S., & Ai, L. (2020). Lactobacillus plantarum AR113 alleviates DSS-induced colitis by regulating the TLR4/MyD88/NF-κB pathway and gut microbiota composition. Journal of Functional Foods, 67, 103854. https://doi.org/10.1016/j.jff.2020.103854 Yang, S., Shang, J., Liu, L., Tang, Z., & Meng, X. (2022). Strains producing different short-chain fatty acids alleviate DSS-induced ulcerative colitis by regulating intestinal microecology. Food & Function, 13(23), 12156-12169. https://doi.org/10.1039/D2FO01577C Yeshi, K., Ruscher, R., Hunter, L., Daly, N. L., Loukas, A., & Wangchuk, P. (2020). Revisiting inflammatory bowel disease: pathology, treatments, challenges and emerging therapeutics including drug leads from natural products. Journal of clinical medicine, 9(5), 1273. https://doi.org/10.3390/jcm9051273 Yoshifuji, A., Wakino, S., Irie, J., Tajima, T., Hasegawa, K., Kanda, T., Tokuyama, H., Hayashi, K., & Itoh, H. (2016). Gut Lactobacillus protects against the progression of renal damage by modulating the gut environment in rats. Nephrology Dialysis Transplantation, 31(3), 401–412. https://doi.org/10.1093/ndt/gfv353 Zhang, Z., Zhang, H., Chen, T., Shi, L., Wang, D., & Tang, D. (2022). Regulatory role of short-chain fatty acids in inflammatory bowel disease. Cell Communication and Signaling, 20(1), 1-10. https://doi.org/10.1186/s12964-022-00869-5 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92475 | - |
dc.description.abstract | 慢性腎臟病 (chronic kidney disease, CKD) 的特徵為逐漸損失腎臟功能,且損傷是無法修復的。此疾病於年老貓隻群體中的盛行率高達80%,由此可知CKD是一個十分重要的議題等待被解決的。在宿主腸道中某些嗜蛋白質的微生物,特別是Escherichia coli,傾向產生會導致CKD惡化的尿毒素前驅物。因此經由改變腸道微生物組成或許會是減緩CKD進程一個新穎的輔助性治療及預防的策略。複合乳酸桿菌 (Lactobacillus mixture, Lm) 是實驗室先前所篩選出的益生菌組合,包含了Lacticaseibacillus paracasei subsp. paracasei MFM 18和Lactiplantibacillus plantarum subsp. plantarum MFM 30-3。Lm在先前的CKD小鼠模型中已被證實具有腎臟保健的功效,因此在第一部份我們將透過給予含有Lm的益生菌寵物零食證實其對於CKD家貓的功效。此外,近年來越來越多臨床或體內試驗皆指出炎症性腸炎 (inflammatory bowel disease, IBD) 是CKD的風險因子。4–23%的IBD患者會產生腎臟或泌尿系統相關的併發症,包含腎結石 (nephrolithiasis)、腎小管間質性腎炎 (tubulointerstitial nephritis)、腎絲球腎炎 (glomerulonephritis) 以及類澱粉沉積症 (amyloidosis)。除此之外,低劑量的Lm在CKD小鼠試驗中具有改善腸道滲漏的能力。故在第二部分的試驗中,我們將應用Lm在IBD小鼠模型,並進一步探討其增進腸道屏障功能的可能機制。
在CKD貓隻的臨床試驗中,我們將Lm油噴於市售貓隻飼料上,並以小包裝的方式製作成益生菌寵物零食。益生菌寵物零食提供三種不同口味,給予較挑食的CKD貓隻更多選擇。藉由益生菌寵物零食的方式,我們希望能減緩貓隻食用膠囊時受到的緊迫。此益生菌寵物零食符合所有關於寵物飼料安全與化學安定性的規定。而零食上Lm的穩定性也有被量測,其能夠於室溫中穩定存在至少一個月以上。CKD貓隻在試驗期間需每日食用含有Lm的益生菌寵物零食持續8周,並且每4周採集一次糞便、尿液以及血液樣本以進行後續分析。結果顯示,所有的CKD貓隻在Lm零食干預後都有較低或維持的血漿肌酸酐含量,且超過50%的受試CKD貓隻有觀察到有較低的三甲胺-N-氧化物 (trimethylamine N-oxide, TMAO)、硫酸吲哚酚 (indoxyl sulfate, IS) 和硫酸苯酯 (phenyl sulfate, PS) 含量。而受試貓隻的胃口跟活動力也都有獲得了改善。在糞便菌相分析中,益生菌寵物零食可以顯著地增加細菌多樣性並且調節腸道菌相組成,特別是增加了Lactobacillus跟Blautia caecimuris,且減少Enterobacteriaceae、Peptostreptococcaceae、Blautia hominis及Blautia coccoides。這些結果表明,給予CKD貓隻含有Lm的益生菌寵物,藉此調節其腸道菌相組成以及減少尿毒素含量,最終達到臨床上減緩CKD的進展,並增進CKD貓隻生活品質之功效。 在研究的第二個部分,我們給予C57BL/6的雌性小鼠兩周的Lm,並在第7至13天時將牠們的飲用水換成含有2.5% DSS的飲用水以誘導結腸炎產生。結果顯示,Lm能夠減緩DSS造成的糞便潛血、疾病活動指數 (disease activity index, DAI) 增加、腸道滲漏以及較高的組織學病理評分。尤其是高劑量的Lm組,擁有較長的結腸長度、較重的體重、較低的促炎因子含量,表示高劑量的Lm有較佳的調節免疫系統與腸道保護的能力。然而,低劑量的Lm也比高劑量Lm展現出促進緊密連接蛋白的能力。推測Lm可能的作用機制為經由調節盲腸菌相組成,降低Enterobacteriaceae且提高Lactobacillus之含量,並促進丁酸之生成以促進腸道屏障功能。整體而言,高劑量之Lm更能有效減緩結腸炎。 綜上所述,Lm為一個具有多功能之乳酸菌組合。通過本研究,我們闡明含有Lm的益生菌寵物零食能夠減緩貓隻的CKD病程發展,且Lm能夠減輕小鼠結腸炎的嚴重程度。此外,透過分析貓隻腸道菌群與DSS誘導結腸炎小鼠模型,提供更多機制的探討。 | zh_TW |
dc.description.abstract | Chronic kidney disease (CKD) is characterized by a substantial loss of kidney function and cannot be recovered. Since the prevalence of this disease in the geriatric feline population is up to 80%, this is an important issue waiting to be solved. Some proteolysis bacteria in the host’s intestine, especially Escherichia coli, tend to produce uremic toxins precursors, which progress CKD. Thus, microbiota-based strategies might be a novel auxiliary therapeutic and preventative way. Lactobacillus mixture (Lm, Lacticaseibacillus paracasei subsp. paracasei MFM 18 and Lactiplantibacillus plantarum subsp. plantarum MFM 30-3) was previously selected in our lab and proven to have kidney-protective effects in CKD mice model. Hence, we first clinically verified Lm’s function in CKD cats by treating probiotic pet treats that contain Lm. Additionally, there is increasing both clinical and in vivo pieces of evidence proving that inflammatory bowel disease (IBD) is a risk factor for CKD. Four to twenty-three% of IBD patients will develop kidney- or urinary system-related complications, including nephrolithiasis, tubulointerstitial nephritis, glomerulonephritis, and amyloidosis. Furthermore, the low dose of Lm had the ability to improve gut leakage in CKD mice. Thus, in the second part of my study, we applied Lm in IBD mice model to investigate the possible mechanism of Lm in enhancing gut barrier function.
