Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92430
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝旭亮zh_TW
dc.contributor.advisorHsu-Liang Hsiehen
dc.contributor.author方薇涵zh_TW
dc.contributor.authorWei-Han Fangen
dc.date.accessioned2024-03-22T16:28:19Z-
dc.date.available2024-03-23-
dc.date.copyright2024-03-22-
dc.date.issued2024-
dc.date.submitted2024-01-31-
dc.identifier.citationAhmad, M. and Cashmore, A.R. (1993). HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366: 162–166.
Ahmad, M., Lin, C., and Cashmore, A.R. (1995). Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. The Plant Journal 8: 653–658.
Alonso, J.M., Stepanova, A.N., Solano, R., Wisman, E., Ferrari, S., Ausubel, F.M., and Ecker, J.R. (2003). Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proceedings of the National Academy of Sciences 100: 2992–2997.
An, F. et al. (2010). Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. The Plant Cell 22: 2384–2401.
Anderson, J.P., Badruzsaufari, E., Schenk, P.M., Manners, J.M., Desmond, O.J., Ehlert, C., Maclean, D.J., Ebert, P.R., and Kazan, K. (2004). Antagonistic Interaction between Abscisic Acid and Jasmonate-Ethylene Signaling Pathways Modulates Defense Gene Expression and Disease Resistance in Arabidopsis. The Plant Cell 16: 3460–3479.
Barford, D., Das, A.K., and Egloff, M.P. (1998). The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annual Review of Biophysics and Biomolecular Structure 27: 133–164.
Betti, C., Della Rovere, F., Ronzan, M., and Fattorini, L. (2019). EIN2 and COI1 control the antagonism between ethylene and jasmonate in adventitious rooting of Arabidopsis thaliana thin cell layers. Plant Cell, Tissue and Organ Culture 138: 41–51.
Bhaskara, G.B., Wen, T.-N., Nguyen, T.T., and Verslues, P.E. (2017). Protein Phosphatase 2Cs and Microtubule-Associated Stress Protein 1 Control Microtubule Stability, Plant Growth, and Drought Response. The Plant Cell 29: 169–191.
Bheri, M., Mahiwal, S., Sanyal, S.K., and Pandey, G.K. (2021). Plant protein phosphatases: What do we know about their mechanism of action? The FEBS Journal 288: 756–785.
Blakeslee, J.J., Zhou, H.-W., Heath, J.T., Skottke, K.R., Barrios, J.A.R., Liu, S.-Y., and DeLong, A. (2008). Specificity of RCN1-Mediated Protein Phosphatase 2A Regulation in Meristem Organization and Stress Response in Roots. Plant Physiology 146: 539–553.
Bu, Q., Jiang, H., Li, C.-B., Zhai, Q., Zhang, J., Wu, X., Sun, J., Xie, Q., and Li, C. (2008). Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Research 18: 756–767.
Bu, Q., Zhu, L., Dennis, M.D., Yu, L., Lu, S.X., Person, M.D., Tobin, E.M., Browning, K.S., and Huq, E. (2011). Phosphorylation by CK2 Enhances the Rapid Light-induced Degradation of Phytochrome Interacting Factor 1 in Arabidopsis. Journal of Biological Chemistry 286: 12066–12074.
Bursch, K., Toledo-Ortiz, G., Pireyre, M., Lohr, M., Braatz, C., and Johansson, H. (2020). Identification of BBX proteins as rate-limiting cofactors of HY5. Nature Plants 6: 921–928.
Campos, M.L., Kang, J.-H., and Howe, G.A. (2014). Jasmonate-Triggered Plant Immunity. Journal of Chemical Ecology 40: 657–675.
Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W., and Ecker†, J.R. (1997). Activation of the Ethylene Gas Response Pathway in Arabidopsis by the Nuclear Protein ETHYLENE-INSENSITIVE3 and Related Proteins. Cell 89: 1133–1144.
Chen, H.-J., Fu, T.-Y., Yang, S.-L., and Hsieh, H.-L. (2018). FIN219/JAR1 and cryptochrome1 antagonize each other to modulate photomorphogenesis under blue light in Arabidopsis. PLoS Genet 14: e1007248.
