請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92432完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何國川 | zh_TW |
| dc.contributor.advisor | Kuo-Chuan Ho | en |
| dc.contributor.author | 游鑫福 | zh_TW |
| dc.contributor.author | Hsin-Fu Yu | en |
| dc.date.accessioned | 2024-03-22T16:28:52Z | - |
| dc.date.available | 2024-03-23 | - |
| dc.date.copyright | 2024-03-22 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-01-24 | - |
| dc.identifier.citation | 1. S.K. Deb, A novel electrophotographic system, Appl. Opt. 8 (1969) 192–195.
2. C.M. Lampert, Electrochromic materials and devices for energy efficient windows, Sol. Energy Mater. 11 (1984) 1–27. 3. H.J. Byker, J.H. Bechtel, Automatic rearview mirror system for automative vehicles, U.S. Patent No. 4,917,477, 1990. 4. R.J. Mortimer, Electrochromic materials, Chem. Soc. Rev. 26 (1997) 147–156. 5. R.J. Mortimer, P.M.S. Monk, D.R. Rosseinsky, Electrochromism and electrochromic devices, Cambridge University Press, Cambridge, U.K., 2007. 6. P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Construction of electrochromic devices. In: P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, editors. Electrochrormsm: Fundamentals and Applications. Wiley-VCH, Weinheim, Germany; 1995, p. 42‒53. 7. R.D. Rauh, Electrochromic windows: an overview, Electrochim. Acta 44 (1999) 3165‒3176. 8. M. Casini, Active dynamic windows for buildings: A review, Renew. Energ. 119 (2018) 923-934. 9. C. Gu, A.B. Jia, Y.M. Zhang, Sean X.A. Zhang, Emerging electrochromic materials and devices for future displays, Chem. Rev. 122 (2022) 14679–14721. 10. T. J. Richardson, New electrochromic mirror systems, Solid State Ion. 165 (2003) 305-308. 11. R. Baetens, B.P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review, Sol. Energy Mater. Sol. Cells 94 (2010) 87–105. 12. C.G. Granqvist, Electrochromics for smart windows: Oxide-based thin films and devices, Thin Solid Films 564 (2014) 1–38. 13. H. Park, D.S. Kim, S.Y. Hong, C.M. Kim, J.Y. Yun, S.Y. Oh, S.W. Jin, Y.R. Jeong, G.T. Kim, J.S. Ha, A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays, Nanoscale 9 (2017) 7631–7640. 14. Y.J. Choi, K.W. Kim, Y.R. In, X.W. Tang, P.G. Kim, V.H.V. Quy, Y.M. Kim, J.Y. Lee, C.R. Choi, C.M. Jung, S.H. Kim, H.C. Moon, J.K. Kim, Multicolor, dual-image, printed electrochromic displays based on tandem configuration, Chem. Eng. J. 429 (2022) 132319. 15. X. Hou, Z. Wang, Z. Zheng, J. Guo, Z. Sun, F. Yan, Poly(ionic liquid) electrolytes for a switchable silver mirror, ACS Appl. Mater. Interfaces 11 (2019) 20417−20424. 16. S.J. Yoo, J.W. Lim, Y.E. Sung, Improved electrochromic devices with an inorganic solid electrolyte protective layer, Sol. Energy Mater. Sol. Cells 90 (2006) 477–484. 17. S.K. Deb, Opportunities and challenges in science and technology of WO3 for electrochromic and related applications, Sol. Energy Mater. Sol. Cells 92 (2008) 245–258. 18. K.J. Patel, G.G. Bhatt, J.R. Ray, All-inorganic solid-state electrochromic devices: A review, J. Solid State Electrochem. 21 (2017) 337–347. 19. S. Xiong, S. Yin, Y. Wang, Z. Kong, J. Lan, R. Zhang, M. Gong, B. Wu, J. Chu, X. Wang, Organic/inorganic electrochromic nanocomposites with various interfacial interactions: A review, Mater. Sci. Eng. B 221 (2017) 41–53. 20. W. Zhang, H. Li, W.W. Yu, Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices, Light Sci. Appl. 9 (2020) 121. 21. Z. Wang, X. Wang, S. Cong, Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry-perot nanocavities, Nat. Commun. 11 (2020) 302. 22. R.J. Mortimer, Organic electrochromic materials, Electrochim. Acta 44 (1999) 2971‒2981. 23. C.L. Gaupp, D.M. Welsh, R.D. Rauh, J.R. Reynolds, Composite coloration efficiency measurements of electrochromic polymers based on 3,4-alkylenedioxythiophenes, Chem. Mater. 14 (2002) 3964–3970. 24. G. Sonmez, H. Meng, F. Wudl, Organic polymeric electrochromic devices: polychromism with very high coloration efficiency, Chem. Mater. 16 (2004) 574–580. 25. R.J. Mortimer, A.L. Dyer, J.R. Reynolds, Electrochromic organic and polymeric materials for display applications, Displays 27 (2006) 2–18. 26. P. Andersson, R. Forchheimer, P. Tehrani, M. Berggren, T. Printable, All-Organic Electrochromic Active-Matrix Displays, Adv. Funct. Mater. 17 (2007) 3074–3082. 27. P.M. Beaujuge, J.R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices, Chem. Rev. 110 (2010) 268–320. 28. A. Pawlicka, Development of electrochromic devices, Electrochim. Acta 3 (2009) 177–181. 29. C. Yan, W. Kang, J. Wang, M. Cui, X. Wang, C.Y. Foo, K.J. Chee, P.S. Lee, Stretchable and wearable electrochromic devices, ACS Nano 8 (2014) 316–322. 30. S.I. Park, Y.J. Quan, S.H. Kim, A review on fabrication processes for electrochromic devices, Int. J. of Precis. Eng. and Manuf.-Green Tech. 3 (2016) 397–421. 31. Alice L.S. Eh, Alvin W.M. Tan, X. Cheng, S. Magdassi, P.S. Lee, Recent advances in flexible electrochromic devices: Prerequisites, challenges, and prospects, Energy Technol. 6 (2018) 33–45. 32. V. Rai, R.S. Singh, D.J. Blackwood, D. Zhili, A review on recent advances in electrochromic devices: A material approach, Adv. Eng. Mater. 22 (2020) 2000082. 33. W. Li, T. Bai, G. Fu, Q. Zhang, J. Liu, H. Wang, Y. Sun, H. Yan, Progress and challenges in flexible electrochromic devices, Sol. Energy Mater. Sol. Cells 240 (2022) 111709. 34. G.A. Niklasson, C.G. Granqvist, Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these, J. Mater. Chem. 17 (2007) 127–156. 35. P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism: Terminology, Scope, Colouration. In: P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, editors. Electrochrormsm: Fundamentals and Applications. Wiley-VCH, Weinheim, Germany; 1995, p. 3‒21. 36. C.M. Lampert, Large-area smart glass and integrated photovoltaics, Sol. Energy Mater. Sol. Cells 76 (2003) 489–499. 37. J. Randin, Response time of large-scale electrochromic devices. In: C.M. Lampert, C.G. Granqvist, R.F. Potter, editors. Large-area chromogenics: Materials and devices for transmittance control, SPIE Institutes for Advanced Optical Technologies, Bellingham, WA, Vol. IS4, 1990. 38. S. Shankar, M. Lahav, M.E. van der Boom, Coordination-based molecular assemblies as electrochromic materials: Ultra-high switching stability and coloration efficiencies, J. Am. Chem. Soc. 137 (2015) 4050–4053. 39. L. Wang, M. Guo, J. Zhan, X. Jiao, D. Chen, T. Wang, A new design of an electrochromic energy storage device with high capacity, long cycle lifetime and multicolor display, J. Mater. Chem. A 8 (2020) 17098–17105. 40. C. Wu, Z. Shao, W. Zhai, X. Zhang, C. Zhang, C. Zhu, Y. Yu, W. Liu, Niobium tungsten oxides for electrochromic devices with long-term stability, ACS Nano 16 (2022) 2621–2628. 41. E. Hadjoudis, I.M. Mavridis, Photochromism and thermochromism of Schiff bases in the solid state: structural aspects, Chem. Soc. Rev. 33 (2004) 579–588. 42. C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B.A. Gregg, Photoelectrochromic windows and displays, Nature 383 (1996) 608–610. 43. J.R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, A. Stocking, Organic electroluminescent devices, Science 273 (1996) 884–888. 