請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92460完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙聖德 | zh_TW |
| dc.contributor.advisor | Sheng-D Chao | en |
| dc.contributor.author | 林泳廷 | zh_TW |
| dc.contributor.author | Youn-Ting Lin | en |
| dc.date.accessioned | 2024-03-22T16:36:39Z | - |
| dc.date.available | 2025-12-31 | - |
| dc.date.copyright | 2024-03-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-12-14 | - |
| dc.identifier.citation | 1. Ferguson, L.R. and W.A. Denny, Genotoxicity of non-covalent interactions: DNA intercalators. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2007. 623(1-2): p. 14-23.
2. Politzer, P., J.S. Murray, and Z. Peralta‐Inga, Molecular surface electrostatic potentials in relation to noncovalent interactions in biological systems. International Journal of Quantum Chemistry, 2001. 85(6): p. 676-684. 3. Chang, Y.-M., Y.-S. Wang, and S.D. Chao, A minimum quantum chemistry CCSD (T)/CBS dataset of dimeric interaction energies for small organic functional groups. The Journal of Chemical Physics, 2020. 153(15): p. 154301. 4 Levels of Symmetry Adapted Perturbation Theory (SAPT). I. Efficiency and Performance for Interaction Energies,’’ T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, and C. D. Sherrill, J. Chem. Phys. 140, 094106 (2014). 5 Tyagi, O.S., H.S. Bisht, and A.K. Chatterjee, Phase transition, conformational disorder, and chain packing in crystalline long-chain symmetrical alkyl ethers and symmetrical alkenes. The Journal of Physical Chemistry B, 2004. 108(9): p. 3010-3016. 6. Hobza, P., R. Zahradník, and M. STULIKOVA, Intermolecular complexes: the role of van der Waals systems in physical chemistry and in the biodisciplines. Studies in physical and theoretical chemistry, 1988. 52: p. 1-307. 7. Jeffrey, G.A. and W. Saenger, Hydrogen bonding in biological structures. 2012: Springer Science & Business Media. 8. Gaussian, R., et al., Gaussian 09, Revision A. 02. Gaussian Inc, 2016. 9. Parker, T.M., et al., Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies. The Journal of chemical physics, 2014. 140(9): p. 094106. 10. Dunning, T.H., A road map for the calculation of molecular binding energies. The Journal of Physical Chemistry A, 2000. 104(40): p. 9062-9080. 11. Stone, A., The theory of intermolecular forces. 2013: oUP oxford. 12. Marchetti, O. and H.-J. Werner, Accurate calculations of intermolecular interaction energies using explicitly correlated coupled cluster wave functions and a dispersion-weighted MP2 method. The Journal of Physical Chemistry A, 2009. 113(43): p. 11580-11585. 13. Grimme, S., et al., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics, 2010. 132(15): p. 154104. 14. Raghavachari, K., et al., A fifth-order perturbation comparison of electron correlation theories. Chemical Physics Letters, 1989. 157(6): p. 479-483. 15. Simon, S., M. Duran, and J. Dannenberg, How does basis set superposition error change the potential surfaces for hydrogen‐bonded dimers? The Journal of chemical physics, 1996. 105(24): p. 11024-11031. 16. Boys, S.F. and F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 1970. 19(4): p. 553-566. 17. Jeziorski, B., R. Moszynski, and K. Szalewicz, Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chemical Reviews, 1994. 94(7): p. 1887-1930. 18 Glick, Z.L., et al., AP-Net: An atomic-pairwise neural network for smooth and transferable interaction potentials. The Journal of Chemical Physics, 2020. 153(4): p. 044112. 19. Pastorczak, E. and C. Corminboeuf, Perspective: Found in translation: Quantum chemical tools for grasping non-covalent interactions. The Journal of Chemical Physics, 2017. 