Chen, J., Sonobe, K., Ogawa, N., Masuda, S., Nagatani, A., Kobayashi, Y., and Ohta, H. (2013). Inhibition of arabidopsis hypocotyl elongation by jasmonates is enhanced under red light in phytochrome B dependent manner. Journal of Plant Research 126: 161–168.
Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J.M., Lorenzo, O., García-Casado, G., López-Vidriero, I., Lozano, F.M., Ponce, M.R., Micol, J.L., and Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666–671.
Chu Y.-H. (2020). Functional studies of Arabidopsis phosphatases in regulating FIN219/JAR1 activity upon exposure to blue light and jasmonates. 碩士論文,植物科學研究所,國立台灣大學,台北市
Chung, H.S., Koo, A.J.K., Gao, X., Jayanty, S., Thines, B., Jones, A.D., and Howe, G.A. (2008). Regulation and Function of Arabidopsis JASMONATE ZIM-Domain Genes in Response to Wounding and Herbivory. Plant Physiology 146: 952–964.
Clough, S.J. and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana. The Plant Journal 16: 739–743.
Creelman, R.A., Tierney, M.L., and Mullet, J.E. (1992). Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proceedings of the National Academy of Sciences 89: 4938–4941.
Delfin, J.C., Kanno, Y., Seo, M., Kitaoka, N., Matsuura, H., Tohge, T., and Shimizu, T. (2022). AtGH3.10 is another jasmonic acid-amido synthetase in Arabidopsis thaliana. The Plant Journal 110: 1082–1096.
Deribe, Y.L., Pawson, T., and Dikic, I. (2010). Post-translational modifications in signal integration. Nature Structural and Molecular Biology 17: 666–672.
Deruère, J., Jackson, K., Garbers, C., Söll, D., and DeLong, A. (1999). The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo. The Plant Journal 20: 389–399.
Devoto, A., Ellis, C., Magusin, A., Chang, H.-S., Chilcott, C., Zhu, T., and Turner, J.G. (2009). Expression profiling reveals COI1 to be a key regulator of genesinvolved in wound- and methyl jasmonate-induced secondarymetabolism, defence, and hormone interactions. Plant Molecular Biology 98: 497–913.
Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M., and Kazan, K. (2007). MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in Arabidopsis. The Plant Cell 19: 2229–2249.
Durian, G., Rahikainen, M., Alegre, S., Brosché, M., and Kangasjärvi, S. (2016). Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants. Frontiers in Plant Science 7: 812.
Ecker, J.R. (1995). The Ethylene Signal Transduction Pathway in Plants. Science 268: 667–675.
Ellis, C. and Turner, J.G. (2002). A conditionally fertile coi1 allele indicates cross-talk between plant hormone signalling pathways in Arabidopsis thaliana seeds and young seedlings. Planta 219: 949–996.
Farkas, I., Dombrádi, V., Miskei, M., Szabados, L., and Koncz, C. (2007). Arabidopsis PPP family of serine/threonine phosphatases. Trends in Plant Science 12: 169–176.
Feinbaum, R.L., Storz, G., and Ausubel, F.M. (1991). High intensity and blue light regulated expression of chimeric chalcone synthase genes in transgenic Arabidopsis thaliana plants. Molecular Genetics and Genomics 226: 449–456.
Fonseca, S., Chini, A., Hamberg, M., Adie, B., Porzel, A., Kramell, R., Miersch, O., Wasternack, C., and Solano, R. (2009). (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nature Chemical Biology 5: 344–350.
Gangappa, S.N., Crocco, C.D., Johansson, H., Datta, S., Hettiarachchi, C., Holm, M., and Botto, J.F. (2013). The Arabidopsis B-BOX Protein BBX29 Interacts with HY5, Negatively Regulating BBX22 Expression to Suppress Seedling Photomorphogenesis. The Plant Cell 29: 1243–1297.
Gao, L., Liu, Q., Zhong, M., Zeng, N., Deng, W., Li, Y., Wang, D., Liu, S., and Wang, Q. (2022). Blue light-induced phosphorylation of Arabidopsis cryptochrome 1 is essential for its photosensitivity. Journal of Integrative Plant Biology 64: 1724–1738.