44. E.S. Lee, D.L. DiBartolomeo, Application issues for large-area electrochromic windows in commercial buildings, Sol. Energy Mater. Sol. Cells 71 (2002) 465–491. 45. A.A. Argun, J.R. Reynolds, Line patterning for flexible and laterally configured electrochromic devices, J. Mater. Chem. 15 (2005) 1793–1800. 46. C. Ma, M. Taya, C. Xu, Smart glasses based on electrochromic polymers, Polym. Eng. Sci. 48 (2008) 2224–2228. 47. A. Azens, E. Avendaño, J. Backholm, L. Berggren, G. Gustavsson, R. Karmhag, G.A. Niklasson, A. Roos, C.G. Granqvist, Flexible foils with electrochromic coatings: science, technology and applications, Mater. Sci. Eng. B 119 (2005) 214–223. 48. K.C. Ho, T.G. Rukavina, C.B. Greenberg, Tungsten oxide‒Prussian blue electrochromic system based on a proton-conducting polymer electrolyte, J. Electrochern. Soc. 141 (1994) 2061–2067. 49. G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, P.S. Lee, Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors, Adv. Energ. Mater. 6 (2016) 1501882. 50. M. Layani, A. Kamyshny, S. Magdassi, Transparent conductors composed of nanomaterials, Nanoscale 6 (2014) 5581–5591. 51. R.J. Mortimer, D.R. Rosseinsky, P.M.S. Monk, editors. Electrochromic materials and devices, Wiley-VCH, Weinheim, Germany; 2015, p. 4. 52. S. Green, J. Backholm, P. Georén, C.G. Granqvist, G.A. Niklasson, Electrochromism in nickel oxide and tungsten oxide thin films: Ion intercalation from different electrolytes, Sol. Energy Mater. Sol. Cells 93 (2009) 2050–2055. 53. A. Baba, S. Tian, F. Stefani, C. Xia, Z. Wang, R.C. Advincula, D. Johannsmann, W. Knoll, Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance, J. Electroanal. Chem. 562 (2004) 95–103. 54. C.W. Hu, K.M. Lee, J.H. Huang, C.Y. Hsu, T.H. Kuo, D.J. Yang, K.C. Ho, Incorporation of a stable radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) in an electrochromic device, Sol. Energy Mater. Sol. Cells 93 (2009) 2102–2107. 55. J. Zhang, J.P. Tu, X.H. Xia, Y. Qiao, Y. Lu, An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte, Sol. Energy Mater. Sol. Cells 93 (2009) 1840–1845. 56. T.H. Lin, K.C. Ho, A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene), Sol. Energy Mater. Sol. Cells 90 (2006) 506–520. 57. K.M. Lee, H. Tanaka, A. Takahashi, K.H. Kim, M. Kawamura, Y. Abe, T. Kawamoto, Accelerated coloration of electrochromic device with the counter electrode of nanoparticulate Prussian blue-type complexes, Electrochim. Acta 163 (2015) 288–295. 58. J.Y. Wang, C.M. Yu, S.C. Hwang, K.C. Ho, L.C. Chen, Influence of coloring voltage on the optical performance and cycling stability of a polyaniline-indium hexacyanoferrate electrochromic system, Sol. Energy Mater. Sol. Cells 92 (2008) 112–119. 59. S.Y. Kao, Y. Kawahara, S. Nakatsuji, K.C. Ho, Achieving a large contrast, low driving voltage, and high stability electrochromic device with a viologen chromophore, J. Mater. Chem. C 3 (2015) 3266‒3272. 60. K.C. Ho, Y.W. Fang, Y.C. Hsu, L.C. Chen, The influences of operating voltage and cell gap on the performance of a solution-phase electrochromic device containing HV and TMPD, Solid State Ion. 165 (2003) 279–287. 61. R.J. Mortimer, D.R. Rosseinsky, P.M.S. Monk, editors. Electrochromic materials and devices, Wiley-VCH, Weinheim, Germany; 2015, p. 412. 62. H.C. Moon, T.P. Lodge, C.D.Frisbie, Solution processable, electrochromic ion gels for sub‑1 V, flexible displays on plastic, Chem. Mater. 27 (2015) 1420–1425. 63. G. Chidichimo, D. Imbardelli, B.C. De Simone, P. Barone, M. Barberio, A. Bonanno, M. Camarca, A. Oliva, Spectroscopic and kinetic investigation of ethyl viologen reduction in novel electrochromic plastic films, J. Phys. Chem. C 114 (2010) 16700–16705. 64. G.A. Gruver, T. Kuwana, Spectroelectrochemical studies of E.E. and E.E.C. mechanisms, Electroanal. Chem. 36 (1972) 85–99. 65. H.C. Lu, S.Y. Kao, T.H. Chang, C.W. Kung, K.C. Ho, An electrochromic device based on Prussian blue, self-immobilized vinyl benzyl viologen, and ferrocene, Sol. Energy Mater. Sol. Cells 147 (2016) 75–84. 66. C.F. Lin, C.Y. Hsu, H.C. Lo, C.L. Lin, L.C. Chen, K.C. Ho, A complementary electrochromic system based on a Prussian blue thin film and a heptyl viologen solution, Sol. Energy Mater. Sol. Cells 95 (2011) 3074–3080. 67. Y. Watanabe, K. Imaizumi, K. Nakamura, N. Kobayashi, Effect of counter electrode reaction on coloration properties of phthalate-based electrochromic cell, Sol. Energy Mater. Sol. Cells 99 (2012) 88–94. 68. P.M.S. Monk, The viologens: Physicochemical properties, synthesis and applications of the salts of 4,4'-bipyridine, John Wiley & Sons, Chichester, 1998, p. 3. 69. L. Michaelis, E.S. Hill, The viologen indicators, J. Gen. Physiol. 16 (1933) 859–873. 70. R.J. Mortimer, D.R. Rosseinsky, P.M.S. Monk, editors. Electrochromic materials and devices, Wiley-VCH, Weinheim, Germany; 2015, p. 57. 71. C.L. Bird, A.T. Kuhn, The electrochemistry of the viologens, Chem. Soc. Rev. 10 (1981) 49–82. 72. W. Sliwa, B. Bachowska, N. Zelichowicz, Chemistry of viologens, Heterocycles 32 (1991) 2241–2273. 73. J. Ding, C. Zheng, L. Wang, C. Lu, B. Zhang, Y. Chen, M. Li, G. Zhai, X. Zhuang, Viologen–inspired functional materials: synthetic strategies and applications, J. Mater. Chem. A 7 (2019) 23337–23360. 74. E.C. Constable, C.E. Housecroft, M. Neuburger, D. Phillips, P.R. Raithby, E. Schofield, E. Sparr, D.A. Tocher, M. Zehnder, Y. Zimmermann, Development of supramolecular structure through alkylation of pendant pyridyl functionality, J. Chem. Soc., Dalton Trans. 13 (2000) 2219–2228. 75. G. Guillena, D.J. Ramón, M. Yus, Hydrogen autotransfer in the N-alkylation of amines and related compounds using alcohols and amines as electrophiles, Chem. Rev. 110 (2010) 1611–1641. 76. Y. Chen, Z. Yang, C.X. Guo, C.Y. Ni, H.X. Li, Z.G. Ren, J.P. Lang, Using alcohols as alkylation reagents for 4-cyanopyridinium and N, N′-dialkyl-4,4′-bipyridinium and their one-dimensional iodoplumbates, CrystEngComm 13 (2011) 243–250. 77. C. Reus, M. Stolar, J. Vanderkley, J. Nebauer, T. Baumgartner, A Convenient N-arylation route for electron-deficient pyridines: The case of π-extended electrochromic phosphaviologens, J. Am. Chem. Soc. 137 (2015) 11710–11717. 78. G. Das, T. Prakasam, S. Nuryyeva, D.S. Han, A. Abdel-Wahab, J.C. Olsen, K. Polychronopoulou, C. Platas-Iglesias, F. Ravaux, M. Jouiad, A. Trabolsi, Multifunctional redox-tuned viologen-based covalent organic polymers, J. Mater. Chem. A 4 (2016) 15361–15369. 79. G. Das, T. Skorjanc, S.K. Sharma, F. Gándara, M. Lusi, D.S.S. Rao, S. Vimala, S.K. Prasad, J. Raya, D.S. Han, R Jagannathan, J.C. Olsen, A. Trabolsi, Viologen-Based Conjugated Covalent Organic Networks via Zincke Reaction, J. Am. Chem. Soc. 139 (2017) 9558–9565. 80. T.H. Kuo, C.Y. Hsu, K.M. Lee, K.C. Ho, All-solid-state electrochromic device based on poly(butyl viologen), Prussian blue, and succinonitrile, Sol. Energy Mater. Sol. Cells 93 (2009) 1755-1760. 81. N. Sano, W. Tomita, S. Hara, C.M. Min, J.S. Lee, K. Oyaizu, H Nishide, Polyviologen hydrogel with high-rate capability for anodes toward an aqueous electrolyte-type and organic-based rechargeable device, ACS Appl. Mater. Interfaces 5 (2013) 1355–1361. 82. S.A. Harris, K. Folkers, Synthesis of Vitamin B6, J. Am. Chem. Soc. 61 (1939) 1245–1247. 83. M. Valasek, J. Pecka, J. Jindrich, G. Calleja, P.R. Craig, J. Michl, Oligomers of “Extended viologen”, p-phenylene-bis-4,4‘-(1-aryl-2,6-diphenylpyridinium), as candidates for electron-dopable molecular Wires, J. Org. Chem. 70 (2005) 405–412. 84. R.R. Lilienthal, D.K. Smith, Solvent effects on the redox-dependent binding properties of a viologen-based receptor for neutral organic molecules, Anal. Chem. 67 (1995) 3733-3739. 85. G. Grampp, B.Y. Mladenova, D.R. Kattnig, S. Landgraf, ESR and ENDOR investigations of the degenerate electron exchange reactions of various viologens in solution. Solvent dynamical effects, Appl. Magn. Reson. 30 (2006) 145–164. 86. R.J. Mortimer, D.R. Rosseinsky, P.M.S. Monk, editors. Electrochromic materials and devices, Wiley-VCH, Weinheim, Germany; 2015, p. 62. 87. R. Cinnsealach, G. Boschloo, S.N. Rao, D. Fitzmaurice, Electrochromic windows based on viologen-modified nanostructured TiO2 films, Sol. Energy Mater. Sol. Cells 55 (1998) 215–223. 88. F. Campus, P. Bonhôte, M. Grätzel, S. Heinen, L. Walder, Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes, Sol. Energy Mater. Sol. Cells 56 (1999) 281–297. 89. R. Cinnsealach, G. Boschloo, S.N. Rao, D. Fitzmaurice, Coloured electrochromic windows based on nanostructured TiO2 films modified by adsorbed redox chromophores, Sol. Energy Mater. Sol. Cells 57 (1999) 107-125. 90. X.W. Sun, J.X. Wang, Fast switching electrochromic display using a viologen‒modified ZnO nanowire array electrode, Nano Lett. 8 (2008) 1884–1889. 91. A. Kavanagh, K.J. Fraser, R. Byrne, D. Diamond, An electrochromic ionic liquid: Design, characterization, and performance in a solid-state platform, ACS Applied Materials & Interfaces 5 (2013) 55‒62. 92. P. Zhang, F. Zhu, F. Wang, J. Wang, R. Dong, X. Zhuang, O.G. Schmidt, X. Feng, Stimulus-Responsive Micro-Supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window, Adv. Mater. 29 (2017) 1604491. 93. A. Danine, L. Manceriu, A. Fargues, A. Rougier, Eco-friendly redox mediator gelatin-electrolyte for simplified TiO2‒viologen based electrochromic devices, Electrochim. Acta 258 (2017) 200‒207. 94. F. Chen, Y. Ren, J. Guo, F. Yan, Thermo- and electro-dual responsive poly(ionic liquid) electrolyte based smart windows, Chem. Commun. 53 (2017) 1595‒1598. 95. D.G. Seo, H.C. Moon, Mechanically robust, highly ionic conductive gels based on random copolymers for bending durable electrochemical devices, Adv. Funct. Mater. 28 (2018) 1706948. 96. P.V. Rathod, J.M.C. Puguan, H. Kim, Self-bleaching dual responsive poly(ionic liquid) with optical bistability toward climate-adaptable solar modulation, Chem. Eng. J. 422 (2021) 130065. 97. R.J. Mortimer, C.P. Warren, Cyclic voltammetric studies of Prussian blue and viologens within a paper matrix for electrochromic printing applications, J. Electroanal. Chem. 460 (1999) 263‒266. 98. S. Kandpal, T. Ghosh, M. Sharma, D.K. Pathak, M. Tanwar, C. Rani, R. Bhatia, I. Sameera, A. Chaudhary, R. Kumar, Multi‒walled carbon nanotubes doping for fast and efficient hybrid solid state electrochromic device, Appl. Phys. Lett. 11 (2021) 153301. 99. R.J. Mortimer, D.R. Rosseinsky, P.M.S. Monk, editors. Electrochromic materials and devices, Wiley-VCH, Weinheim, Germany; 2015, p. 58. 100. R.E.V.D. Leest, The coulometric determination of oxygen with the electrochemically generated viologen radical-cation, J. Electroanal. Chem. 43 (1973) 251–255. 101. R.J. Mortimer, T.S. Varley, In-situ spectroelectrochemistry and colour measurement of a complementary electrochromic device based on surface-confined Prussian blue and aqueous solution-phase methyl viologen, Sol. Energy Mater. Sol. Cells 99 (2012) 213–220. 102. H. Mori, J. Mizuguchi, Green electrochromism in the system p-cyanophenyl viologen and potassium ferrocyanide, Jpn. J. Appl. Phys. 26 (1987) 1356–1360. 103. R.N.F. Thorneley, A convenient electrochemical preparation of reduced methyl viologen and kinetic study of the reaction with oxygen using an anaerobic stopped-flow apparatus, Biochim. Biophys. Acta 333 (1974) 487–496. 104. T. Watanabe, K. Hondo, Measurement of the extinction coefficient of the methyl viologen cation radical and the efficiency of its formation by semiconductor photocatalysis, J. Phys. Chem. 86 (1982) 2617–2619. 105. P.M.S. Monk, N.M. Hodgkinson, S.K. Ramzan, Spin pairing (‘dimerisation’) of the viologen radical cation: kinetics and equilibria, Dyes Pigm. 43 (1999) 207–217. 106. R.G. Compton, A.M. Waller, P.M.S. Monk, D.R. Rosseinsky, Electron paramagnetic resonance spectroscopy of electrodeposited species from solutions of 1,1′-bis(pcyanophenyl)-4,4′-bipyridilium (cyanophenyl paraquat, CPQ), J. Chem. Soc., Faraday Trans. 86 (1990) 2583–2586. 107. D.R. Rosseinsky, P.M.S Monk, Comproportionation in propylene carbonate of substituted bipyridiliums, J. Chem. Soc., Faraday Trans. 89 (1993) 219–222. 108. K. Belinko, Electrochemical studies of the viologen system for display applications, Appl. Phys. Lett. 29 (1976) 363–365. 109. P.M.S. Monk, R.D. Fairweather, J.A. Duffy, M.D. Ingram, Evidence for the product of viologen comproportionation being a spin-paired radical cation dimer, J. Chem. Soc., Perkin Trans. 2 (1992) 2039–2041. 110. T.H. Chang, C.W. Hu, R.Vittal, K.C. Ho, Incorporation of plastic crystal and transparent UV-cured polymeric electrolyte in a complementary electrochromic device, Sol. Energy Mater. Sol. Cells 126 (2014) 213–218. 111. T.H. Chang, C.W. Hu, S.Y. Kao, C.W. Kung, H.S. Chen, K.C. Ho, An all-organic solid-state electrochromic device containing poly(vinylidene fluoride-co-hexafluoropropylene) , succinonitrile, and ionic liquid, Sol. Energy Mater. Sol. Cells 143 (2015) 606–612. 112. T.H. Chang, H.C. Lu, M.H. Lee, S.Y. Kao, K.C. Ho, Multi-color electrochromic devices based on phenyl and heptyl viologens immobilized with UV-cured polymer electrolyte, Sol. Energy Mater. Sol. Cells 177 (2018) 75-81. 113. H.C. Lu, S.Y Kao, H.F. Yu, T.H. Chang, C.W. Kung, K.C. Ho, Achieving low-energy driven viologens-based electrochromic devices utilizing polymeric ionic liquids, ACS Appl. Mater. Interfaces 8 (2016) 30351−30361. 114. T.Y. Yun, H.C. Moon, Highly stable ion gel-based electrochromic devices: Effects of molecular structure and concentration of electrochromic chromophores, Org. Electron. 56 (2018) 178−185. 115. Q. Zhang, L. Yuan, F. Guan, X. Li, R. Wang, J. Xu., Y. Qin, G. Substituent-Adjusted Electrochromic Behavior of Symmetric Viologens, Materials 14 (2021) 1702. 116. H. Oh, D.G. Seo, T.Y. Yun, S.B. Lee, H.C. Moon, Novel viologen derivatives for electrochromic ion gels showing a green-colored state with improved stability, Org. Electron. 51 (2017) 490–495. 117. S.Y. Shen, R.X. Dong, P.T. Shih, R. Vittal, J.J. Lin, K.C. Ho, Novel polymer gel electrolyte with organic solvents for quasi-solid-state dye-sensitized solar cells, ACS Appl. Mater. Interfaces 6 (2014) 18489−18496. 118. Y.F. Lin, C.T. Li, C.P. Lee, Y.A. Leu, T. Ezhumalai, R. Vittal, M.C. Chen, J.J. Lin, K.C. Ho, Multifunctional iodide-free polymeric ionic liquid for quasi-solid-state dye-sensitized solar cells with a high open-circuit voltage, ACS Appl. Mater. Interfaces 8 (2016) 15267−15278. 