146(12): p. 120901. 20. Szalewicz, K., Symmetry‐adapted perturbation theory of intermolecular forces. Wiley interdisciplinary reviews: computational molecular science, 2012. 2(2): p. 254-272. 21. Freund, Y. and R.E. Schapire, Large margin classification using the perceptron algorithm. Machine learning, 1999. 37(3): p. 277-296. 22. Gers, F.A., N.N. Schraudolph, and J. Schmidhuber, Learning precise timing with LSTM recurrent networks. Journal of machine learning research, 2002. 3(Aug): p. 115-143. 23. Hinton, G.E., Distributed representations. 1984. 24. Rumelhart, D. and J. McClelland, Group, PR Parallel Distributed Processing: Explorations in the Microstructures of Cognition. Volume 1: Foundations. 1986, The MIT Press: Cambridge, MA, USA. 25. Rumelhart, D.E., G.E. Hinton, and R.J. Williams, Learning representations by back-propagating errors. nature, 1986. 323(6088): p. 533-536. 26. Horowitz, A.R., Loss functions and public policy. Journal of Macroeconomics, 1987. 9(4): p. 489-504. 27. Han, J. and C. Moraga. The influence of the sigmoid function parameters on the speed of backpropagation learning. in International workshop on artificial neural networks. 1995. Springer. 28. Behler, J., Atom-centered symmetry functions for constructing high-dimensional neural network potentials. The Journal of chemical physics, 2011. 134(7): p. 074106. 29. Behler, J. and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces. Physical review letters, 2007. 98(14): p. 146401. 30. Sazli, M.H., A brief review of feed-forward neural networks. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 2006. 50(01). 31. Jose, K.J., N. Artrith, and J. Behler, Construction of high-dimensional neural network potentials using environment-dependent atom pairs. The Journal of chemical physics, 2012. 136(19): p. 194111. 32. Stone, A. and S. Price, Some new ideas in the theory of intermolecular forces: anisotropic atom-atom potentials. The Journal of Physical Chemistry, 1988. 92(12): p. 3325-3335. 33. Millot, C., et al., Revised anisotropic site potentials for the water dimer and calculated properties. The Journal of Physical Chemistry A, 1998. 102(4): p. 754-770. 34. Harder, E., et al., Atomic level anisotropy in the electrostatic modeling of lone pairs for a polarizable force field based on the classical Drude oscillator. Journal of chemical theory and computation, 2006. 2(6): p. 1587-1597. 35. Sazli, M.H., A brief review of feed-forward neural networks. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 2006. 50(01). 36. Jose, K.J., N. Artrith, and J. Behler, Construction of high-dimensional neural network potentials using environment-dependent atom pairs. The Journal of chemical physics, 2012. 136(19): p. 194111. 37. Stone, A. and S. Price, Some new ideas in the theory of intermolecular forces: anisotropic atom-atom potentials. The Journal of Physical Chemistry, 1988. 92(12): p. 3325-3335. 38. Millot, C., et al., Revised anisotropic site potentials for the water dimer and calculated properties. The Journal of Physical Chemistry A, 1998. 102(4): p. 754-770. 39. Harder, E., et al., Atomic level anisotropy in the electrostatic modeling of lone pairs for a polarizable force field based on the classical Drude oscillator. Journal of chemical theory and computation, 2006. 2(6): p. 1587-1597. 40. Groom, C.R., et al., The Cambridge structural database. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016. 72(2): p. 171-179. 