Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92435
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林忠緯zh_TW
dc.contributor.advisorChung-Wei Linen
dc.contributor.author蔡承濬zh_TW
dc.contributor.authorChen-Jun Tsaien
dc.date.accessioned2024-03-22T16:29:41Z-
dc.date.available2025-07-01-
dc.date.copyright2024-03-22-
dc.date.issued2024-
dc.date.submitted2024-01-26-
dc.identifier.citationL. Ahrendts, S. Quinton, T. Boroske, and R. Ernst, “Verifying weakly-hard real-time properties of traffic streams in switched networks,” in Euromicro Conference on Real-Time Systems, vol. 106, pp. 15:1–15:22, 2018.
G. Bernat and R. Cayssials, “Guaranteed on-line weakly-hard real-time systems,” in IEEE Real-Time Systems Symposium, pp. 22–35. IEEE, 2001.
R. Blind and F. Allgower, “Towards networked control systems with guaranteed stability: Using weakly hard real-time constraints to model the loss process,” in IEEE Conference on Decision and Control, pp. 7510–7515, IEEE. IEEE, 2015.
H. Choi, H. Kim, and Q. Zhu, “Job-class-level fixed priority scheduling of weakly-hard real-time systems,” in IEEE Real-Time Technology and Applications Symposium, pp. 241–253. IEEE, 2019.
P. S. Duggirala and M. Viswanathan, “Analyzing real time linear control systems using software verification,” in IEEE Real-Time Systems Symposium, pp. 216–226, IEEE. IEEE, 2015.
G. Frehse, A. Hamann, S. Quinton, and M. Woehrle, “Formal analysis of timing effects on closed-loop properties of control software,” in IEEE Real-Time Systems Symposium, pp. 53–62. IEEE, 2014.
A. Gujarati, M. Nasri, R. Majumdar, and B. Brandenburg, “From iteration to system failure: characterizing the fitness of periodic weakly-hard systems,” in Euromicro Conference on Real-Time Systems, pp. 9:1–9:23, 2019.
M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment technique for streams with (m,k)-firm deadlines,” IEEE Transactions on Computers, vol. 44, no. 12, pp. 1443–1451, 1995.
Z. A. H. Hammadeh, R. Ernst, S. Quinton, R. Henia, and L. Rioux, “Bounding deadline misses in weakly-hard real-time systems with task dependencies,” in Design, Automation and Test in Europe Conference, pp. 584–589, 2017.
Y.-T. Hsieh, T.-T. Chang, C.-J. Tsai, S.-L. Wu, C.-Y. Bai, K.-C. Chang, C.- W. Lin, E. Kang, C. Huang, and Q. Zhu, “System verification and runtime monitoring with multiple weakly-hard constraints,” ACM Trans. Cyber-Phys. Syst., vol. 7, no. 3, pp. Article 21, 28 pages, 2023.
C. Huang, W. Li, and Q. Zhu, “Formal verification of weakly-hard systems,” in ACM International Conference on Hybrid Systems: Computation and Control, pp. 197–207. ACM, 2019.
J. Li, Y. Song, and F. Simonot-Lion, “Providing real-time applications with graceful degradation of QoS and fault tolerance according to (m,k)-firm model,” IEEE Transactions on Industrial Informatics, vol. 2, no. 2, pp. 112– 119, 2006.
S. Linsenmayer and F. Allgower, “Stabilization of networked control systems with weakly hard real-time dropout description,” in IEEE Conference on Decision and Control, pp. 4765–4770. IEEE, 2017.
P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin, “DMAC: deadline-miss- aware control,” in Euromicro Conference on Real-Time Systems, pp. 1:1–1:24, 2019.
S. Quinton and R. Ernst, “Generalized weakly-hard constraints,” in International Symposium On Leveraging Applications of Formal Methods, Verification and Validation, pp. 96–110. Springer, 2012.
L. Schenato, “To zero or to hold control inputs with lossy links?” IEEE Transactions on Automatic Control, vol. 54, no. 5, pp. 1093–1099, 2009.
Y. Sun and M. Di Natale, “Weakly hard schedulability analysis for fixed priority scheduling of periodic real-time tasks,” ACM Transactions on Embedded Computing Systems, vol. 16, no. 5s, pp. 171:1–171:19, 2017.