119. Z.M. Huang., Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol. 63 (2003) 2223−2253. 120. D.H Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology 7 (1996) 216−223. 121. D. Li, Y. Xia, Electrospinning of nanofibers: Reinventing the wheel?, Adv. Mater. 16 (2004) 1151−1170. 122. A. Greiner, J.H. Wendorff, Electrospinning: A fascinating method for the preparation of ultrathin fibers, Chem. Commun. 53 (2017) 1595-1598. 123. N. Bhardwaj, S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnol. Adv. 28 (2010) 490–495. 124. J. Fuller, A.C. Breda, R.T. Carlin, Ionic liquid–polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids, J. Electroanal. Chem. 459 (1998) 29–34. 125. P. Jia, W.A. Yee, J.W. Xu, Thermal stability of ionic liquid-loaded electrospun poly(vinylidene fluoride) membranes and its influences on performance of electrochromic devices, J. Membrane Sci. 376 (2011) 283−289. 126. S. Cavaliere, S. Subianto, I. Savych, D.J. Jones, J. Rozière, Electrospinning: desiged architectures for energy conversion and storage devices, Energy Environ. Sci. 4 (2011) 4761−4785. 127. P.S. Kumar, J. Sundaramurthy, S. Sundarrajan, V.J. Babu, G. Singh, S.I. Allakhverdiev, S. Ramakrishna, Hierarchical electrospun nanofbers for energy harvesting, production and environmental remediation, Energy Environ. Sci. 7 (2014) 3192−3222. 128. E. Yasuda, T. Enami, N. Hoteida, L.J. Lanticse-Diaz, T. Tanabe, T. Akatsu, Carbon alloys−multi-functionalization, Mater. Sci. Eng. B 148 (2008) 7−12. 129. J.K. Kim, J. Manuel, G.S. Chauhan, J.H. Ahn, H.S. Ryu, Ionic liquid-based gel polymer electrolyte for LiMn0.4Fe0.6PO4 cathode prepared by electrospinning technique, J. Electrochim. Acta 55 (2010) 1366−1372. 130. J. Cai, H.T. Niu, Z.Y. Li, Y. Du, P. Cizek, Z.L. Xie, H.G. Xiong, T. Lin, High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers, ACS Appl. Mater. Interfaces 7 (2015) 14946−14953. 131. A.R. Sathiya Priya, A. Subramania, Y.S. Jung, K.J. Kim, High-performance quasi-solid-state dye-sensitized solar cell based on an electrospun PVdF-HFP membrane electrolyte, Langmuir 24 (2008) 9816−9819. 132. J.U. Kim, S.H. Park, H.J. Choi, W.K. Lee, J.K. Lee, M.R. Kim, Effect of electrolyte in electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofibers on dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells 93 (2009) 803−807. 133. H.S. Shim, J.W. Kim, Y.E. Sung, W.B. Kim, Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method, Sol. Energy Mater. Sol. Cells 93 (2009) 2062−2068. 134. C. Dulgerbaki, N.N. Maslakci, A.I. Komur, A.U. Oksuz, Electrochromic device based on electrospun WO3 nanofibers, Mater. Res. Bull. 72 (2015) 70−76. 135. P. Jia, W.A. Yee, J.W. Xu, Thermal stability of ionic liquid-loaded electrospun poly(vinylidene fluoride) membranes and its influences on performance of electrochromic devices, J. Membrane Sci. 376 (2011) 283−289. 136. R. Zhou, W.S. Liu, J.H. Kong, D. Zhou, G.G. Ding, Y.W. Leong, P.K. Pallathadka, X.H. Lu, Chemically cross-linked ultrathin electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofibrous mats as ionic liquid host in electrochromic devices, Polymer 55 (2014) 1520−1526. 137. R. Zhou, W.S. Liu, J.H. Kong, D. Zhou, G.G. Ding, Y.W. Leong, P.K. Pallathadka, X.H. Lu, Electrospun poly(vinylidene fluoride) copolymer/octahydroxy-polyhedral oligomeric silsesquioxane nanofibrous mats as ionic liquid host: enhanced salt dissociation and its function in electrochromic device, Electrchim. Acta 146 (2014) 224−230. 138. R. Zhou, W.S. Liu, X.Y. Yao, Y.W. Leong, X.H. Lu, Poly(vinylidene fluoride) nanofibrous mats with covalently attached SiO2 nanoparticles as an ionic liquid host: enhanced ion transport for electrochromic devices and lithium-ion batteries, J. Mater. Chem. A 3 (2015) 16040−16049. 139. R. Zhou, W.S. Liu, Y.W. Leong, J.W. Xu, X.H. Lu, Sulfonic acid- and lithium sulfonate-grafted poly(vinylidene fluoride) electrospun mats as ionic liquid host for electrochromic device and lithium-ion battery, ACS Appl. Mater. Interfaces 7 (2015) 16548−16557. 140. H. Fong, I. Chun, D.H. Reneker, Beaded nanofibers formed during electrospinning, Polymer 40 (1999) 4585−4592. 141. H. Chen, J.D. Snyder, Y.A. Elabd, Electrospinning and solution properties of Nafion® and poly(acrylic acid), Macromolecules 41 (2008) 128−135. 142. Shalu, S.K. Chaurasia, R.K. Singh, S. Chandra, Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4], J. Phys. Chem. B 117 (2013) 897−906. 143. S.Y. Kao, C.W. Kung, H.W. Chen, C.W. Hu, K.C. Ho, An electrochromic device based on all-in-one polymer gel through in-situ thermal polymerization, Sol. Energy Mater. Sol. Cells 145 (2016) 61−68. 144. C.W. Hu, K.M. Lee, K.C. Chen, L.C. Chang, K.Y. Shen, S.C. Lai, T.H. Kou, C.Y. Hsu, L.M. Huang, R. Vittal, K.C. Ho, High contrast all-solid-state electrochromic device with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), heptyl viologen and succinonitrile, Sol. Energy Mater. Sol. Cells 99 (2012) 135−140. 145. V.G. Ponomareva, G.V. Lavrova, L.G. Simonova, The influence of heterogeneous dopant porous structure on the properties of protonic solid electrolyte in the CsHSO4−SiO2 system, Solid State Ion. 118 (1999) 317−323. 146. H.M.J.C. Pitawala, M.A.K.L. Dissanayake, V.A. Seneviratne, Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf, Solid State Ion. 178 (2007) 885−888. 147. H. Kamogawa, S. Satoh, Organic solid photochromism by photoreduction mechanism: Aryl viologens embedded in poly(N-vinyl-2-pyrrolidone), J. Polym. Sci. Part A: Polym. Chem. 26 (1988) 653−656. 148. R. Sydam, A. Ghosh, M. Deepa, Enhanced electrochromic write-erase efficiency of a device with a novel viologen: 1,1’-bis(2-(1H-indol-3-yl)ethyl)-4,4]-bipyridinium diperchlorate, Org. Electron. 17 (2015) 33−43. 149. T.H. Chang, C.W. Hu, S.Y. Kao, C.W. Kung, S.W. Chen, K.C. Ho, An all-organic solid-state electrochromic device containing poly(vinylidene fluoride-co-hexafluoropropylene), succinonitrile, and ionic liquid, Sol. Energy Mater. Sol. Cells 143 (2015) 606−612. 150. H.C. Moon, T.P. Lodge, C.D. Frisbie, Solution processable, electrochromic ion gels for sub-1 V, flexible displays on plastic, Chem. Mater. 27 (2015) 1420−1425. 151. R. Sydam, M. Deepa, A new organo-inorganic hybrid of poly(cyclotriphosphazene-4,4[prime or minute]-bipyridinium)-chloride with a large electrochromic contrast, J. Mater. Chem. C 1 (2013) 7930−7940. 152. R. Sydam, M. Deepa, A.G. Joshi, A novel 1,1’-bis[4-(5,6-dimethyl-1H-benzimidazole-1-yl) butyl]-4,4’-bipyridinium dibromide (viologen) for a high contrast electrochromic device, Org. Electron. 14 (2013) 1027−1036. 153. A. Beneduci, S. Cospito, M.L. Deda, G. Chidichimo, Highly fluorescent thienoviologen-based polymer gels for single layer electrofluorochromic devices, Adv. Funct. Mater. 25 (2014) 1240‒1247. 154. M. Zhu, J. Zeng, H. Li, X. Zhang, P. Liu, Multicolored and high contrast electrochromic devices based on viologen derivatives with various substituents, Synth. Met. 270 (2020) 116579. 155. Y. Zhang, X. Shi, S. Xiao, D. Xiao, Visible and infrared electrochromism of bis(2-(2-(2-hydroxyethoxy)ethoxy)ethyl) viologen with sodium carboxymethyl chitosan-based hydrogel electrolytes, Dyes Pigm. 185 (2021) 108893. 156. G.K. Pande, J.S. Heo, J.H. Choi, Y.S. Eom, J.H. Kim, S.K. Park, J.S. Park, RGB-to-black multicolor electrochromic devices enabled with viologen functionalized polyhedral oligomeric silsesquioxanes, Chem. Eng. J. 420 (2021) 130446. 157. Y. Alesanco, J. Palenzuela, A. Viñuales, G. Cabañero, H.J. Grande, I. Odriozola, Polyvinyl alcohol–borax slime as promising polyelectrolyte for high-performance, easy-to-make electrochromic devices, ChemElectroChem 2 (2015) 218‒223. 158. S. Zhao, W. Huang, Z. Guan, B. Jin, D. Xiao, A novel bis(dihydroxypropyl) viologen-based all-in-one electrochromic device with high cycling stability and coloration efficiency, Electrochim. Acta 298 (2019) 533‒540. 159. S.Y. Kao, C.W. Kung, H.W. Chen, C.W. Hu, K.C. Ho, An electrochromic device based on all-in-one polymer gel through in-situ thermal polymerization, Sol. Energy Mater. Sol. Cells 145 (2016) 61‒68. 160. H.C. Moon, C.H. Kim, T.P. Lodge, C.D. Frisbie, Multicolored, low-power, flexible electrochromic devices based on ion gels, ACS Appl. Mater. Interfaces 8 (2016) 6252‒6260. 161. T.Y. Yun, H.C. Moon, Highly stable ion gel-based electrochromic devices: effects of molecular structure and concentration of electrochromic chromophores, Org. Electron. 56 (2018) 178‒185. 162. J.W. Kim, J.M. Myoung, Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based viologens by multiple patterning, Adv. Funct. Mater. 29 (2019) 1808911. 163. J. Ko, A. Surendran, B. Febriansyah, W.L. Leong, Self-healable electrochromic ion gels for low power and robust displays, Org. Electron. 71 (2019) 199‒205. 164. R. Sydam, M. Ojha, M. Deepa, Ionic additive in an ionogel for a large area long lived high contrast electrochromic device, Sol. Energy Mater. Sol. Cells 220 (2021) 110835. 165. Y.M. Kim, D.G. Seo, H. Oh, H.C. Moon, A facile random copolymer strategy to achieve highly conductive polymer gel electrolytes for electrochemical applications, J. Mater. Chem. C 7 (2019) 161‒169. 166. J.M. C. Puguan, H. Kim, A switchable single-molecule electrochromic device derived from a viologen-tethered triazolium-based poly(ionic liquid), J. Mater. Chem. A 7 (2019) 21668‒21673. 167. X. Wang, L. Guo, S. Cao, W. Zhao, Highly stable viologens-based electrochromic devices with low operational voltages utilizing polymeric ionic liquids, Chem. Phys. Lett. 749 (2020) 137434. 168. H.C. Lu, S.Y. Kao, H.F. Yu, T.H. Chang, C.W. Kung, K.C. Ho, Achieving low-energy driven viologens-based electrochromic devices utilizing polymeric ionic liquids, ACS Appl. Mater. Interfaces 8 (2016) 30351‒30361. 169. B. Yang, G. Yang, Y. M. Zhang, S.X.A. Zhang, Recent advances in poly(ionic liquid)s for electrochromic devices, J. Mater. Chem. C 9 (2021) 4730‒4741. 170. F. Chen, Y. Ren, J. Guo, F. Yan, Thermo- and electro-dual responsive poly(ionic liquid) electrolyte based smart windows, Chem. Commun. 53 (2017) 1595–1598. 171. M.J. Earle, K.R. Seddon, Ionic liquids. Green solvents for the future, Pure Appl. Chem. 72 (2000) 1391‒1398. 172. M. Armand, F. Endres, D.R. MacFarlane, H Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater. 8 (2009) 621‒629. 173. Y.S. Ye, J. Rick, B.J. Hwang, Ionic liquid polymer electrolytes, J. Mater. Chem. A 1 (2013) 2719‒2743. 174. S. Zhang, J. Sun, X. Zhang, J. Xin, Q. Miao, J. Wang, Ionic liquid-based green processes for energy production, Chem. Soc. Rev. 43 (2014) 7838‒7869. 175. H. Yang, J. Bright, B. Chen, P. Zheng, X. Gao, B. Liu, S. Kasani, X. Zhang, N. Wu, Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber–polymer composite electrolyte for all-solid-state lithium metal batteries, J. Mater. Chem. A 8 (2020) 7261‒7272. 176. P. Liu, Y.S. Cho, H. Teng, Y.L. Lee, Quasi-solid-state dye-sensitized indoor photovoltaics with efficiencies exceeding 25%, J. Mater. Chem. A 8 (2020) 22423‒22433. 177. K. Huang, Y. Wang, H. Mi, D. Ma, B. Yong, P. Zhang, [BMIM]BF4-modified PVDF-HFP composite polymer electrolyte for high-performance solid-state lithium metal battery, J. Mater. Chem. A 8 (2020) 20593‒20603. 178. X. Li, L. Cong, S. Ma, S. Shi, Y. Li, S. Li, S. Chen, C. Zheng, L. Sun, Y. Liu, H. Xie, Low resistance and high stable solid–liquid electrolyte interphases enable high-voltage solid-state lithium metal batteries, Adv. Funct. Mater. 31 (2021) 2010611. 179. N. Zebardastan, M.H. Khanmirzaei, S. Ramesh, K. Ramesh, Novel poly(vinylidene fluoride-co-hexafluoro propylene)/polyethylene oxide based gel polymer electrolyte containing fumed silica (SiO2) nanofiller for high performance dye-sensitized solar cell, Electrochim. Acta 220 (2016) 573‒580. 180. M.K. Vyas, A. Chandra, Ion–electron–conducting polymer composites: promising electromagnetic interference shielding material, ACS Appl. Mater. Interfaces 8 (2016) 18450‒18461. 181. Shalu, S.K. Chaurasia, R.K. Singh, S. Chandra, Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4], J. Phys. Chem. B 117 (2013) 897‒906. 182. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, J. Chastain, Handbook of X-ray photoelectron spectroscopy, 1st ed., Perkin-Elmer Corporation Physical Electronics Division, Minnesota, 1992, pp. 40‒47. 183. S. Subianto, N.R. Choudhury, N. Dutta, Composite electrolyte membranes from partially fluorinated polymer and hyperbranched, sulfonated polysulfone, Nanomaterials 4 (2014) 1‒18. 184. C. Yao, X. Li, K.G. Neoh, Z. Shi, E.T. Kang, Antibacterial activities of surface modified electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fibrous membranes, Appl. Surf. Sci. 255 (2009) 3854–3858. 185. A.C. Hinckley, C. Wang, R. Pfattner, D. Kong, Y. Zhou, B. Ecker, Y. Gao, Z. Bao, Investigation of a solution-processable, nonspecific surface modifier for low cost, high work function electrodes, ACS Appl. Mater. Interfaces 8 (2016) 19658−19664. 186. M. Kehrer, J. Duchoslav, A. Hinterreiter, M. Cobet, A. Mehic, T. Stehrer, D. Stifter, XPS investigation on the reactivity of surface imine groups with TFAA, Plasma Process Polym. 16 (2019) 1800160. 187. M. Šetka, R. Calavia, L. Vojkůvka, E. Llobet, J. Drbohlavová, S. Vallejos, Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles, Sci. Rep. 9 (2019) 8465. 188. B. Zheng, J. Zhu, H. Wang, M. Feng, E. Umeshbabu, Y. Li, Q.H. Wu, Y. Yang, Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer, ACS Appl. Mater. Interfaces 10 (2018) 25473−25482. 189. F. Jeschull, J. Maibach, K. Edström, D. Brandell, On the electrochemical properties and interphase composition of graphite: PVdF-HFP electrodes in dependence of binder content, J. Electrochem. Soc. 164 (2017) A1765‒A1772. 190. T. Cremer, C. Kolbeck, K.R.J. Lovelock, N. Paape, R. Wölfel, P.S. Schulz, P. Wasserscheid, H. Weber, J. Thar, B. Kirchner, F. Maier, H.P. Steinrück, Towards a molecular understanding of cation–anion interactions—probing the electronic structure of imidazolium ionic liquids by NMR spectroscopy, X-ray photoelectron spectroscopy and theoretical calculations, Chem. Eur. J. 16 (2010) 9018–9033. 191. S. Men, K.R.J. Lovelock, P. Licence, X-ray photoelectron spectroscopy of pyrrolidinium-based ionic liquids: cation–anion interactions and a comparison to imidazolium-based analogues, Phys. Chem. Chem. Phys. 13 (2011) 15244–15255. 192. Shalu, V.K. Singh, R.K. Singh, Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties, J. Mater. Chem. C 3 (2015) 7305‒7318. 193. Shalu, L. Balo, H. Gupta, V.K. Singh, R.K. Singh, Mixed anion effect on the ionic transport behavior, complexation and various physicochemical properties of ionic liquid based polymer gel electrolyte membranes, RSC Adv. 6 (2016) 73028‒73039. 194. N. Sim, R. Yahya, A.K. Arof, Blend polymer electrolyte films based on poly(ethyl methacrylate)/poly(vinylidenefluoride-co-hexafluoropropylene) incorporated with 1-butyl-3-methyl imidazolium iodide ionic liquid, Solid State Ion. 291 (2016) 26‒32. 195. H.T.T. Nguyen, D.H. Nguyen, Q.C. Zhang, Y.L. Lee, J.S. Jan, C.C. Chiu, H. Teng, A scaffold membrane of solid polymer electrolytes for realizing high-stability and dendrite-free lithium-metal batteries, J. Mater. Chem. A 9 (2021) 25408‒25417. 196. W. Chen, C. Zhu, L. Guo, M.Y. Yan, L. Wu, B. Zhu, C. Qi, S. Liu, H. Zhang, Y. Peng, A novel ionically crosslinked gel polymer electrolyte as an ion transport layer for high-performance electrochromic devices, J. Mater. Chem. C 7 (2019) 3744‒3750. 197. I. Minoru, O. Yumi, Y. Takeshi, O. Zempachi, Structure of perfluorinated ionomer membranes incorporating organic cations, Chem. Lett. 23 (1994) 1669‒1672. 198. H.F. Yu, S.Y. Kao, H.C. Lu, Y.F. Lin, H. Feng, H.W. Pang, R. Vittal, J.J. Lin, K.C. Ho, Electrospun nanofibers composed of poly(vinylidene fluoride-co-hexafluoropropylene) and poly((oxyethylene)-imide imidazolium tetrafluoroborate) as electrolytes for solid-state electrochromic devices, Sol. Energy Mater. Sol. Cells 177 (2018) 32‒43. 199. Y. Alesanco, A. Viñuales, J. Palenzuela, I. Odriozola, G. Cabañero, J. Rodriguez, R. Tena-Zaera, Multicolor electrochromics: Rainbow-like devices, ACS Appl. Mater. Interfaces 8 (2016) 14795‒14801. 200. C.G. Granqvist, Electrochromic tungsten oxide films: review of progress 1993–1998, Sol. Energy Mater. Sol. Cells 60 (2000) 201–262. 201. I. Bouessay, A. Rougier, P. Poizot, J. Moscovici, A. Michalowicz, J.M. Tarascon, Electrochromic degradation in nickel oxide thin film: a self-discharge and dissolution phenomenon, Electrochim. Acta 50 (2005) 3737–3745. 202. A. Guerfi, L.H. Dao, Electrochromic molybdenum oxide thin films prepared by electrodeposition, J. Electrochem. Soc. 136 (1989) 2435–2436. 203. M. Vidotti, S.I. Córdoba de Torresi, Electrostatic layer-by-layer and electro- phoretic depositions as methods for electrochromic nanoparticle immobilization, Electrochim. Acta 54 (2009) 2800–2804. 204. K.C. Ho, T.G. Rukavina, C.B. Greenberg, Tungsten oxide Prussian blue electrochromic system based on a proton-conducting polymer electrolyte, J. Electrochem. Soc. 141 (1994) 2061–2067. 205. B.P. Jelle, G. Hagen, Performance of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide, Sol. Energy Mater. Sol. Cells 58 (1999) 277–286. 206. K. Itaya, K. Shibayama, H. Akahoshi, Prussian-blue-modified electrodes: an application for a stable electrochromic display device, J. Appl. Phys. 53 (1982) 804–805. 207. A.J.C. Silva, V.C. Nogueira, T.E.A. Santos, C.J.T. Buck, D.R. Worrall, J. Tonholo, R.J. Mortimer, A.S. Ribeiro, Copolymerisation as away to enhance the electrochromic properties of an alkylthiophene oligomer and a pyrrole derivative: copolymer of 3,3ʹʹʹdihexyl-2,2ʹ:5ʹ,2ʹʹ:5ʹʹ,2ʹʹʹ-quaterthiophene with (R)-(-)-3-(1-pyrrolyl)propyl-N-(3,5-dinitrobenzoyl)-a-phenylglycinate, Sol. Energy Mater. Sol. Cells 134 (2015) 122–132. 208. A.J.C. Silva, S.M.F. Ferreira, D.D.P. Santos, M. Navarro, J. Tonholo, A.S. Ribeiro, A multielectrochromic copolymer based on pyrrole and thiophene derivatives, Sol. Energy Mater. Sol. Cells 103 (2012) 108–113. 209. T. Kobayashi, H. Yoneyama, H. Tamura, Polyaniline film-coated electrodes as electrochromic display devices, J. Electroanal. Chem. 161 (1984) 419–423. 210. T. Augusto, E.T. Neto, A.A.T. Neto, R. Vichessi, M. Vidotti, S.I. Córdobade Torresi, Electrophoretic deposition of Au@PEDOT nanoparticles towards the construction of high-performance electrochromic electrodes, Sol. Energy Mater. Sol. Cells 118 (2013) 72–80. 211. F.S. Han, M. Higuchi, D.G. Kurth, Metallo-supramolecular polymers based on functionalized bis-terpyridines as novel electrochromic materials, Adv. Mater. 19 (2007) 3928–3931. 212. H.J. Byker, Electrochromics and polymers, Electrochim. Acta 46 (2001) 2015–2022. 213. P.M.S. Monk, The effect of ferrocyanide on the performance of heptyl viologen-based electrochromic display devices, J. Electroanal. Chem. 432 (1997) 175–179. 214. S.Y. Kao, Y. Kawahara, S. Nakatsuji, K.C. Ho, Achieving a large contrast, low driving voltage, and high stability electrochromic device with a viologen chromophore, J. Mater. Chem. C 3 (2015) 3266−3272. 215. N. Leventis, Y.C. Chung, New complementary electrochromic system based on polypyrrole-prussian blue composite, a benzylviologen polymer, and poly (vinylpyrrolidone)/potassium sulfate aqueous electrolyte, Chem. Mater. 4 (1992) 1415–1422. 216. N. Leventis, Y.C. Chung, Preparation and characterization of tungsten trioxide/dibenzyl viologen polymer bilayer electrochromic films, J. Mater. Chem. 3 (1993) 833–839. 217. X. Liu, K.G. Neoh, E.T. Kang, Viologen-functionalized conductive surfaces: physicochemical and electrochemical characteristics, and stability, Langmuir 18 (2002) 9041–9047. 218. S.Y. Kao, H.C. Lu, C.W. Kung, H.W. Chen, T.H. Chang, K.C. Ho, Thermally cured dual functional viologen-based all-in-one electrochromic devices with panchromatic modulation, ACS Appl. Mater. Interfaces 8 (2016) 4175−4184. 219. Q.A. Huchet, W.B. Schweizer, B. Kuhn, E.M. Carreira, K. Meller, Structural and conformational aspects of equatorial and axial trifluoromethyl, difluoromethyl, and monofluoromethyl groups, Chem. Eur. J. 22 (2016) 16920−16928. 220. P.K. Mondal, V.R. Hathwar, D. Chopra, Characterization of electronic features of intermolecular interactions involving organic fluorine: inputs from in situ cryo-crystallization studies on −F and −CF3 substituted anilines, J. Fluorine Chem. 211 (2018) 37−51. 221. K. Müller, C. Faeh, F. Diederich, Fluorine in pharmaceuticals: looking beyond intuition, Science 317 (2007) 1881−1886. 222. F. Babudri, G.M. Farinola, F. Naso, R. Ragnia, Fluorinated organic materials for electronic and optoelectronic applications: the role of the fluorine atom, Chem. Commun. 10 (2007) 1003−1022. 223. A.A. El-Shafei, Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium, J. Electroanal. Chem., 471 (1999) 89−95. 224. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd ed., John Wiley & Sons, New York, 2001, p 231. 225. G.R. Desiraju, Hydrogen bridges in crystal engineering: interactions without borders, Acc. Chem. Res. 35 (2002) 565−573. 226. A. Schwarzer, E. Weber, Influence of fluorine substitution on the crystal packing of N-phenylmaleimides and corresponding phthalimides, Cryst. Growth Des. 8 (2008) 2862−2874. 227. T. Katagiri, S. Yamaji, M. Handa, M. Irie, K. Uneyama, Diastereoselectivity controlled by electrostatic repulsion between the negative charge on a trifluoromethyl group and that on aromatic rings, Chem. Commun. 20 (2001)2054–2055. 228. M.J. O’Connor, K.N. Boblak, M.J. Topinka, P.J. Kindelin, J.M. Briski, C. Zheng, D.A. Klumpp, Superelectrophiles and the effects of trifluoromethyl substituents, J. Am. Chem. Soc. 132 (2010) 3266–3267. 