41. Method for intermolecular interaction energy calculation using SAPT databases based on machine learning and physical models (Jia-An Chen). 2022 42 Machine learning intermolecular interaction energy calculationbased on functional-groups classify quantum chemistry database Zhuo-Xuan Luo 2022 43. Meisel, Christian. (2023). Self-organized criticality in adaptive neural networks. 44. Atom-centered symmetry functions for constructing high-dimensional neural network potentials J. Chem. Phys. 134, 074106 (2011)45. Spronk, S.A., Glick, Z.L., Metcalf, D.P. et al. A quantum chemical interaction energy dataset for accurately modeling protein-ligand interactions. Sci Data 10, 619 (2023). 45. E. Harder, V. M. Anisimov, I. V. Vorobyov, P. E. M. Lopes, S. Y. Noskov, A. D. MacKerell, and B. Roux, J. Chem. Theory Comput. 2, 1587 (2006) 46. A shared-weight neural network architecture for predicting molecular properties Phys. Chem. Chem. Phys., 2019 47. 張育銘, “利用量子化學方法建立分子二聚體分子間作用力數據庫與SAPT分析,” 碩士論文,國立台灣大學, 2017. 48. 黃星翔, “利用量子化學方法建立混合型分子二聚體分子間相互作用力資料庫與混合法的比較分析,” 碩士論文,國立台灣大學, 2019. 49. Clyde A. Daly, Rigoberto Hernandez; Optimizing bags of artificial neural networks for the prediction of viability from sparse data. J. Chem. Phys. 7 August 2020; 153 (5): 054112. 50. Ryosuke Jinnouchi, Ferenc Karsai, Carla Verdi, Ryoji Asahi, Georg Kresse; Descriptors representing two- and three-body atomic distributions and their effects on the accuracy of machine-learned inter-atomic potentials. J. Chem. Phys. 21 June 2020; 152 (23): 234102 51. V. Botu, R. Batra, J. Chapman, and R. Ramprasad, “Machine learning force fields: Construction, validation, and outlook,” J. Phys. Chem. C 121, 511–522 (2017). 52. Machine Learning Force Fields: Construction, Validation, and OutlookV. Botu, R. Batra, J. Chapman, and R. Ramprasad The Journal of Physical Chemistry C 2017 121 (1), 511-522 53. V. L. Deringer and G. Csányi, “Machine learning based interatomic potential for amorphous carbon,” Phys. Rev. B 95, 094203 (2017). 54 Derek P. Metcalf, Alexios Koutsoukas, Steven A. Spronk, Brian L. Claus, Deborah A. Loughney, Stephen R. Johnson, Daniel L. Cheney, C. David Sherrill; Approaches for machine learning intermolecular interaction energies and application to energy components from symmetry adapted perturbation theory. J. Chem. Phys. 21 February 2020; 152 (7): 074103. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92460 | - |
| dc.description.abstract | 近幾年間,隨著電腦設備的加強與原子結構逐漸複雜,我們實驗室慢慢的從人為用量子化學的計算方式,結合機器學習,更快的得到未知分子二聚體相互作用能的各種資料。先前實驗室是建立了8種常見的官能基分類數據庫,使用同源二聚體(Dimers)的穩定點資料來預測異源二聚體(Bimers)的穩定點資料,都有得到不錯的結果,但是只有穩定點的資料對於分子動力學的接續來說是不夠的,所以我試著使用機器學習的方式,來預測出每個二聚體之間的能量曲線。
我選擇的是一種前饋式的人工神經網路(ANN)所組成的非監督式機器學習模型,由於是非監督試的機器模型,他並不知道能量曲線的走向,所以需要方法逐步引導機器走向正確的地方,我的工作就是找出能讓機器正確學習的步驟,盡可能地減少訓練集中的參數,能讓機器把正確的二聚體位能曲線給表現出來。 目前只用了實驗室裡的數據集,31個同源二聚體和268個異源二聚體,來做訓練與預測,希望能先找到能正確預測出能量曲線的方法後再去預測其他更大的資料庫,最終目標希望能夠預測出各種分子構型的能量曲線。 最後結果可以知道,並不用把所有參數都丟進訓練集,只需要6或7個單點位置,機器就能夠知道整體曲線的趨勢,不僅使用更少的資料來訓練,預測出的結果也比全部資料拿去訓練的結果更好,所以有次序的進行訓練,是有助於電腦進行學習的。 | zh_TW |
| dc.description.abstract | In the past few years, with the enhancement of computer equipment and the increasing complexity of atomic structures, our laboratory has slowly moved away from artificial quantum chemical calculations and combined with machine learning to obtain various data on the interaction energy of unknown molecular dimers more quickly. Previously, we built a database of 8 common functional groups and used the stability point data of homo-dimers to predict the stability point data of hetero-dimers, and we got good results. Therefore, I would like to use machine learning to predict the energy curve of each dimer.