W. Xu, Z. A. H. Hammadeh, A. Kroller, R. Ernst, and S. Quinton, “Improved deadline miss models for real-time systems using typical worst-case analysis,” in Euromicro Conference on Real-Time Systems, pp. 247–256, 2015.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92435-
dc.description.abstract嵌入式和網宇實體系統的不斷發展引領了實時系統管理的新模式,其中,嚴格的傳統實時限制通常無法容忍錯誤,因此常常與動態且不可預測的環境發生衝突。弱硬式錯誤模型(weakly-hard fault model)作為一種實用的解決方案,允許系統在控制下容忍特定次數的錯誤,進而實現了可靠性和適應性的平衡。準確地說,一個弱硬式錯誤模型使用單一重弱硬式限制 C = (m,k)(weakly-hard constraint)來描述,代表在 k 個連續的事件中,可以確保最多只有 m 個錯誤的事件。本論文提出了一種以雙重弱硬式限制驗證系統性質的創新方法,我們使用一個弱硬式限制對(C1,C2)來約束系統的輸入,並且提出不同的方法以高效地在所有可能的限制對下驗證系統性質。透過離散二階控制和網絡路由的兩個案例研究,這些方法的普遍性和有效性得到證實。實驗結果進一步表明,這種採用弱硬式限制對的模型能夠涵蓋更廣泛的系統行為範圍,突顯了其增強嵌入式和網宇實體系統靈活性和適應性的潛力,這對於此類需要在有限資源和存在錯誤的情況下提供保證的系統尤為重要。zh_TW
dc.description.abstractThe evolving landscape of embedded and cyber-physical systems has ushered in a new paradigm in real-time systems management, where the rigidity of traditional hard real-time constraints often conflicts with the need for flexibility in dynamic and unpredictable environments. The weakly-hard constraint model, defined by a weakly-hard constraint C = (m, k), where 0 ≤ m ≤ k, meaning that there are at most m bad events (faults) among any k consecutive events. It emerges as a pragmatic solution allowing a controlled number of faults, balancing reliability and adaptability. This thesis introduces an innovative methodology for verifying system properties under dual weakly-hard constraints. We have developed general approaches to verify properties for all possible values of weakly-hard constraint pairs (C_1,C_2), where C_i is a weakly-hard constraint with k_i being smaller than or equal to a given K. The process of verifying these candidates is executed precisely and efficiently, informed by our observation and analysis. We also introduce the speedup in m and k approaches, demonstrating their efficiency in managing larger state spaces for the special case of reachability analysis. If the system environment satisfies the weakly-hard requirements, the satisfaction of desired properties is assured. This assurance is particularly crucial for systems that must provide guarantees with limited resources and in the presence of faults. Through two case studies – discrete second-order control and network routing – we validate the effectiveness of our approaches. Our results indicate a substantial improvement in verification efficiency with the dual weakly-hard constraint model. The ability of this model to encompass a broader range of system behaviors underscores its potential to enhance the flexibility and adaptability of embedded and cyber-physical systems.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-22T16:29:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-22T16:29:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements ii
Abstract (Chinese) iii
Abstract iv
List of Tables viii
List of Figures ix
Chapter 1. Introduction 1
1.1 Background .................................. 1
1.2 Related Work ................................. 2
1.3 Motivations and Contributions........................ 4
Chapter 2. Problem Formulation 7
Chapter 3. General Approaches 11
3.1 The Monotonic Approach........................... 11
3.2 The Enhanced Monotonic Approach..................... 12
3.2.1 Relationships Between Weakly-Hard Constraint Pairs . . . . . . . 13
3.2.2 Comparability ............................. 20
Chapter 4. Reachability Analysis for Finite-State Machines 25
4.1 Problem Definition .............................. 25
4.2 Mask-Compressing Approach......................... 26
4.3 Speedup in m ................................. 28
4.4 Speedup in k.................................. 30
Chapter 5. Experimental Results 35
5.1 Discrete Second-Order Control........................ 35
5.1.1 System Configuration ......................... 36
5.1.2 Finite-State Machine Representation................. 37
5.1.3 Experiment on the Number of States................. 38
5.1.4 Experiment on the Solution Space Size. . . . . . . . . . . . . . . . 40
5.2 NetworkRouting ............................... 40
5.2.1 System Configuration ......................... 40
5.2.2 Finite-State Machine Representation................. 42
5.2.3 Experiment on the Number of States................. 43
5.2.4 Experiment on the Solution Space Size. . . . . . . . . . . . . . . . 44
5.3 Summary.................................... 44
Chapter 6. Conclusion 46
Bibliography 47
-
dc.language.isoen-
dc.subject嵌入式系統zh_TW
dc.subject網宇實體系統zh_TW
dc.subject實時系統zh_TW
dc.subject正規式驗證zh_TW
dc.subject弱硬式限制zh_TW
dc.subjectReal-Time Systemsen
dc.subjectEmbedded and Cyber-Physical Systemsen
dc.subjectWeakly-Hard Modelsen
dc.subjectFormal Verificationen
dc.title以雙重弱硬式限制驗證系統性質zh_TW
dc.titleVerifying System Properties with Dual Weakly-Hard Constraintsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee巫芳璟;陳尚澤;江介宏zh_TW
dc.contributor.oralexamcommitteeFang-Jing Wu;Shang-Tse Chen;Jie-Hong Jiangen
dc.subject.keyword嵌入式系統,網宇實體系統,實時系統,正規式驗證,弱硬式限制,zh_TW
dc.subject.keywordEmbedded and Cyber-Physical Systems,Real-Time Systems,Formal Verification,Weakly-Hard Models,en
dc.relation.page49-
dc.identifier.doi10.6342/NTU202400164-
dc.rights.note未授權-
dc.date.accepted2024-01-30-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
846.68 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved