請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92408
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江茂雄 | zh_TW |
dc.contributor.advisor | Mao-Hsiung Chiang | en |
dc.contributor.author | 徐嘉妤 | zh_TW |
dc.contributor.author | Chia-Yu Hsu | en |
dc.date.accessioned | 2024-03-22T16:22:06Z | - |
dc.date.available | 2024-03-23 | - |
dc.date.copyright | 2024-03-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-10-05 | - |
dc.identifier.citation | "MONOPILE INSTALLATION." CAPE. https://capeholland.com/applications/monopile-installation/ (access 2023)
WITTINGEN, Martijn. Offshore Wind Turbine Monopile Foundation Installation with a Dynamic Positioned Vessel: A feasibility study by modeling. 2018. "UPENDING FRAME." IQIP. https://iqip.com/products/handling-equipment/upending-frame/ (access 2023) "Wind Installation – Wind." Osbit. https://www.osbit.com/equipment/offshore-wind-installation/ (access 2023) "PILE GRIPPER FRAME FOR MONOPILE FOUNDATIONS INSTALLATION." Eager.one. https://eager.one/products/veja-mate-owf-pile-gripper-frame/ (access 2023) "DYNAMIC OUTRIGGER FRAME." IQIP. https://iqip.com/products/handling-equipment/dynamic-outrigger-frame/ (access 2023) "Motion Compensated Pile Gripper." TWD. https://twd.nl/projects/motion-compensated-pile-gripper/ (access 2023) HO, H. F.; WONG, Yiu-Kwong; RAD, Ahmad B. Adaptive fuzzy sliding mode control with chattering elimination for nonlinear SISO systems. Simulation Modelling Practice and Theory, 2009, 17.7: 1199-1210. ROOPAEI, Mehdi; JAHROMI, M. Zolghadri. Chattering-free fuzzy sliding mode control in MIMO uncertain systems. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71.10: 4430-4437. G. C. Hwang and S. C. Lin, “A stability approach to fuzzy control design for nonlinear systems,” Fuzzy Sets and Systems, vol. 48, pp. 279-286,1992. KUCUK, Serdar; BINGUL, Zafer. Robot kinematics: Forward and inverse kinematics. London, UK: INTECH Open Access Publisher, 2006. NIELSEN, James; ROTH, Bernard. On the kinematic analysis of robotic mechanisms. The International Journal of Robotics Research, 1999, 18.12: 1147-1160. 周龍, 劉潤, 張金鳳, 郭紹曾. 考慮波流聯合作用的大直徑鋼管樁自由站立穩定性分析. 岩土工程學報, 2015, 37(11): 1992-1999. Deeks, A.J.; Randolph, M.F. Axisymmetric time-domain transmitting boundaries. J. Eng. Mech. 1994, 120, 25–42. "淺談基樁之承載力試驗."張有恆. http://www.geotech.org.tw/upload/e_book_file/20200219154211384.pdf (access 2023) 吳俊辰. 三軸主動式運動補償離岸風機登塔系統之模擬與實驗. 國立台灣大學碩士論文, 2016. 陳識傑. 自組織模糊滑動控制應用於液壓主動式垂向吊裝補償系統之研究. 國立台灣大學碩士論文, 2022. 林啟聖; 李宜芝; 郭玉樹. 振盪水柱波浪發電防波堤於重複波作用下之受力分析. 中華防災學刊, 2014, 6.2: 255-262. "台電一期離岸風電併聯." 台灣電力公司. http://125.227.255.111/yuan/mobile/149/pdf/p04_149_%E6%89%8B%E6%A9%9F%E7%89%88.pdf (access 2023) "HYDROHAMMER."IQIP.https://iqip.com/wpcontent/uploads/2021/12/Hydrohammer_leaflet_EN_ 0922-hr.pdf (access 2023) Cai, Shupeng & Zhang, Yongkang. 海上風機大直徑單樁動態打樁過程數值仿真分析, 2022. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92408 | - |
dc.description.abstract | 隨著離岸風電產業的興起,各國紛紛開始開發離岸風場,而水下基礎的建設為其中重要一環。離岸風機水下基礎的安裝仰賴抱樁扶正系統,此系統負責執行扶正與固定樁柱垂直度之工作,使樁柱不會因為船舶的晃動而導致滑樁,造成船員的危險。
本研究提出一主動式補償機構,來補償樁柱受波浪影響所產生的樁柱的x方向位移及y方向位移,使樁柱在海上打樁時保持一定的垂直度,避免滑樁等情況發生。研究內容包括可動態補償之抱樁扶正系統機構設計、機構運動學分析、液壓伺服系統動態分析及控制系統設計,並進行系統整合模擬,以驗證補償機構之性能。 離岸風機水下基礎之抱樁扶正系統機構的部分以Solidworks進行可動態補償之抱樁扶正系統設計,再匯入ADAMS進行機構動態建模及分析,而正逆向運動學、液壓伺服系統與控制器則透過MATLAB/SIMULINK建立其模型,其中控制器的部分採用自組織模糊滑動控制器(SOFSMC),最後結合ADAMS機構動態分析與MATLAB/SIMULINK進行系統整合模擬,來驗證主動式補償機構的效能是否符合需求。 透過整合模擬的結果可以推斷,本論文所提出之可動態補償之抱樁扶正系統能有效減小樁柱在x和y方向的位移以及偏斜度,以及自組織模糊滑動控制器在可動態補償之抱樁系統有足夠的穩健性。 | zh_TW |
dc.description.abstract | With the rise of the offshore wind power industry, countries worldwide have begun developing offshore wind farms, with underwater foundations being an essential component. The installation of underwater foundations relies on a pile holding and centralizer system that ensures the verticality of the piles, preventing sliding caused by the motion of vessels and ensuring the safety of crew members.
This study proposes an active compensation mechanism to mitigate the displacement in the x-direction and displacement in the y-direction of the piles induced by wave action. The mechanism aims to maintain a certain level of verticality for the piles during offshore piling operations, avoiding undesirable situations such as pile sliding. The research includes the design of a dynamic compensating pile holding and centralizer system, kinematic analysis of the mechanism, dynamic analysis of the hydraulic servo system, and the design of the control system. System integration simulations are conducted to validate the performance of the compensation mechanism. The design of the pile holding and centralizer system mechanism is carried out using Solidworks, followed by dynamic modeling and analysis using ADAMS. The forward and inverse kinematics, hydraulic servo system, and controller are modeled using MATLAB/SIMULINK. The controller utilizes a self-organizing fuzzy sliding mode controller. Finally, the ADAMS dynamic analysis and MATLAB/SIMULINK simulations are combined for system integration simulations to verify the effectiveness of the active compensation mechanism. Based on the results of the integrated simulations, it can be inferred that the proposed motion compensated pile gripper system effectively reduces the displacement and inclination of the pile in the x and y directions.. Additionally, the self-organizing fuzzy sliding controller exhibits sufficient robustness in the motion compensated pile gripper system. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-22T16:22:06Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-03-22T16:22:06Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 離岸風機水下基礎之抱樁扶正系統文獻回顧 3 1-2-2 控制理論文獻回顧 7 1-3 研究動機 8 1-4 本文架構 10 第二章 系統架構 11 2-1 系統機構設計 11 2-1-1 系統機構外型 11 2-1-2 系統設計規格 14 2-2 樁柱規格 16 第三章 運動學分析 19 3-1 正向運動學 19 3-1-1 定義坐標軸 19 3-1-2 正向運動學推導 22 3-2 逆向運動學 28 第四章 動力學分析 32 4-1 液壓伺服系統數學模型 32 4-1-1 伺服閥閥軸動態方程式 32 4-1-2 流量方程式 33 4-1-3 連續方程式 34 4-2 可動態補償之抱樁系統機構動態建模 36 4-3 樁柱動力學模型 38 第五章 控制器設計 41 5-1 模糊滑動控制理論 41 5-1-1 模糊滑動平面控制器 43 5-1-2 歸屬函數 44 5-1-3 解模糊化 48 5-1-4 控制參數 、 、 及 48 5-2 自組織控制理論 49 5-2-1 自組織模糊控制器 50 5-2-2 自組織規則 50 5-2-3 自組織模糊滑動控制器 56 第六章 模擬結果與分析 59 6-1 模擬環境設定 61 6-1-1 波浪環境及波浪力設定 61 6-1-2 樁柱初始位置與受力圖 62 6-1-3 打樁力設定 63 6-1-4 海床土壤作用力設定 63 6-1-5 模擬條件 64 6-2 模擬結果 66 6-2-1 Case1模擬結果 66 6-2-2 Case2模擬結果 76 6-2-3 Case3模擬結果 86 6-2-4 Case4模擬結果 96 6-3 模擬結果討論 106 第七章 結論與未來展望 111 7-1 結論 111 7-2 未來展望 112 參考文獻 113 | - |
dc.language.iso | zh_TW | - |
dc.title | 以自組織模糊滑動模式控制應用於離岸風機水下基礎具動態補償之抱樁扶正系統之研究 | zh_TW |
dc.title | Dynamic Compensated Pile Holding and Centralizer for Foundation of Offshore Wind Turbines Using Self-Organizing Fuzzy Sliding Mode Control | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 郭振華;林浩庭;黃金川 | zh_TW |
dc.contributor.oralexamcommittee | Jhen-Hua Guo;Hao-Tlin Lin;Chin-Chuan Huang | en |
dc.subject.keyword | 離岸風機水下基礎具動態補償之抱樁扶正系統,主動式補償,液壓伺服系統,動態模擬,自組織模糊滑動控制器, | zh_TW |
dc.subject.keyword | dynamic compensated pile holding and centralizer for foundation of offshore wind turbines,active compensation,hydraulic servo system,dynamic simulation,self-organizing fuzzy sliding mode controller, | en |
dc.relation.page | 114 | - |
dc.identifier.doi | 10.6342/NTU202304299 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-10-11 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
dc.date.embargo-lift | 2028-10-04 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 11.28 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。