Heazlewood, J.L., Durek, P., Hummel, J., Selbig, J., Weckwerth, W., Walther, D., and Schulze, W.X. (2008). PhosPhAt : a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Research 36: D1015–D1021.
Hsieh, C.-C. (2007). Studies of the Molecular Mechanisms Underlying Arabidopsis FIN219 and Cryptochromes Regulated Ethylene Responses. 碩士論文,植物科學研究所,國立台灣大學,台北市
Hsieh, H.-L., Okamoto, H., Wang, M., Ang, L.-H., Matsui, M., Goodman, H., and Deng, X.W. (2000). FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes and Development 14: 1998–1970.
Huang, H., Liu, B., Liu, L., and Song, S. (2017). Jasmonate action in plant growth and development. Journal of Experimental Botany 68: 1349–1359.
Janssens, V. and Goris, J. (2001). Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochemical Journal 353: 417–439.
Jiang, H.-W., Peng, K.-C., Hsu, T.-Y., Chiou, Y.-C., and Hsieh, H.-L. (2023). Arabidopsis FIN219/JAR1 interacts with phytochrome A under far-red light and jasmonates in regulating hypocotyl elongation via a functional demand manner. PLoS Genetics 19: e1010779.
Karampelias, M. et al. (2016). ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling. Proceedings of the National Academy of Sciences 113: 2768–2773.
Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y., and Howe, G.A. (2008). COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proceedings of the National Academy of Sciences 105: 7100–7105.
Kazan, K. and Manners, J.M. (2011). The interplay between light and jasmonate signalling during defence and development. Journal of Experimental Botany 62: 4087–4100.
Kazan, K. and Manners, J.M. (2013). MYC2: The Master in Action. Molecular Plant 6: 686–703.
Khan, Z.H., Agarwal, S., Rai, A., Memaya, M.B., Mehrotra, S., and Mehrotra, R. (2020). Co-expression network analysis of protein phosphatase 2A (PP2A) genes with stress-responsive genes in Arabidopsis thaliana reveals 13 key regulators. Scientific Reports 10: 21480.
Larsen, P.B. and Cancel, J.D. (2003). Enhanced ethylene responsiveness in the Arabidopsis eer1 mutant results from a loss-of-function mutation in the protein phosphatase 2A A regulatory subunit, RCN1. The Plant Journal 34: 709–718.
Larsen, P.B. and Chang, C. (2001). The Arabidopsis eer1 Mutant Has Enhanced Ethylene Responses in the Hypocotyl and Stem. Plant Physiology 129: 1061–1073.
Lian, H.-L., He, S.-B., Zhang, Y.-C., Zhu, D.-M., Zhang, J.-Y., Jia, K.-P., Sun, S.-X., Li, L., and Yang, H.-Q. (2011). Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism. Genes and Development 25: 1023–1028.
Lillo, C., Kataya, A.R.A., Heidari, B., Creighton, M.T., Nemie-Feyissa, D., Ginbot, Z., and Jonassen, E.M. (2014). Protein phosphatases PP2A, PP4 and PP6: mediators and regulators in development and responses to environmental cues. Plant, Cell and Environment 37: 2631–2648.
Litchfield, D.W. (2003). Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochemical Journal 369: 1–15.
Liu, B., Zuo, Z., Liu, H., Liu, X., and Lin, C. (2011). Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes and Development 29: 1029–1034.
Lorenzo, O., Chico, J.M., Saénchez-Serrano, J.J., and Solano, R. (2004). JASMONATE-INSENSITIVE1 Encodes a MYC Transcription Factor Essential to Discriminate between Different Jasmonate-Regulated Defense Responses in Arabidopsis[W]. The Plant Cell 16: 1938–1990.
Lorenzo, O., Piqueras, R., Sánchez-Serrano, J.J., and Solano, R. (2003). ETHYLENE RESPONSE FACTOR1 Integrates Signals from Ethylene and Jasmonate Pathways in Plant Defense[W]. The Plant Cell 19: 169–178.
Loreti, E., Povero, G., Novi, G., Solfanelli, C., Alpi, A., and Perata, P. (2008). Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytologist 179: 1004–1016.