For CKD feline clinical trial, Lm was oil-sprayed on commercial cat feed, and packed in small packages as probiotic pet treats. Three different flavors of pet treats were developed to offer more choices for picky CKD cats. By providing probiotic pet treats, we hope to alleviate stress for cats when administrating capsules. The probiotic pet treats met all the requirements of pet feed safety and chemical stability. The stability of Lm in treats at room temperature was also determined and required for at least a month. CKD cats were then fed with Lm-containing probiotic pet treats daily for 8 weeks. The fecal, urine, and blood samples were collected every 4 weeks. The results demonstrated that all the CKD cats had lower or maintain levels of plasma creatinine after probiotic pet treats intervention. Furthermore, more than 50% of the tested CKD cats were observed a reduction in serum trimethylamine N-oxide (TMAO), indoxyl sulfate (IS), and phenyl sulfate (PS). The appetite and physical activity of the tested cats were also improved. The fecal microbiota results showed that probiotic pet treats significantly increased bacteria diversity and modified the composition of gut microbiota by increasing Lactobacillus and Blautia caecimuris, and decreasing Enterobacteriaceae, Peptostreptococcaceae, Blautia hominis, and Blautia coccoides. The finding suggested that probiotic pet treats which contain Lm not only have the ability to reduce the progression of CKD clinically, but also can enhance the life quality of CKD cats by modifying gut microbiota and decreasing uremic toxins. In the second part of the study, C57BL/6 female mice were treated with Lm for 2 weeks, and changed their drinking water to contain 2.5% of dextran sulfate sodium (DSS) from day 7 to 13 to induce colitis. The results showed that Lm can mitigate fecal bleeding, increasing disease activity index (DAI), gut leakage, and higher histological score caused by DSS. Especially, high dose of Lm group (HD group) has longer colon length, higher body weight, and lower pro-inflammatory factors, showing that high dose of Lm has better ability to mediate the immune system and gut-protective ability. However, low dose of Lm (LD) also shows a potential ability to improve tight junction protein. The possible mechanism of Lm is to modify the microbiota in the cecum, especially decreasing Enterobacteriaceae and increasing Lactobacillus, and to up-regulate the level of butyric acid to enhance the gut barrier functionality. To sum up, high dose of Lm have better ability to mitigate colitis. In conclusion, Lm is a multi-functional probiotic mixture. Through the present study, we demonstrated that Lm-containing probiotic pet treats possessed an alleviating CKD effect in felines. Besides, Lm has the ability to mitigate the severity of colitis in mice. We also provide mechanism insights via analysis of the feline gut microbiome and DSS-induced colitis mouse model. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-26T16:13:13Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-03-26T16:13:13Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝辭 i
中文摘要 iii Abstract v 目錄 viii 圖目錄 xii 表目錄 xiv 壹、文獻探討 1 第一節:臨床應用複合乳酸桿菌於慢性腎臟病貓隻 1 一、慢性腎臟病的成因與現況 1 1.慢性腎臟病 (chronic kidney disease, CKD) 1 2.貓隻慢性腎臟病現況 2 二、尿毒素 (uremic toxins) 4 1.尿毒素的種類 4 2.腸源性尿毒素的生成與代謝 5 三、慢性腎臟病與腸道菌相失衡 (dysbiosis) 5 四、常見貓隻治療/減緩CKD的方法與產品 12 1.腎臟飲食 (kidney diet) 12 2.醫療干預 12 五、益生菌應用在CKD之相關研究與可能的改善途徑 13 第二節:複合乳酸桿菌腸道保健功效之探討 16 一、炎症性腸炎是慢性腎臟病的風險因子 16 1.炎症性腸炎 (inflammatory bowel disease, IBD) 16 2.IBD與CKD 16 二、腸道穩態失衡與IBD的相互關係 17 1.腸道菌群失衡 17 2.腸道屏障損傷 18 三、益生菌應用在IBD之相關研究與可能的改善途徑 19 貳、研究動機與目的 25 參、材料與方法 26 第一節:試驗設計 26 第二節:臨床應用乳酸桿菌混合菌株於慢性腎臟病貓隻 27 一、益生菌寵物零食製備 27 1.研究材料 27 2.研究方法 28 二、益生菌寵物零食應用於慢性腎臟病貓隻之減緩腎臟損傷功效探討 29 1.研究材料 29 2.研究方法 30 三、統計分析 34 第三節:於體內試驗評估複合乳酸桿菌對於預防結腸炎之功效 35 一、研究材料 35 1.試驗菌株與活化 35 2.實驗動物 35 二、研究方法 35 1.葡聚糖硫酸鈉之化學性誘導結腸炎試驗 35 2.樣本採集及犧牲 36 3.腸道通透性 36 4.疾病活動指數 (disease activity index, DAI) 監測 37 5.病理相關分析 (histologic evaluation) 37 6.腸道緊密連結蛋白、黏蛋白以及發炎相關蛋白質表現量分析 37 7.炎症相關細胞激素表現量分析 39 8.腎臟功能指標物分析 39 9.盲腸內容物短鏈脂肪酸之測定 39 10.盲腸菌相分析 40 三、統計分析 41 肆、結果 50 第一節:臨床應用複合乳酸桿菌於慢性腎臟病貓隻 50 一、益生菌寵物零食之製備 50 1.益生菌寵物零食乳酸菌儲存安定性 50 2.益生菌寵物零食安全性與化學安定性 50 二、益生菌寵物零食應用於慢性腎臟病貓隻之減緩腎臟損傷功效探討 58 1.受試貓隻基本資訊 58 2.受試貓隻血液生化分析 58 3.腎臟功能評估 59 4.益生菌寵物零食對於CKD貓隻生活品質之影響 59 5.試驗貓隻蛋白質攝取之變化 60 三、探討益生菌寵物零食可能的作用機制 70 1.受試貓隻血漿尿毒素之變化 70 2.益生菌寵物零食對於糞便菌相組成之影響 70 第二節:於體內試驗評估複合乳酸桿菌對於預防結腸炎之功效 83 一、複合乳酸桿菌對於減緩小鼠結腸炎之效果 83 1.小鼠基本腸炎病徵 83 2.腸道屏障完整性之評估 84 3.複合乳酸桿菌組合對於免疫系統之影響 91 二、複合乳酸桿菌組合對腸道菌相和短鏈脂肪酸之變化 96 三、結腸炎小鼠腎臟功能之變化 99 伍、討論 101 第一節:臨床應用複合乳酸桿菌於慢性腎臟病貓隻 101 一、益生菌寵物零食安全且穩定,並能實際應用於慢性腎臟病貓隻 101 二、益生菌寵物零食可減緩腎臟功能的喪失並提升貓隻生活品質 101 1.益生菌寵物零食能減緩慢性腎臟病進展 101 2.CKD貓隻生活品質在給予益生菌寵物零食八周後獲得改善 102 三、益生菌寵物零食可調節腸糞便菌相組成並減少尿毒素之產生 104 1.尿毒素含量在益生菌寵物零食干預後減少 104 2.益生菌寵物零食可調節貓隻的腸道菌相並提升菌相多樣性 104 四、小結 109 第二節:於體內試驗評估複合乳酸桿菌對於預防結腸炎之功效 110 一、複合乳酸桿菌可以減緩結腸炎小鼠病癥 110 二、複合乳酸桿菌可增進腸道屏障功能,但無法顯著增加緊密連接蛋白與黏蛋白 111 三、複合乳酸桿菌可調節DSS造成的免疫反應 111 四、複合乳酸桿菌組合可調節結腸炎小鼠盲腸菌相組成及短鏈脂肪酸 112 五、2.5% DSS之急性結腸炎小鼠模型不會引起腎臟損傷 113 六、小結 114 陸、結論 115 捌、參考文獻 116 | - |
dc.language.iso | zh_TW | - |
dc.title | 腎臟保健複合乳酸桿菌應用於慢性腎臟病貓之功效性及其腸道保健機能性之探討 | zh_TW |
dc.title | The efficacy of kidney-protective Lactobacillus mixture in feline chronic kidney disease and its functionality in improving gut health | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 廖啟成;陳勁初;楊三連;李雅珍 | zh_TW |
dc.contributor.oralexamcommittee | Chii-Cherng Liao;Chin-Chu Chen;San-Land Young;Ya-Jane Lee | en |
dc.subject.keyword | 複合乳酸桿菌,慢性腎臟病,益生菌寵物零食,貓,炎症性腸炎, | zh_TW |
dc.subject.keyword | Lactobacillus mixture,chronic kidney disease (CKD),probiotic pet treats,feline,inflammatory bowel disease (IBD), | en |
dc.relation.page | 136 | - |
dc.identifier.doi | 10.6342/NTU202304201 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-09-05 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 動物科學技術學系 | - |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 3.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。