229. W.A. Sheppard, The electronic properties of fluoroalkyl groups. Fluorine p-π interaction, J. Am. Chem. Soc. 87 (1965) 2410–2420. 230. V.E. Williams, R.P. Lemieux, G.R.J. Thatcher, Substituent effects on the stability of arene-arene complexes: an AM1 study of the conformational equilibria of cis-1,3-diphenylcyclohexanes, J. Org. Chem. 61 (1996) 1927−1933. 231. C.Y. Kim, P.P. Chandra, A. Jain, D.W. Christianson, Fluoroaromatic-fluoroaromatic interactions between inhibitors bound in the crystal lattice of human carbonic anhydrase II, J. Am. Chem. Soc. 123 (2001) 9620–9627. 232. L. Zhang, T.Y. Zhou, J. Tian, H. Wang, D.W. Zhang, X. Zhao, Y. Liu, Z.T. Li, A two-dimensional single-layer supramolecular organic framework that is driven by viologen radical cation dimerization and further promoted by cucurbit[8]uril, Polym. Chem. 5 (2014) 4715–4721. 233. Y. Alesanco, A. Viñuales, G. Cabañero, J. Rodriguez, R.T. Zaera, Colorless to neutral color electrochromic devices based on asymmetric viologens, ACS Appl. Mater. Interfaces, 8 (2016) 29619–29627. 234. H.F. Yu, K.I. Chen, M.H. Yeh, K.C. Ho, Effect of trifluoromethyl substituents in benzyl-based viologen on the electrochromic performance: Optical contrast and stability, Sol. Energy Mater. Sol. Cells 200 (2019) 110020. 235. M. Pan, Y. Ke, L. Ma, S. Zhao, N. Wu, D. Xiao, Single-layer electrochromic device based on hydroxyalkyl viologens with large contrast and high coloration efficiency, Electrochim. Acta 266 (2018) 395–403. 236. Y. Zhuang, W. Zhao, L. Wang, F. Li, W. Wang, S. Liu, W. Huang, Q. Zhao, Soluble triarylamine functionalized symmetric viologen for all-solid-state electrochromic supercapacitors, Sci. China Chem. 63 (2020) 1632–1644. 237. M. Zhu, J. Zeng, H. Li, X. Zhang, P. Liu, Multicolored and high contrast electrochromic devices based on viologen derivatives with various substituents, Synth. Met. 270 (2020) 116579. 238. W. Ye, X. Guo, X. Zhang, P. Liu, Multicolored and high optical contrast flexible electrochromic devices based on viologen derivatives, Synth. Met. 287 (2022) 117076. 239. X. Guo, P. Wang, C. Qian, C. Jiang, P. Liu, Flexible electrochromic devices having remarkable color change from golden to green and their application in smart windows and electronic labels, New J. Chem. 46 (2022) 20801. 240. G.K. Pande, N. Kim, J.H. Choi, G. Balamurugan, H.C. Moon, J.S. Park, Effects of counter ions on electrochromic behaviors of asymmetrically substituted viologens, Sol. Energy Mater. Sol. Cells 197 (2019) 25–31. 241. S. Xiao, Y. Zhang, L. Ma, S. Zhao, N. Wu, D Xiao, Easy-to-make sulfonatoalkyl viologen/sodium carboxymethylcellulose hydrogel-based electrochromic devices with high coloration efficiency, fast response and excellent cycling stability, Dyes Pigm. 174 (2020) 108055. 242. Z.K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L.M. Pazos, D. Credgington, F. Hanusch, T. Bein, H.J. Snaith, R.H. Friend, Bright light-emitting diodes based on organometal halide perovskite, Nature Nanotech. 9 (2014) 687–692. 243. S. Nachimuthu, W.R. Shie, D.J. Liaw, R.V. Romashko, J.C. Jiang, Theoretical study of electrochemical and electrochromic properties of novel viologen derivatives: Effects of donors and π‑conjugation, J. Phys. Chem. B 123 (2019) 4735−4744. 244. Z.J. Huang, F. Li, J.P. Xie, H.R. Mou, C.B. Gong, Q. Tang, Electrochromic materials based on tetra-substituted viologen analogues with broad absorption and good cycling stability, Sol. Energy Mater. Sol. Cells 223 (2021) 110968. 245. F. Sun, H. Zhang, J. Cai, F. Su, Y Tian, Y.J. Liu, Selenophene, thiophene, and furan functionalized π-extended viologen derivatives for tunable all-in-one ECDs, Sol. Energy Mater. Sol. Cells 250 (2023) 112106. 246. B. Deng, Y. Zhu, M.U. Ali, K. Li, X. Liu, X. Zhang, J. Ning, Z. Hu, H. Chen, J. He, Y. He, H. Meng, Pyrrole-based viologen derivatives with high contrast and magenta color for electrochromic-fluorescent devices, Sol. Energy Mater. Sol. Cells 251 (2023) 112149. 247. C.Y. Hsu, V.S. Vasantha, K.C. Ho, A study of ion exchange at the poly(butyl viologen)-electrolyte interface by SECM, Electrochim. Acta 53 (2008) 6244–6251. 248. C.Y. Hsu, V.S. Vasantha, P.Y. Chen, K.C. Ho, A new stable Fe(CN)63−/4−-immobilized poly(butyl viologen)-modified electrode for dopamine determination, Sens. Actuators B Chem. 137 (2009) 313–319. 249. M.S. Fan, S.Y. Kao, T.H. Chang, R. Vittal, K.C. Ho, A high contrast solid-state electrochromic device based on nano-structural Prussian blue and poly(butylviologen) thin films, Sol. Energy Mater. Sol. Cells 145 (2016) 35–41. 250. B. Gadgil, P. Damlin, T. Ääritalo, C. Kvarnström, Electrosynthesis of viologen cross-linked polythiophene in ionic liquid and its electrochromic properties, Electrochim.Acta 133 (2014) 268–274. 251. R. Sydam, M. Deepa, A. G. Joshi, A novel 1,10-bis[4-(5,6-dimethyl-1H-benzimidazole-1-yl)butyl]-4,4’-bipyridinium dibromide (viologen) for a high contrast electrochromic device, Organ. Electron. 14 (2013) 1027–1036. 252. B. Gadgil, P. Damlin, E. Dmitrieva, T. Ääritalo, C. Kvarnström, ESR/UV-Vis-NIR spectroelectrochemical study and electrochromic contrast enhancement of a polythiophene derivative bearing a pendant viologen, RSC Adv. 5 (2015) 42242–42249. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92432 | - |
| dc.description.abstract | 紫精表現出顯著的顏色對比度和有益的電致色變性能,儘管紫精以其高顏色對比度而聞名,但聚集現象而導致的循環穩定性不佳仍然存在。本論文以探討紫精的電致色變材料與電致色變元件(electrochromic device, ECD)之特性,提升其光學特性和改善長期穩定性為目的之研究。因此,本論文開發兩種新型紫精電致色變元件,並研究其電致色變性能,包括高分子離子液體(polymeric ionic liquid, PIL)和紫精衍生物。高分子離子液體以不同比例的離子液體(BMIMBF4)和高分子(POE和PVdF‒HFP)混合或合成,並通過靜電紡絲技術製備奈米纖維薄膜作為紫精電致色變元件的助電解質。另一方面,紫精衍生物(TFMBzV、DTFMBzV、TFMPV和HOPV)是選取拉電子基團(CF3)和推電子基團(OC6H13)之不同取代基合成。
首先,為了提高紫精電致色變元件的長期穩定性,並研究助電解質對電致色變性能的影響,合成新型PIL並製備奈米纖維薄膜應用於電致色變元件中。此新型PIL以高分子PVdF‒HFP作為主鏈,在其主鏈上接枝BMIMBF4,使其對紫精離子之間產生分子相互作用,進而顯著減少衰退以實現長期穩定性。其次,為了研究紫精兩側之取代基對其電化學性質和光學性質的影響,選取兩個極端的取代基,即拉電子基團和推電子基團進行研究。在本論文的研究和討論中,成功地提出一個使用PFI‒BF4_1.5薄膜作為半固態電解質的PV/Fc ECD經過10,000圈和50,000圈循環操作後分別具有95.9%和88.3%的保留率,並且具有77.8%的ΔT和371.9 cm2 C‒1的ηe。此外,TFMPV/Fc ECD具有 77.8%的ΔT和371.9 cm2 C‒1的ηe,且通過PFI‒BF4_1薄膜作為半固態電解質引入TFMPV/Fc ECD中,其在10,000圈循環操作後保留率達到97.8%。在許多文獻當中,很少能做到50,000圈以上的循環操作後還能維持極高的穩定性(>80%),並同時有高的光學對比度(>70%)。 | zh_TW |
| dc.description.abstract | Since the viologen itself demonstrate significant color contrast and beneficial electrochromic performance. Even though the viologens were well‒known for their high color contrast, their lack of cycling stability resulting from aggregation or aging process remains. In this dissertation, viologen‒based electrochromic devices (ECDs) were studied for the enhancement of optical properties and improvement of long‒term stability. Therefore, the electrochromic (EC) performance of two novel viologen‒based ECDs, including polymeric ionic liquid (PIL) and viologen derivatives, was investigated. The PIL was utilized through different ratios of the ionic liquid (BMIMBF4) and the polymer (POE and PVdF‒HFP) to form a nanofiber membrane by the electrospinning and be a supporting electrolyte in the viologen‒based ECDs. The viologen derivatives (TFMBzV, DTFMBzV, TFMPV, and HOPV) were synthesized with different substituents like the electron‒withdrawing group (CF3) and the electron‒donating group (OC6H13).