Lymperopoulos, P., Msanne, J., and Rabara, R. (2018). Phytochrome and Phytohormones: Working in Tandem for Plant Growth and Development. Frontiers in Plant Science 9: 1037.
Mao, J., Zhang, Y.-C., Sang, Y., Li, Q.-H., and Yang, H.-Q. (2005). A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proceedings of the National Academy of Sciences 102: 12270–12275.
Michniewicz, M. et al. (2007). Antagonistic Regulation of PIN Phosphorylation by PP2A and PINOID Directs Auxin Flux. Cell 130: 1044–1056.
Moorhead, G.B.G., De Wever, V., Templeton, G., and Kerk, D. (2008). Evolution of protein phosphatases in plants and animals. Biochemical Journal 417: 401–409.
Muday, G.K., Brady, S.R., Argueso, C., Deruère, J., Kieber, J.J., and DeLong, A. (2006). RCN1-Regulated Phosphatase Activity and EIN2 Modulate Hypocotyl Gravitropism by a Mechanism That Does Not Require Ethylene Signaling. Plant Physiology 141: 1617–1629.
Nakata, M., Mitsuda, N., Herde, M., Koo, A.J.K., Moreno, J.E., Suzuki, K., Howe, G.A., and Ohme-Takagi, M. (2013). A bHLH-Type Transcription Factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, Acts as a Repressor to Negatively Regulate Jasmonate Signaling in Arabidopsis. The Plant Cell 25: 1641–1656.
Ortigosa, A., Fonseca, S., Franco-Zorrilla, J.M., Fernández-Calvo, P., Zander, M., Lewsey, M.G., García-Casado, G., Fernández-Barbero, G., Ecker, J.R., and Solano, R. (2020). The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. The Plant Journal 102: 138–152.
Peng, K.-C., Siao, W., and Hsieh, H.-L. (2023). FAR-RED INSENSITIVE 219 and phytochrome B corepress shade avoidance via modulating nuclear speckle formation. Plant Physiology 192: 1449–1465.
Rashotte, A.M., DeLong, A., and Muday, G.K. (2001). Genetic and Chemical Reductions in Protein Phosphatase Activity Alter Auxin Transport, Gravity Response, and Lateral Root Growth. The Plant Cell 13: 1683–1697.
Ren, H., Rao, J., Tang, M., Li, Y., Dang, X., and Lin, D. (2022). PP2A interacts with KATANIN to promote microtubule organization and conical cell morphogenesis. Journal of Integrative Plant Biology 64: 1514–1530.
Rojo, E., Titarenko, E., León, J., Berger, S., Vancanneyt, G., and Sánchez-Serrano, J.J. (1998). Reversible protein phosphorylation regulates jasmonic acid-dependent and -independent wound signal transduction pathways in Arabidopsis thaliana. The Plant Journal 13: 193–169.
Saibo, N.J.M., Vriezen, W.H., Beemster, G.T.S., and Van Der Straeten, D. (2003). Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. The Plant Journal 33: 989–1000.
Saito, N., Munemasa, S., Nakamura, Y., Shimoishi, Y., Mori, I.C., and Murata, Y. (2008). Roles of RCN1, Regulatory A Subunit of Protein Phosphatase 2A, in Methyl Jasmonate Signaling and Signal Crosstalk between Methyl Jasmonate and Abscisic Acid. Plant and Cell Physiology 49: 1396–1401.
Schweighofer, A., Hirt, H., and Meskiene, I. (2004). Plant PP2C phosphatases: emerging functions in stress signaling. Trends in Plant Science 9: 236–243.
Seo, J. and Lee, K.-J. (2004). Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. Journal of Biochemistry and Molecular Biology 37: 35–44.
Shalitin, D., Yu, X., Maymon, M., Mockler, T., and Lin, C. (2003). Blue Light–Dependent in Vivo and in Vitro Phosphorylation of Arabidopsis Cryptochrome 1. The Plant Cell 15: 2421–2429.
Shan, X., Zhang, Y., Peng, W., Wang, Z., and Xie, D. (2009). Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. Journal of Experimental Botany 60: 3849–3860.