I chose a unsupervised machine learning model composed of a feed-forward artificial neural network (ANN). Since it is a non-supervised machine model, it doesn't know the direction of the energy curve, so it needs a way to gradually guide the machine to the right place, and my job is to find out the steps that allow the machine to learn correctly, and to minimize the number of parameters in the training set as much as possible, and to allow the machine to represent the correct dimer potential energy curve. At present, we only use the laboratory data set, 31 homodimers and 268 heterodimers, for training and prediction. We hope to find a way to predict the energy curves correctly before predicting other larger databases, with the ultimate goal of predicting the energy curves of various molecular configurations. In the final result, we can see that we don't need to throw all the parameters into the training set, only 6 or 7 single point positions are needed, the machine can know the trend of the overall curve, not only using less data for training, but also predicting the result is better than the result of taking all the data to the training, so the sequential training is helpful for the computer to learn. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-22T16:36:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-22T16:36:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員會審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv 目次 vi 圖目次 x 表目次 xiv 第1章 緒論 1 1.1 研究動機 1 1.2 分子間作用力介紹 1 1.3 計算分子間作用力方法介紹 3 第2章 基本理論介紹 5 2.1 機器學習理論 5 2.1.1 機器學習(Mechine Learning) 5 2.2 量子力學理論 7 2.2.1 對稱性匹配為擾理Symmetry-Adapted Perturbation Theory(SAPT) 7 第3章 人工智慧介紹 9 3.1 人工智慧發展史 9 3.2 類神經網路 10 3.2.1 類神經網路介紹 10 3.2.2 感知器(Perceptron) 11 3.2.3 多層感知器(Multilayer Perceptron) 12 3.2.4 常見的神經網路 13 3.2.5 反向傳播(Backpropagation) 14 3.2.6 梯度消失(Vanishing Gardient Problem) 17 3.2.7 優化器(Optimizer) 21 第4章 計算結果與討論 25 4.1 使用模型 25 4.1.1 模型介紹 25 4.1.2 原子對分區(Pairwise energy partition) 27 4.1.3 對稱函數(Symmetry Function) 28 4.1.4 訓練集(Training Sets)和測試集(Testing Sets) 30 4.2 以SOFG-31同源二聚體平衡點預測SOFG-31異源二聚體平衡點之結果與討論 34 4.2.1 SOFG-31訓練集(Training Set)和測試集(Testing Set) 34 4.3 以SOFG-31同源二聚體曲線預測SOFG-31同源二聚體曲線之結果與討論 37 4.3.1 分子距離參數 37 4.3.2 同源二聚體(Dimer)之訓練與預測 38 4.4 以SOFG-31同源二聚體曲線預測SOFG-31異源二聚體之曲線結果與討論 41 4.4.1 挑選訓練點參數 41 4.4.2 挑選優化曲線參數 46 4.4.3 AAA-AAA異源二聚體預測之優化結果與討論 48 4.4.4 AAA-AAK異源二聚體預測之優化結果與討論 51 4.4.5 AAA-CAA異源二聚體預測之優化結果與討論 54 4.4.6 AAK-AAK異源二聚體預測之優化結果與討論 56 4.4.7 AAK-CAA異源二聚體預測之優化結果與討論 58 4.4.8 CAA-CAA異源二聚體預測之優化結果與討論 60 4.4.9 SOFG-31 Hetero-Dimer異源二聚體之預測結果與討論 61 第5章 結論與未來展望 63 5.1 結論…………………………………………………………………………. 63 5.2 未來展望 64 REFERENCE 65 第6章 附錄 69 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 力場數據 | zh_TW |
| dc.subject | 交互作用能 | zh_TW |
| dc.subject | Lennard Jones 曲線方程式 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 非共價交互作用力 | zh_TW |
| dc.subject | non-covalent interaction forces | en |
| dc.subject | lennard jones curve equation | en |
| dc.subject | machine learning | en |
| dc.subject | Force Field Data | en |
| dc.subject | Interaction energy | en |
| dc.title | 以非監督式機器學習模型預測二聚體分子之總能量曲線 | zh_TW |
| dc.title | Using unsupervised machine learning model to predict total energy curves of dimer molecules | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周佳靚;郭哲來;鄭原忠;李奕霈 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Ching Chou;Jer-Lai Kuo;Yuan-Chung Zheng;Yi-Pei Li | en |
| dc.subject.keyword | 交互作用能,非共價交互作用力,機器學習,Lennard Jones 曲線方程式,力場數據, | zh_TW |
| dc.subject.keyword | Interaction energy,non-covalent interaction forces,machine learning,lennard jones curve equation,Force Field Data, | en |
| dc.relation.page | 78 | - |
| dc.identifier.doi | 10.6342/NTU202304487 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-12-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 4.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