Firstly, to improve the long‒term stability of the viologen‒based ECDs, and study the influence of the electrolyte on EC performance, a novel PIL was synthesized and formed a nanofiber membrane to utilize in an ECD. The novel PIL, using polymeric PVdF‒HFP as the main chain, was grafted with BMIMBF4 on the main chain to arouse the molecular interaction with the viologen ions, thereby significantly reducing recession for long‒term stability. Secondly, to study the influence of the substituent on both sides of viologen for its electrochemical properties and optical properties, thus, chosen two extreme substituents, an electron‒withdrawing group, and an electron‒donating group, were investigated. In the research and discussion in this thesis, we have successfully proposed the PV/Fc ECD with PFI‒BF4_1.5 membrane performs high retention of 95.9% and 88.3% after 10,000 and 50,000 cycles, respectively, and exhibits a 77.8% of ΔT and 371.9 cm2 C‒1 of ηe. In Addition, the proposed TFMPV/Fc ECD performed a high ΔT of 77.8% and a high ηe of 371.9 cm2 C‒1, and the retention was achieved at 97.8% after 10,000 cycles by the improvement of the PFI‒BF4_1 introduced in the ECD. It is noteworthy that few literatures achieve such high stability (>80%) after more than 50,000 cycles, while maintaining high optical contrast (>70%) simultaneously. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-22T16:28:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-22T16:28:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 I
ACKNOWLEDGEMENTS II 中文摘要 IV ABSTRACT V CONTENTS VII LIST OF FIGURES XII LIST OF TABLES XX LIST OF SCHEMES XXII NOMENCLATURES XXIII CHAPTER 1 INTRODUCTION 1 1.1 ELECTROCHROMISM 1 1.1.1 Optical contrast 3 1.1.2 Response time 4 1.1.3 Coloration efficiency 5 1.1.4 Cycling stability 6 1.1.5 Application 6 1.1.6 Electrochromic devices 9 1.2 VIOLOGEN 17 1.2.1 Viologen synthesis 18 1.2.2 Viologen properties 23 1.2.3 Electrolyte in the viologen system 26 1.2.4 Substituents for viologens 28 1.3 SCOPE OF THIS THESIS 29 CHAPTER 2 EXPERIMENTAL 36 2.1 MATERIALS 36 2.2 GENERAL EXPERIMENTAL FOR MATERIALS SYNTHESIS 38 2.3 GENERAL EXPERIMENTAL FOR ELECTROCHEMICAL/SPECTRA‒ELECTROCHEMICAL METHODS 38 2.4 GENERAL EXPERIMENTAL FOR MATERIAL CHARACTERIZATIONS 41 2.5 EXPERIMENTAL OF THE POLYMERIC IONIC LIQUIDS (PILS) AND THE VIOLOGEN DERIVATIVES 42 2.5.1 Experimental of the composite membranes based on POEI‒IBF4 and PVdF‒HFP 43 2.5.2 Synthesis and Experimental of the PFI‒based PIL membranes 44 2.5.3 Synthesis of the viologen derivatives 50 2.6 ASSEMBLY OF ECDS 57 CHAPTER 3 ELECTROSPUN NANOFIBERS COMPOSED OF POLY(VINYLIDENE FLUORIDE‒CO‒HEXAFLUOROPROPYLENE) AND POLY(OXYETHYLENE)‒IMIDE IMIDAZOLIUM TETRAFLUOROBORATE AS ELECTROLYTES FOR SOLID‒STATE ELECTROCHROMIC DEVICES 59 3.1 INTRODUCTION 59 3.2 RESULTS AND DISCUSSION 61 3.2.1 Characterization of the nanofibers 61 3.2.2 Working principle of the solid‒state ECD with N15Py 68 3.2.3 Performance of the quasi‒solid‒state ECD with N15P10 membrane (N15P10‒ECD) 75 3.3 CONCLUSION 83 CHAPTER 4 STABLE VIOLOGEN‒BASED ELECTROCHROMIC DEVICES: CONTROL OF COULOMBIC INTERACTION USING MULTI‒FUNCTIONAL POLYMERIC IONIC LIQUID MEMBRANES 85 4.1 INTRODUCTION 85 4.2 RESULTS AND DISCUSSION 90 4.2.1 Characterization of the PFI‒based PILs and membranes. 90 4.2.2 Electrochromic performance of the PFI‒based ECDs. 98 4.2.3 Charge transfer in the PFI‒based ECDs. 107 4.2.4 Cyclic voltammetry for the PFI‒based ECDs. 109 4.2.5 Long‒term optical stability of the PFI‒based ECDs. 112 4.3 CONCLUSION 115 CHAPTER 5 EFFECT OF TRIFLUOROMETHYL SUBSTITUENTS IN BENZYL‒BASED VIOLOGEN ON THE ELECTROCHROMIC PERFORMANCE: OPTICAL CONTRAST AND STABILITY 117 5.1 INTRODUCTION 117 5.2 RESULTS AND DISCUSSION 120 5.2.1 Electrochemical performance of benzyl‒based viologens 120 5.2.2 Electrochromic characterization of benzyl‒based viologen ECDs 135 5.2.3 Long‒term stabilities of benzyl‒based viologen ECDs 143 5.3 CONCLUSIONS 150 CHAPTER 6 EFFECT OF THE ELECTRON‒WITHDRAWING AND ELECTRON‒DONATING N‒SUBSTITUENTS FOR THE PHENYL VIOLOGEN‒BASED ELECTROCHROMIC DEVICES 151 6.1 INTRODUCTION 151 6.2 RESULTS AND DISCUSSION 154 6.2.1 Electrochemical performance of viologen derivatives (PV, HOPV, TFMPV) 154 6.2.2 Electrochromic characterization of phenyl‒based viologen ECDs 164 6.2.3 Effects of substitution on phenyl‒based viologen properties 171 6.2.4 The long‒term performance of phenyl‒based viologen ECDs 175 6.3 CONCLUSIONS 182 CHAPTER 7 CONCLUSIONS AND SUGGESTIONS 183 7.1 CONCLUSIONS 183 7.2 SUGGESTIONS 184 REFERENCE 186 APPENDIX A 227 | - |
| dc.language.iso | en | - |
| dc.subject | 半固態電解質 | zh_TW |
| dc.subject | 取代基 | zh_TW |
| dc.subject | 靜電紡絲技術 | zh_TW |
| dc.subject | 電致色變元件 | zh_TW |
| dc.subject | 紫精 | zh_TW |
| dc.subject | 高分子離子液體 | zh_TW |
| dc.subject | Viologen | en |
| dc.subject | Electrochromic devices | en |
| dc.subject | Electrospinning | en |
| dc.subject | Polymeric ionic liquid | en |
| dc.subject | Quasi‒solid‒state electrolyte | en |
| dc.subject | Substituents | en |
| dc.title | 紫精電致色變材料與元件之研究 | zh_TW |
| dc.title | Study for Viologen-based Electrochromic Materials and Devices | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 廖英志;戴子安;林正嵐;李君婷 | zh_TW |
| dc.contributor.oralexamcommittee | Ying-Chih Liao;Chi-An Dai;Cheng-Lan Lin;Chun-Ting Li | en |
| dc.subject.keyword | 電致色變元件,靜電紡絲技術,高分子離子液體,半固態電解質,取代基,紫精, | zh_TW |
| dc.subject.keyword | Electrochromic devices,Electrospinning,Polymeric ionic liquid,Quasi‒solid‒state electrolyte,Substituents,Viologen, | en |
| dc.relation.page | 232 | - |
| dc.identifier.doi | 10.6342/NTU202400170 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-01-25 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2029-01-22 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 13.28 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