Shi, Y. (2009). Serine/Threonine Phosphatases: Mechanism through Structure. Cell 139: 468–484.
Shyu, Y.-J. (2018). Identification and functional studies of phosphatases regulating FIN219 in the integration of light and jasmonate signaling in Arabidopsis. 碩士論文,植物科學研究所,國立台灣大學,台北市
Skottke, K.R., Yoon, G.M., Kieber, J.J., and DeLong, A. (2011). Protein Phosphatase 2A Controls Ethylene Biosynthesis by Differentially Regulating the Turnover of ACC Synthase Isoforms. PLoS Genetics 7: e1001370.
Staswick, P.E. and Tiryaki, I. (2004). The Oxylipin Signal Jasmonic Acid Is Activated by an Enzyme That Conjugates It to Isoleucine in Arabidopsis[W]. The Plant Cell 16: 2117–2127.
Staswick, P.E., Tiryaki, I., and Rowe, M.L. (2002). Jasmonate Response Locus JAR1 and Several Related Arabidopsis Genes Encode Enzymes of the Firefly Luciferase Superfamily That Show Activity on Jasmonic, Salicylic, and Indole-3-Acetic Acids in an Assay for Adenylation. The Plant Cell 14: 1409–1419.
Takahashi, F., Yoshida, R., Ichimura, K., Mizoguchi, T., Seo, S., Yonezawa, M., Maruyama, K., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2007). The Mitogen-Activated Protein Kinase Cascade MKK3–MPK6 Is an Important Part of the Jasmonate Signal Transduction Pathway in Arabidopsis. The Plant Cell 19: 805–818.
Tang, W. et al. (2011). PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nature Cell Biology 13: 124–131.
Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., and Browse, J. (2007). JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448: 661–665.
Trotta, A. et al. (2011). Regulatory Subunit B′γ of Protein Phosphatase 2A Prevents Unnecessary Defense Reactions under Low Light in Arabidopsis. Plant Physiology 156: 1464–1480.
Tsai, Y.-H. (2016). Functional studies of FIN219/JAR1 phosphorylation involved in integration of light and jasmonate signaling in Arabidopsis. 碩士論文,植物科學研究所,國立台灣大學,台北市
Tseng, T.-S. and Briggs, W.R. (2010). The Arabidopsis rcn1-1 Mutation Impairs Dephosphorylation of Phot2, Resulting in Enhanced Blue Light Responses. The Plant Cell 22: 392–402.
Uhrig, R.G., Labandera, A.-M., and Moorhead, G.B. (2013). Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines. Trends in Plant Science 18: 505–513.
Waadt, R. et al. (2015). Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses. Plant Physiology 169: 760–779.
Wang, H., Ma, L.-G., Li, J.-M., Zhao, H.-Y., and Deng, X.W. (2001). Direct Interaction of Arabidopsis Cryptochromes with COP1 in Light Control Development. Science 294: 154–158.
Wang, J.-G., Chen, C.-H., Chien, C.-T., and Hsieh, H.-L. (2011). FAR-RED INSENSITIVE219 Modulates CONSTITUTIVE PHOTOMORPHOGENIC1 Activity via Physical Interaction to Regulate Hypocotyl Elongation in Arabidopsis. Plant Physiology 156: 631–646.
Wang, W. et al. (2018). Photoexcited CRYPTOCHROME1 Interacts with Dephosphorylated BES1 to Regulate Brassinosteroid Signaling and Photomorphogenesis in Arabidopsis. The Plant Cell 30: 1989–2005.
Wasternack, C. and Hause, B. (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany 111: 1021–1058.
Wu, P., Gao, H.-B., Zhang, L.-L., Xue, H.-W., and Lin, W.-H. (2014). Phosphatidic Acid Regulates BZR1 Activity and Brassinosteroid Signal of Arabidopsis. Molecular Plant 7: 445–447.
Xie, D.-X., Feys, B.F., James, S., Nieto-Rostro, M., and Turner, J.G. (1998). COI1: An Arabidopsis Gene Required for Jasmonate-Regulated Defense and Fertility. Science 280: 1091–1094.
Xue, T., Wang, D., Zhang, S., Ehlting, J., Ni, F., Jakab, S., Zheng, C., and Zhong, Y. (2008). Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genomics 9: 550.
Yadav, V., Mallappa, C., Gangappa, S.N., Bhatia, S., and Chattopadhyay, S. (2005). A Basic Helix-Loop-Helix Transcription Factor in Arabidopsis, MYC2, Acts as a Repressor of Blue Light–Mediated Photomorphogenic Growth. The Plant Cell 17: 1953–1966.
Yang, H.-Q., Tang, R.-H., and Cashmore, A.R. (2001). The Signaling Mechanism of Arabidopsis CRY1 Involves Direct Interaction with COP1.The Plant Cell 13: 2973–2988.
Yang, H.-Q., Wu, Y.-J., Tang, R.-H., Liu, D., Liu, Y., and Cashmore, A.R. (2000). The C Termini of Arabidopsis Cryptochromes Mediate a Constitutive Light Response. Cell 103: 819–827.
Yi, R. and Shan, X. (2023). Post-translational modifications: emerging regulators manipulating jasmonate biosynthesis and signaling. Plant Cell Reports 42: 215–222.
Zhai, Q., Yan, L., Tan, D., Chen, R., Sun, J., Gao, L., Dong, M.-Q., Wang, Y., and Li, C. (2013). Phosphorylation-Coupled Proteolysis of the Transcription Factor MYC2 Is Important for Jasmonate-Signaled Plant Immunity. PLoS Genetics 9: e1003422.
Zhang, X., Zhu, Z., An, F., Hao, D., Li, P., Song, J., Yi, C., and Guo, H. (2014). Jasmonate-Activated MYC2 Represses ETHYLENE INSENSITIVE3 Activity to Antagonize Ethylene-Promoted Apical Hook Formation in Arabidopsis. The Plant Cell 26: 1105–1117.
Zhang, Y.-C., Gong, S.-F., Li, Q.-H., Sang, Y., and Yang, H.-Q. (2006). Functional and signaling mechanism analysis of rice CRYPTOCHROME 1. The Plant Journal 46: 971–983.
Zheng, Y., Cui, X., Su, L., Fang, S., Chu, J., Gong, Q., Yang, J., and Zhu, Z. (2017). Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings. The Plant Journal 90: 1144–1155.
Zhou, M. and Memelink, J. (2016). Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnology Advances 34: 441–449.
Zhu, J., Wang, W.-S., Yan, D.-W., Hong, L.-W., Li, T.-T., Gao, X., Yang, Y.-H., Ren, F., Lu, Y.-T., and Yuan, T.-T. (2023). CK2 promotes jasmonic acid signaling response by phosphorylating MYC2 in Arabidopsis. Nucleic Acids Research 51: 619–630.
Zhu, Z. (2014). Molecular basis for jasmonate and ethylene signal interactions in Arabidopsis. Journal of Experimental Botany 65: 5743–5748.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92430-
dc.description.abstract阿拉伯芥可以利用感知藍光的光受體Cryptochromes (CRYs)與植物荷爾蒙茉莉酸(JAs)訊息傳遞,影響植物幼苗的生長發育。活化態茉莉酸(JA-Ile)關鍵的合成酵素FAR-RED INSENSITIVE 219/JASMONATE RESISTANT1 (FIN219/JAR1)扮演著整合藍光與茉莉酸調控幼苗發育的生理功能;先前研究發現黑暗生長並轉移到藍光照射的阿拉伯芥幼苗中的FIN219蛋白質存在磷酸化狀態的改變,但是轉譯後修飾是如何調節FIN219的功能與酵素活性,進而調控藍光及茉莉酸訊息的分子機制目前尚未清楚。先前分析出可能參與在藍光下調控FIN219的去磷酸酶包括屬於蛋白質去磷酸酶2A骨架次單元A的RCN1,以及屬於蛋白質去磷酸酶2C基因家族的E支的EGR2與H支的PP2CR。本研究結果中,將rcn1突變株以及RCN1大量表現的轉殖株幼苗從黑暗轉移到藍光時,發現造成FIN219蛋白質的磷酸化狀態的改變。分析下胚軸外表型,顯示rcn1突變株幼苗對藍光照射以及外源性甲基化茉莉酸(MeJA)抑制下胚軸延長有較敏感的反應。相反地,在相同的處理下大量表達RCN1比起野生型呈現長下胚軸的外表型。此外,在藍光照射以及MeJA處理下rcn1突變株體內花青素含量以及茉莉酸反應的相關基因表現量相似於野生型。進一步檢測fin219-2 rcn1雙突變株的外表型,顯示RCN1與FIN219參與藍光與茉莉酸調控下胚軸生長與茉莉酸相關的反應。綜合目前實驗結果推測,在阿拉伯芥的幼苗生長與發育中,去磷酸酶RCN1透過交互作用改變FIN219磷酸化狀態進而影響FIN219在藍光以及茉莉酸訊息傳遞的調控機制。zh_TW
dc.description.abstractBoth blue light photoreceptors cryptochromes and the phytohormone jasmonates (JAs) can regulate the growth and development of Arabidopsis seedlings. FAR-RED INSENSITIVE 219/JASMONATE RESISTANT1 (FIN219/JAR1) is a JA-conjugating enzyme and plays a crucial role in the crosstalk between blue light and JA signaling pathways. Previous studies revealed that the phosphorylated FIN219 protein exists in the seedlings transferred from dark to blue light. However, it is unclear that how the posttranslational modifications of FIN219 affect its function and enzymatic activity to control JA signaling upon exposure to blue light. We previously identified phosphatase candidates of FIN219, including ROOTS CURL IN NPA1 (RCN1), a scaffold subunit of Type 2A Protein Phosphatase (PP2A) holoenzymes, the clade H Type 2C protein phosphatase PP2CR, and Clade E Growth-Regulating Type 2C protein phosphatase-2 (EGR2). Here, we primarily conducted immunoblot analysis, indicating that the phosphorylation levels of FIN219 were affected in the rcn1 mutant and RCN1-overexpression line 35S: RCN1-YFP-HA / Col-0 (RCN1-OE) under blue light conditions. The phenotypic analyses of the rcn1 mutant seedlings revealed a hypersensitive response to blue light and methyl-JA (MeJA)-mediated inhibition of hypocotyl growth. In contrast, the RCN1-OE lines had a longer hypocotyl than Col-0 under the same conditions. Furthermore, the rcn1 mutant contained similar anthocyanin content and expression levels of JA-responsive genes compared to Col-0 with MeJA treatment under blue light conditions. Moreover, the fin219-2 rcn1 double mutant showed that RCN1 and FIN219 participated in the control of hypocotyl growth and JA responses with MeJA under blue light conditions. Taken together, these findings reveal that RCN1 phosphatase modulates FIN219 functions in the integration of blue light and JA signaling pathways through direct interaction in Arabidopsis.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-22T16:28:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-22T16:28:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 II
中文摘要 III
Abstract IV
Contents VI
List of Figures X
List of Tables XII
Abbreviations XIII
Introduction 1
1. Blue light signaling modulates photomorphogenesis 1
2. Plant hormones affect seedling growth and development 2
3. FIN219 integrates blue light and jasmonate signaling 3
4. FIN219 regulatory activity and post-translational modifications 4
5. The blue-light dependent phosphatase candidates of FIN219 5
6. The motivation and objectives of this study. 7
Materials and methods 8
1. Plant materials and growth conditions 8
2. Plasmid construction and generation of transgenic lines 8
3. Light treatment 9
4. Hypocotyl length measurement 9
5. Seedlings treated with MeJA 9
6. RNA isolation and gene expression analysis 9
7. Quantitative real-time PCR (RT-qPCR) 10
8. Anthocyanins content analysis 10
9. Plant total protein extraction 11
10. Western blot analyses 11
11. Co- immunoprecipitation 12
12. Accession Numbers 12
Results 13
1. RCN1 participated in the regulation of hypocotyl growth under blue light. 13
2. FIN219 was dephosphorylated by RCN1 under blue light. 14
3. RCN1 regulated the JA signaling and anthocyanin accumulation in the presence of MeJA under blue light. 15
4. RCN1 did not physically interact with FIN219 in vivo. 17
5. FIN219 is epistatic to RCN1 in seedling development with MeJA under blue light conditions. 18
6. RCN1 and EGR2/PP2CR independently regulated hypocotyl growth and JA responses with MeJA under blue light conditions. 19
7. RCN1 dominantly regulated hypocotyl phenotypes of the seedlings grown in darkness. 20
Discussion 22
1. RCN1 regulated FIN219 dephosphorylation under blue light. 22
2. RCN1 functions in the regulation of seedling development with MeJA treatment in blue light condition. 23
3. RCN1 mediated FIN219-induced JA responses under blue light. 24
4. FIN219 and RCN1 genetically regulated hypocotyl development and JA responses in blue light. 25
5. The phosphatase candidates of FIN219 in blue light. 27
6. RCN1 regulated hypocotyl phenotype in dark-grown seedlings. 28
Figures 30
Figure 1. The rcn1 mutant displayed a shorter hypocotyl phenotype than Col-0 under blue light conditions. 30
Figure 2. RCN1-OE suppressed photomorphogenesis with MeJA in blue light. 31
Figure 3. The protein phosphorylation assay of FIN219 in the rcn1 mutant under blue light and dark conditions. 33
Figure 4. RCN1 regulated FIN219 protein phosphorylation in blue light and MeJA treatment. 34
Figure 5. JAZ1, VSP1, and LOX2 transcript levels were up-regulated in the RCN1-OE lines with MeJA under blue light. 35
Figure 6. RCN1 regulated anthocyanin accumulation in the presence of MeJA under blue light. 36
Figure 7. In vivo co-immunoprecipitation did not show the interaction between FIN219 and RCN1-HA under blue light and darkness. 38
Figure 8. Genetic interaction analysis showed that RCN1 and FIN219 regulated hypocotyl growth and anthocyanin pigments under blue light. 39
Figure 9. Expression levels of JA-responsive genes were downregulated in the rcn1 mutant with MeJA treatment under blue light. 41
Figure 10. The egr2-1 pp2cr-1rcn1 triple mutant had similar hypocotyl lengths to Col-0 under blue light. 42
Figure 11. FIN219 phosphorylation in the egr2-1 pp2cr-1rcn1 triple mutant exposed to blue light and MeJA treatment. 44
Figure 12. The egr2-1 pp2cr-1rcn1 triple mutant had similar expression levels of JA responsive genes to Col-0 in blue light and MeJA treatment. 45
Figure 13. RCN1 regulated hypocotyl growth in response to the dark. 46
Figure 14. The MYC2 expression levels with MeJA in the dark. 48
Figure 15. A proposed model shows how RCN1 dephosphorylated FIN219 to regulate hypocotyl development and JA responses with MeJA under blue light conditions. 49
Table 50
Table 1. Primer sequences used in this study. 50
References 52
-
dc.language.isoen-
dc.subject磷酸化zh_TW
dc.subject茉莉酸訊息傳遞路徑zh_TW
dc.subject藍光型態發生zh_TW
dc.subject去磷酸酶zh_TW
dc.subjectFIN219zh_TW
dc.subjectFIN219en
dc.subjectphosphatasesen
dc.subjectblue-light photomorphogenesisen
dc.subjectJasmonate signal pathwayen
dc.subjectphosphorylationen
dc.title探討阿拉伯芥在藍光與茉莉酸處理下去磷酸酶與FIN219/JAR1調控關係的功能性研究zh_TW
dc.titleFunctional study of the regulatory relationships between FIN219/JAR1 and phosphatases upon exposure to blue light and jasmonates in Arabidopsisen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee涂世隆;蔡皇龍;李金美;鄭梅君zh_TW
dc.contributor.oralexamcommitteeShih-Long Tu;Huang-Lung Tsai;Chin-Mei Lee;Mei-Chun Chengen
dc.subject.keywordFIN219,去磷酸酶,藍光型態發生,茉莉酸訊息傳遞路徑,磷酸化,zh_TW
dc.subject.keywordFIN219,phosphatases,blue-light photomorphogenesis,Jasmonate signal pathway,phosphorylation,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202400200-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-02-02-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept植物科學研究所-
dc.date.embargo-lift2029-01-23-
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
3.1 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved