Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 分子暨比較病理生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92380
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃威翔zh_TW
dc.contributor.advisorWei-Hsiang Huangen
dc.contributor.author楊雅雯zh_TW
dc.contributor.authorYa-Wen Yangen
dc.date.accessioned2024-03-22T16:14:02Z-
dc.date.available2024-03-23-
dc.date.copyright2024-03-22-
dc.date.issued2024-
dc.date.submitted2024-02-20-
dc.identifier.citation1.         Narayan, E. and N. Rana, Human-wildlife interaction: past, present, and future. BMC Zoology, 2023. 8(1): p. 5.
2.         Carter, N.H. and J.D.C. Linnell, Co-Adaptation Is Key to Coexisting with Large Carnivores. Trends in Ecology & Evolution, 2016. 31(8): p. 575-578.
3.         Madden, F., Creating Coexistence between Humans and Wildlife: Global Perspectives on Local Efforts to Address Human–Wildlife Conflict. Human Dimensions of Wildlife, 2004. 9(4): p. 247-257.
4.         Redpath, S.M., et al., Understanding and managing conservation conflicts. Trends in Ecology & Evolution, 2013. 28(2): p. 100-109.
5.         König, H.J., et al., Human–wildlife coexistence in a changing world. Conservation Biology, 2020. 34(4): p. 786-794.
6.         Nyhus, P., Human–Wildlife Conflict and Coexistence. Annual Review of Environment and Resources, 2016. 41.
7.         Sukumar, R. and M. Gadgil, Male-female differences in foraging on crops by Asian elephants. Animal Behaviour, 1988. 36(4): p. 1233-1235.
8.         Sillero, C., R. Sukumar, and A. Treves, Living with wildlife: the roots of conflict and the solutions. 2007.
9.         Inskip, C., et al., Understanding carnivore killing behaviour: Exploring the motivations for tiger killing in the Sundarbans, Bangladesh. Biological Conservation, 2014. 180: p. 42-50.
10.       Doherty, T.S., et al., Invasive predators and global biodiversity loss. Proceedings of the National Academy of Sciences, 2016. 113(40): p. 11261-11265.
11.       Hill, J., T. DeVault, and J. Belant, Cause-specific mortality of the world’s terrestrial vertebrates. Global Ecology and Biogeography, 2019. 28.
12.       Zhu, S., et al., High prevalence and diversity of Toxoplasma gondii DNA in feral cat feces from coastal California. PLoS Neglected Tropical Diseases, 2023. 17(12): p. e0011829.
13.       Chang, Y.C., et al., Canine Parvovirus Infections in Taiwanese Pangolins (Manis pentadactyla pentadactyla). Veterinary Pathology, 2021. 58(4): p. 743-750.
14.       Lina, Z., et al., Fatal canine parvovirus type 2a and 2c infections in wild Chinese pangolins (Manis pentadactyla) in southern China. Transboundary Emerging Diseases, 2022. 69(6): p. 4002-4008.
15.       Wang, S.L., et al., Fatal canine parvovirus-2 (CPV-2) infection in a rescued free-ranging Taiwanese pangolin (Manis pentadactyla pentadactyla). Transboundary Emerging Diseases, 2020. 67(3): p. 1074-1081.
16.       Sacristán, I., et al., Epidemiology and molecular characterization of Carnivore protoparvovirus-1 infection in the wild felid Leopardus guigna in Chile. Transboundary Emerging Diseases, 2021. 68(6): p. 3335-3348.
17.       Lepczyk, C.A., et al., A global synthesis and assessment of free-ranging domestic cat diet. Nature Communications, 2023. 14(1): p. 7809.
18.       Medina, F.M., et al., A global review of the impacts of invasive cats on island endangered vertebrates. Global Change Biology, 2011. 17(11): p. 3503-3510.
19.       Loss, S.R., T. Will, and P.P. Marra, The impact of free-ranging domestic cats on wildlife of the United States. Nature Communications, 2013. 4(1): p. 1396.
20.       Sogliani, D., et al., Citizen science and diet analysis shed light on dog-wildlife interactions in Italy. Biodiversity and Conservation, 2023. 32(13): p. 4461-4479.
21.       Young, J.K., et al., Is Wildlife Going to the Dogs? Impacts of Feral and Free-roaming Dogs on Wildlife Populations. BioScience, 2011. 61(2): p. 125-132.
22.       Hughes, J. and D.W. Macdonald, A review of the interactions between free-roaming domestic dogs and wildlife. Biological Conservation, 2013. 157: p. 341-351.
23.       Choudhary, N. and N. Chishty, Impact of Feral Dogs on Wildlife Community. 2022.
24.       Orozco, L., et al., Dog demography and husbandry practices facilitate dog-wildlife conflict in a suburban-forest interface. Urban Ecosystems, 2022. 25(6): p. 1725-1734.
25.       Knobel, D.L., et al., Re-evaluating the burden of rabies in Africa and Asia. Bulletin of the World Health Organization, 2005. 83(5): p. 360-8.
26.       Randall, D.A., et al., An integrated disease management strategy for the control of rabies in Ethiopian wolves. Biological Conservation, 2006. 131(2): p. 151-162.
27.       Doherty, T.S., et al., The global impacts of domestic dogs on threatened vertebrates. Biological Conservation, 2017. 210: p. 56-59.
28.       Yen, S.-C., et al., Spatial and temporal relationship between native mammals and free-roaming dogs in a protected area surrounded by a metropolis. Scientific Reports, 2019. 9(1): p. 8161.
29.       Garde, E., et al., A Review and Analysis of the National Dog Population Management Program in Chile. Animals (Basel), 2022. 12(3).
30.       Villatoro, F.J., et al., When free-ranging dogs threaten wildlife: Public attitudes toward management strategies in southern Chile. Journal of Environmental Management, 2019. 229: p. 67-75.
31.       Rowan, A. and T. Kartal, Dog Population & Dog Sheltering Trends in the United States of America. Animals (Basel), 2018. 8(5).
32.       Schurer, J.M., et al., Stabilizing Dog Populations and Improving Animal and Public Health Through a Participatory Approach in Indigenous Communities. Zoonoses and Public Health, 2015. 62(6): p. 445-455.
33.       Boone, J.D., Better trap-neuter-return for free-roaming cats: Using models and monitoring to improve population management. Journal of Feline Medicine and Surgery, 2015. 17(9): p. 800-7.
34.       Contreras-Abarca, R., et al., Redefining feral dogs in biodiversity conservation. Biological Conservation, 2022. 265: p. 109434.
35.       Riley, S., et al., Adaptive Impact Management: An Integrative Approach to Wildlife Management. Human Dimensions of Wildlife, 2003. 8(2): p. 081-095.
36.       Cerda, J.R. and T.L. Webb, Wildlife conservation and preserving biodiversity: impactful opportunities for veterinarians? Journal of the American Veterinary Medical Association, 2023. 261(7): p. 1077-1085.
37.       Reading, R.P., D.E. Kenny, and K.T. Fitzgerald, The crucial contribution of veterinarians to conservation biology. Topics in Companion Animal Medicine, 2013. 28(4): p. 131-4.
38.       Timm, M. and N.M. Kime, Effects of Cat and Dog Interactions on Urban Wildlife Admitted to a Wildlife Center in Wisconsin. Journal of Young Investigators, 2020. 38(6): p. 6.
39.       Díaz, E.A., et al., Dog and cat-related attacks on wildlife in the Metropolitan District of Quito, Ecuador: an integrative approach to reduce the impact. Ecosystems and People, 2023. 19(1): p. 2191735.
40.       Lim, P.X., et al., Breeding records, urban habitat, and threats to the masked palm civet in Taiwan. The Journal of Wildlife Management, 2023. 87(7): p. e22467.
41.       Merck, M., Veterinary Forensics: Animal Cruelty Investigations. 2nd ed. 2012, Oxford, MS, USA: Wiley-Blackwell.
42.       Wohlsein, P., et al., Thermal Injuries in Veterinary Forensic Pathology. Veterinary Pathology, 2016. 53(5): p. 1001-1017.
43.       Sikka, N., et al., Animal Bite in a 6-month-old Child and Facial Injury with Associated Unusual Nasal Injury: Management of Injuries along with 1-year Follow-up. International Journal of Clinical Pediatric Dentistry, 2019. 12(6): p. 560-565.
44.       Munro, R. and H.M.C. Munro, 12 - Bite Injuries, in Animal Abuse and Unlawful Killing, R. Munro and H.M.C. Munro, Editors. 2008, W.B. Saunders: Edinburgh. p. 82-87.
45.       Ressel, L., U. Hetzel, and E. Ricci, Blunt Force Trauma in Veterinary Forensic Pathology. Veterinary Pathology, 2016. 53(5): p. 941-961.
46.       Shamir, M.H., et al., Dog Bite Wounds in Dogs and Cats: a Retrospective Study of 196 Cases. Journal of Veterinary Medicine Series A, 2002. 49(2): p. 107-112.
47.       Frykfors von Hekkel, A.K., C. Pegram, and Z.J. Halfacree, Thoracic dog bite wounds in dogs: A retrospective study of 123 cases (2003-2016). Veterinary Surgery, 2020. 49(4): p. 694-703.
48.       Frykfors von Hekkel, A.K. and Z.J. Halfacree, Thoracic dog bite wounds in cats: a retrospective study of 22 cases (2005-2015). Journal of Feline Medicine and Surgery, 2020. 22(2): p. 146-152.
49.       De Munnynck, K. and W. Van de Voorde, Forensic approach of fatal dog attacks: a case report and literature review. International Journal of Legal Medicine, 2002. 116(5): p. 295-300.
50.       Chu, A.Y., et al., Fatal dog maulings associated with infant swings. Journal of Forensic Sciences, 2006. 51(2): p. 403-6.
51.       Clark, M.A., et al., Fatal and near-fatal animal bite injuries. Journal of Forensic Sciences, 1991. 36(4): p. 1256-61.
52.       Khayat, R., et al., Characterizing wing tears in common pipistrelles (Pipistrellus pipistrellus): investigating tear distribution, wing strength, and possible causes. Journal of Mammalogy, 2019: p. 1-13.
53.       Hsiou, C.L., et al., Forensic Death Investigations of Dog Bite Injuries in 31 Cats. Animals (Basel), 2022. 12(18).
54.       Kilic, N. and M. Sarierler, Dog Bite Wounds: A Retrospective Study (114 Cases). Van Veterinary Journal, 2003: p. 86-88.
55.       Shamir, M.H., et al., Dog bite wounds in dogs and cats: a retrospective study of 196 cases. Journal of veterinary medicine. A, Physiology, pathology, clinical medicine, 2002. 49(2): p. 107-12.
56.       Ratz, H., H. Moller, and D. Fletcher, Predator Identification From Bite Marks On Penguin And Albatross Chicks. Marine Ornithology, 1999. 27: p. 7.
57.       Rubini, S., et al., Veterinary forensic sciences to solve a fatal case of predation on flamingos (Phoenicopterus roseus). Veterinaria Italiana, 2018. 54(2): p. 175-180.
58.       Khayat, R.O.S., et al., Investigating cat predation as the cause of bat wing tears using forensic DNA analysis. Ecology and Evolution, 2020. 10(15): p. 8368-8378.
59.       Hopken, M.W., et al., Molecular forensics in avian conservation: a DNA-based approach for identifying mammalian predators of ground-nesting birds and eggs. BMC Research Notes, 2016. 9: p. 14.
60.       Hull, K.D., et al., Fox (Vulpes vulpes) involvement identified in a series of cat carcass mutilations. Veterinary Pathology, 2021. 59(2): p. 299-309.
61.       Nation, P.N. and C.C. St. Clair, A Forensic Pathology Investigation of Dismembered Domestic Cats: Coyotes or Cults? Veterinary Pathology, 2019. 56(3): p. 444-451.
62.       Sundqvist, A.-K., H. Ellegren, and C. Vilà, Wolf or dog? Genetic identification of predators from saliva collected around bite wounds on prey. Conservation Genetics, 2008. 9(5): p. 1275-1279.
63.       Foran, D.R., Relative degradation of nuclear and mitochondrial DNA: an experimental approach. Journal of Forensic Sciences, 2006. 51(4): p. 766-70.
64.       Linacre, A., et al., ISFG: Recommendations regarding the use of non-human (animal) DNA in forensic genetic investigations. Forensic Science International: Genetics, 2011. 5(5): p. 501-505.
65.       Naue, J., et al., Bite through the tent. International Journal of Legal Medicine, 2012. 126(3): p. 483-488.
66.       Linacre, A., Animal Forensic Genetics. Genes (Basel), 2021. 12(4).
67.       Ali, M.E., et al., Canine-Specific PCR Assay Targeting Cytochrome b Gene for the Detection of Dog Meat Adulteration in Commercial Frankfurters. Food Analytical Methods, 2014. 7(1): p. 234-241.
68.       Natonek-Wiśniewska, M. and P. Krzyścin, Evaluation of the suitability of mitochondrial DNA for species identification of microtraces and forensic traces. Acta Biochimica Polonica, 2017. 64(4): p. 705-708.
69.       Parson, W., et al., Species identification by means of the cytochrome b gene. International Journal of Legal Medicine, 2000. 114(1): p. 23-28.
70.       Tobe, S.S., A.C. Kitchener, and A.M.T. Linacre, Reconstructing Mammalian Phylogenies: A Detailed Comparison of the Cytochrome b and Cytochrome Oxidase Subunit I Mitochondrial Genes. PLOS ONE, 2010. 5(11): p. e14156.
71.       Tobe, S., A. Kitchener, and A. Linacre, Cytochrome b or cytochrome c oxidase subunit I for mammalian species identification—An answer to the debate. Forensic Science International: Genetics Supplement Series, 2009. 2: p. 306-307.
72.       Nicolas, V., et al., A remarkable case of micro-endemism in Laonastes aenigmamus (Diatomyidae, Rodentia) revealed by nuclear and mitochondrial DNA sequence data. PLoS One, 2012. 7(11): p. e48145.
73.       Kitano, T., et al., Two universal primer sets for species identification among vertebrates. International Journal of Legal Medicine, 2007. 121(5): p. 423-427.
74.       Linacre, A. and S.S. Tobe, An overview to the investigative approach to species testing in wildlife forensic science. Investigative Genetics, 2011. 2(1): p. 2.
75.       Hebert, P.D., S. Ratnasingham, and J.R. deWaard, Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences, 2003. 270 Suppl 1(Suppl 1): p. S96-9.
76.       Zhang, W., et al., Highly conserved D-loop-like nuclear mitochondrial sequences (Numts) in tiger (Panthera tigris). Journal of Genetics, 2006. 85(2): p. 107-116.
77.       Sint, D., L. Raso, and M. Traugott, Advances in multiplex PCR: balancing primer efficiencies and improving detection success. Methods in Ecology and Evolution, 2012. 3(5): p. 898-905.
78.       翁國精、劉建男、古馥宇、劉士豪、沈祥仁、黃慎雯、吳立越,自動相機動物監測整合計畫期末(3/4)報告書,農業部林業及自然保育署。2018。 p. 163。
79.       顏士清、張高銘、陳怡潔、何欣澄、許文馨,110-111年度壽山國家自然公園哺乳類動物族群與流浪犬現況調查計畫,國家自然公園管理處。2022。 p. 110。
80.       柯伶樺、顏士清、張高銘、陳怡潔、邱珣文,109-110年度陽明山國家公園流浪動物族群現況調查,陽明山國家公園管理處。2021:臺北。
81.       郭智筌,屏東縣低海拔地區自由放養家貓捕獵野生動物之探討,野生動物保育研究所。2006: 屏東縣。
82.       Woinarski, J.C.Z., et al., Compilation and traits of Australian bird species killed by cats. Biological Conservation, 2017. 216: p. 1-9.
83.       Woinarski, J.C.Z., et al., How many birds are killed by cats in Australia? Biological Conservation, 2017. 214: p. 76-87.
84.       Xu, W., et al., A novel universal primer-multiplex-PCR method with sequencing gel electrophoresis analysis. PLoS One, 2012. 7(1): p. e22900.
85.       Flynn, J.J., et al., Molecular Phylogeny of the Carnivora (Mammalia): Assessing the Impact of Increased Sampling on Resolving Enigmatic Relationships. Systematic Biology, 2005. 54(2): p. 317-337.
86.       Veron, G., Phylogeny of the Viverridae and ‘Viverrid-like’ feliforms. 2010. p. 64-91.
87.       Majumder, S.S., et al., To be or not to be social: foraging associations of free-ranging dogs in an urban ecosystem. Acta Ethologica, 2014. 17(1): p. 1-8.
88.       Vitale, K.R., The Social Lives of Free-Ranging Cats. Animals (Basel), 2022. 12(1).
89.       Navas-Suárez, P.E., et al., A retrospective pathology study of two Neotropical deer species (1995-2015), Brazil: Marsh deer (Blastocerus dichotomus) and brown brocket deer (Mazama gouazoubira). PLoS One, 2018. 13(6): p. e0198670.
90.       López-Alfaro, C., et al., Individual-based modeling as a decision tool for the conservation of the endangered huemul deer (Hippocamelus bisulcus) in southern Chile. Ecological Modelling, 2012. 244: p. 104-116.
91.       Gal, A., et al., Canine Bite-Mark Evidence in Veterinary Necropsy: Case Studies Featuring the Bite-Mark Examination. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Veterinary Medicine, 2019. 76: p. 93.
92.       Razali, K., et al., Oral flora of stray dogs and cats in Algeria: Pasteurella and other zoonotic bacteria. Veterinary World, 2020. 13(12): p. 2806-2814.
93.       Özavci, V., et al., Molecular detection of feline and canine periodontal pathogens. Veterinary and Animal Science, 2019. 8: p. 100069.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92380-
dc.description.abstract遊蕩犬貓的數量日趨增加,襲擊當地的野生動物的事件也逐年增加。此現象對於野生動物的生存有著負面的影響,進而對臺灣生態系統構成重大的威脅,亦是野生動物被送往救援中心的主要原因之一。然而,辨識攻擊野生動物之攻擊物種,目前僅依賴臨床獸醫師的經驗,搭配目擊史或其他監視影像證據;對於未有目擊史的攻擊案件,除了臨床檢查外,尚缺乏其他實證方法。近期的研究探討了利用傷口拭子上所殘留的唾液進行DNA分析以區分攻擊物種,這種方法已被證實是可行並有價值的。但運用傳統聚合酶連鎖反應方法(Polymerase chain reaction,PCR)檢驗大量傷口檢體之DNA將花費較多時間及成本,因此發展更有效益的檢驗方法是必要的。在多篇已發表的研究中,分析遭攻擊之野生動物的創傷模式,例如成對穿透傷彼此間的的距離,並與潛在的掠食物種之犬齒距離比較,以判斷攻擊物種,可以作為另一種識別手段。然而,僅使用穿透傷辨別攻擊物種在應用上將有所侷限,例如在被攻擊的動物身上若未見成對穿透傷、因皮下空間導致齒距量測誤差,或多個攻擊者物種的齒距相近等情況下,就無法使用此方法來判定攻擊者物種,因此更全面的創傷分析是必要的,包含常見到創傷的解剖位置、常見到的創傷類型,以及在不同解剖位置最常見到的創傷類型,都有助於提供更多有用的訊息。
本研究旨在分析遭犬貓攻擊之臺灣不同原生物種的創傷模式,並結合DNA檢測,以確定被害動物與犬貓間的接觸事實。本研究所涵蓋的物種多為非保育類哺乳類及鳥類物種、非狂犬病疫區之非保育類食肉目動物,以及少量保育類哺乳類及鳥類物種。送檢單位會採集疑似遭受攻擊的活體野生動物之傷口檢體,而如有被害動物之大體亦會送檢以進行法醫解剖來獲得全面的創傷分析,並從其傷口表面與內緣收集拭子、傷口表面毛髮或羽毛以採集殘留於傷口的犬或貓之唾液檢體,而後進行DNA提取,接著使用其他文獻所建立的犬隻引子與本研究設計的貓隻引子進行多重聚合酶連鎖反應,以偵測是否有犬貓DNA於傷口檢體上。其次,針對大體所收集的數據包括物種資訊、性別、年齡、相關目擊攻擊史、其他病史、創傷分佈與創傷種類,並根據核酸檢測結果與解剖過程中觀察到的傷害模式進行交叉驗證。除創傷模式分析,亦會針對傷口表面與內緣拭子之DNA檢驗陽性率差異、傷口拭子與毛髮或羽毛之DNA檢驗陽性率差異。
本研究自全台灣多個單位共收集219例懷疑遭犬或貓攻擊之野生動物檢體,其中包含111例大體。樣本有120例來自13種哺乳類動物的傷口檢體及大體,並以山羌及白鼻心為大宗,亦有99例來自32種鳥類動物的傷口檢體及大體,並以珠頸斑鳩及金背鳩為大宗。在傷口樣本之PCR結果中,呈現犬陽性、貓陽性或犬貓雙陽性之總陽性率為60.3%(132/219),其中哺乳類傷口檢體的總陽性率為69.2%,鳥類傷口檢體的總陽性率為49.5%。在219例檢體中,共有91例(91/219;41.6%)呈現犬之核酸陽性訊號,多在哺乳類動物之檢體上發現;其次有38例(38/219;17.4%)呈現貓之核酸陽性訊號,多為鳥類動物之檢體,另在鳥類動物的檢體上,有3例(3/219;1.4%)呈現犬貓核酸雙陽性訊號。傷口表面拭子的陽性率(54.9%)與傷口內緣拭子的陽性率(57.7%)雖無顯著差異(P=0.632),但其表明傷口內緣的區域也能採集到攻擊者的DNA,因此建議同時採集傷口表面及內緣的區域,以增加所採樣的DNA含量。另一方面,傷口拭子(47.7%)與鳥類羽毛的陽性率(59.1%)略有差異,但並無顯著差異,而在哺乳類毛髮的陽性率則與傷口拭子的陽性率相同,此結果顯示羽毛與毛髮亦是另一個可獲取到犬貓DNA樣本的來源之一,並在總陽性率較低的鳥類族群中,同時採集傷口拭子與羽毛可增加獲取DNA的來源。創傷分析上,在傷口呈現犬陽性的山羌以在臀部區域之撕裂傷,與在胸廓背側及體幹背側的線性擦傷為犬攻擊的特點;在傷口呈現犬陽性的白鼻心則以落在肩胛及胸廓背側、背部及體幹外側的穿透傷為常見的犬攻擊的創傷形式。在傷口呈現貓陽性訊號、呈現犬陽性訊號以及呈現犬貓雙陽性的3個鳥類組別中,傷勢皆主要集中在體幹背側、腹側與翅膀及體幹外側上,並且撕裂傷與瘀傷的發生率較穿透傷高,因此要單從創傷分佈去辨別攻擊鳥類的物種較為困難,因其常見的創傷模式相似。但在多數貓陽性的鳥類案件之傷勢數量較少、傷勢較為輕微,以及穿透傷的直徑約為0.1至0.5公分,相較於犬陽性的案件之傷勢來的輕微。因此在疑似遭受犬貓攻擊的鳥類族群上,建議進行全面的創傷分析,並透過DNA檢驗去確認攻擊者的物種。而在本研究中,少數案件具有與目擊史不相符的DNA檢驗結果或是其他較出乎意料的陽性結果,例如目擊貓咬但呈現犬陽性之翠翼鳩、目擊犬咬但呈現貓陽性之珠頸斑鳩,以及呈現犬貓雙陽性之鳥類案件,其說明這些動物可能在被目擊前就與其他犬或貓有接觸,或是在被發現者救援後,與當時周遭環境的犬或貓有接觸,因此被攻擊的鳥類動物即使具有目擊史,仍然建議採集傷口拭子或羽毛來進行DNA檢驗,而因犬陽性、其他特殊陽性的鳥類案件數較稀少,因此還未能得到完整的創傷分析比較。
本研究證明核酸分析在臺灣野生動物創傷原因之鑑別方面為有價值的法醫工具,並且結合創傷模式分析與DNA分析更有助於判定攻擊野生動物之物種。
zh_TW
dc.description.abstractFree-roaming dogs and cats are increasingly preying on native wildlife, posing a severe threat to the ecosystem in Taiwan. The adverse impact of dog and cat attacks on wild animals is evident, as it remains the primary cause for their admission to rescue centers. However, identifying the attacking species relies solely on the clinician experience or witness account, lacking validated methods on the cases without other attack evidence. Recent studies have explored the potential of DNA analysis from saliva found on wound swabs to differentiate the attacking species. However, conventional PCR testing of DNA from a large number of wound samples would be time-consuming and costly, necessitating the development of more efficient testing methods. Furthermore, analysis of injury patterns can serve as an additional means of identification, as another research focusing on applying the canine distance of different attacking species to distinguish the distance of paired puncture wounds on the wild animals. However, relying solely on puncture wounds for species identification has limitations, such as when paired puncture wounds are absent or when the canine distances among multiple attacking species are similar. Therefore, a comprehensive injury analysis is necessary.
This study aims to analyze the patterns of trauma in various native wildlife species fallen victim to attacks by dogs and cats. Additionally, DNA detection techniques are employed to confirm the contact between the affected animals and dogs or cats. The species covered in this study were mostly non-protected mammal and bird species, non-protected carnivores from non-rabies endemic areas. Specimens of suspected attacked wild animals were collected by the reporting units, and if available, the carcasses were also conducted forensic necropsy for comprehensive trauma analysis. Swabs from the surface and inner rim of wounds, turfed hair, or feathers on the wound surface were collected to gather saliva residues from dogs or cats, followed by DNA extraction. Multiplex polymerase chain reaction (PCR) using established canine primers and feline primers designed in this study were then employed to detect the presence of canine or feline DNA. Cross-validation was conducted based on the PCR results and observed patterns of damage during the necropsy process. In addition to trauma pattern analysis, differences in the PCR positive rates between swabs from the wound surface and edges, as well as between wound swabs and hair or feathers, were also investigated.
This study collected a total of 219 cases of wound samples, including 111 carcasses. The samples consisted of 120 cases of wound samples or carcasses from 13 mammalian species, with a predominant representation from Formosan muntjac and masked palm civet. Additionally, there were 99 cases of wound samples or carcasses from 32 avian species, with a majority represented by spotted dove and oriental turtle dove. In the PCR results of wound samples, the total positivity rate for dog-positive, cat-positive, or dog-cat double-positive was 60.3% (132/219), with a total positivity rate of 69.2% for mammal wound samples and 49.5% for avian wound samples. Among the 219 samples, there were a total of 91 cases (91/219; 41.6%) showing positive signals against canine DNA, followed by 38 cases (38/219; 17.4%) showing positive signals against feline DNA. Additionally, there were 3 cases (3/219; 1.4%) showing double-positive signals of canine and feline DNA on avian specimens. Although there was no significant difference between the positivity rates of swabs from the wound surface (54.9%) and swabs from the inner rim (57.7%) (P=0.632), it indicated that DNA from attackers could also be collected from the inner rim of the wound. Therefore, it is recommended to collect samples from both sites to increase the DNA yield. On the other hand, the positivity rates of wound swabs (47.7%) and bird feathers (59.1%)were not significant (P=0.285). The results suggested that feathers and hair were another source of dog or cat DNA samples, simultaneously collected to increase the DNA yield. In terms of injury analysis, Formosan muntjac with dog-positive wounds typically exhibited lacerations in the hip area. Masked palm civet with dog-positive wounds commonly showed puncture wounds accompanied by bruises on the shoulder to dorsal thorax, and back and flank. In the three bird groups where wounds were cat-positive, dog-positive, or dog-cat double-positive, injuries were mainly concentrated on the dorsal and ventral flank, wings and lateral flank, with a higher occurrence of lacerations and bruises than puncture wounds. Therefore, distinguishing attacking species based solely on the distribution of injuries is difficult due to the similarity in common trauma patterns. However, in most cat-positive bird cases, the diameter of puncture wounds range from 0.1 to 0.5 cm compared to dog-positive cases. Thus, for suspected bird populations attacked by dogs or cats, comprehensive trauma analysis is recommended, and DNA testing is suggested to confirm the species of the attacker. In this study, a few cases had DNA test results that did not match witness accounts or had other unexpected positive results, which indicates that these animals might have had contact with other dogs or cats before being witnessed or might have had contact with dogs or cats in the surrounding environment after being rescued, suggesting that even if birds have witness accounts, it is still recommended to collect samples for DNA detection.
DNA analysis thus emerges as a valuable forensic tool for identifying the causes of wildlife trauma in Taiwan. The integration of injury patterns and DNA analysis facilitates the species identification of attackers. This study provides valuable insights into injury patterns observed in various endemic mammals and birds in Taiwan.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-22T16:14:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-22T16:14:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 ........................................................................................................... I
謝辭 ................................................................................................................................. II
中文摘要 ........................................................................................................................ III
ABSTRACT .................................................................................................................. VI
目次 ................................................................................................................................ IX
圖次 .............................................................................................................................. XII
表次 ...............................................................................................................................XV
ABBREVIATION LIST ......................................................................................... XVIII
第一章 研究背景與文獻回顧 ....................................................................................... 1
1.1 人與野生動物間的衝突........................................................................................ 1
1.1.1 遊蕩犬貓所造成的衝突及其影響 ................................................................ 2
1.2 國內外之遊蕩犬貓控制及野生動物保育之策略................................................ 4
1.2.1 國外情況 ........................................................................................................ 5
1.2.2 國內情況 ........................................................................................................ 5
1.3 獸醫鑑識科學(VETERINARY FORENSIC SCIENCE) ............................................ 6
1.3.1 鈍力傷介紹 .................................................................................................... 7
1.3.2 於動物攻擊案件中進行創傷分析 ................................................................ 8
1.3.3 在野生動物與其他外來種之衝突的獸醫鑑識科學應用實例 .................... 9
1.3.4 生物跡證的鑑識 .......................................................................................... 10
1.4 研究假說及目的.................................................................................................. 12
第二章 材料與方法 ...................................................................................................... 13
2.1 實驗設計與流程.................................................................................................. 13
2.2 樣本資訊.............................................................................................................. 14
2.2.1 樣本來源與收案標準 .................................................................................. 14
2.2.2 基本資料與病史 .......................................................................................... 14
2.2.3 樣本物種 ...................................................................................................... 15
2.2.4 檢體類型 ...................................................................................................... 15
2.3 拭子及毛髮之 DNA 分析 ................................................................................... 18
2.3.1 DNA 萃取...................................................................................................... 18
2.3.2 Polymerase Chain Reaction (PCR)所用引子及性能測試............................ 20
2.3.3 PCR 步驟 ....................................................................................................... 21
2.3.4 DNA 產物之定序.......................................................................................... 22
2.3.5 針對定序失敗、微弱陽性條帶及同時擁有兩陽性訊號之應對方式 ...... 22
2.3.6 DNA 樣本分析因子...................................................................................... 22
2.4 創傷分析.............................................................................................................. 23
2.4.1 法醫解剖流程 .............................................................................................. 23
2.4.2 創傷分析所用因子 ...................................................................................... 25
第三章 結果 .................................................................................................................. 27
3.1 收案樣本分析...................................................................................................... 27
3.1.1 收案樣本物種與其樣本類型 ...................................................................... 28
3.1.2 哺乳類及鳥類物種之性別、年齡及目擊史 .............................................. 33
3.2 傷口拭子及毛髮或羽毛之 DNA 分析 ............................................................... 41
3.2.1 犬貓特異性引子之測試 .............................................................................. 41
3.2.2 傷口採樣之數量及案件數 .......................................................................... 44
3.2.3 傷口採樣之犬貓 DNA 檢測的案件陽性率................................................ 44
3.2.4 傷口表面及內緣拭子之陽性率比較 .......................................................... 49
3.2.5 毛髮或羽毛與傷口拭子之陽性率比較 ...................................................... 53
3.3 疑似遭犬或貓攻擊之大體創傷分析.................................................................. 56
3.3.1 不同物種之基本資訊及 PCR 結果 ............................................................. 56
3.3.2 外傷數量及其解剖位置分佈 ...................................................................... 62
第四章 討論 ................................................................................................................. 111
4.1 樣本物種分析..................................................................................................... 111
4.2 傷口樣本之 DNA 分析 ...................................................................................... 111
4.2.1 犬貓特異性引子之敏感性及特異性 ......................................................... 111
4.2.2 在具目擊史之哺乳類檢體及鳥類檢體的陽性率比較 .............................112
4.2.3 特殊陽性案件 .............................................................................................113
4.2.4 傷口表面及傷口內緣拭子之陽性率比較 .................................................116
4.2.5 傷口拭子及毛髮或羽毛之陽性率比較 .....................................................116
4.3 不同物種的創傷分析.........................................................................................119
4.3.1 山羌 .............................................................................................................119
4.3.2 白鼻心 ........................................................................................................ 120
4.3.3 赤腹松鼠與大赤鼯鼠 ................................................................................ 123
4.3.4 體長小於 40 公分之鳥類 .......................................................................... 123
4.4 研究限制............................................................................................................ 125
4.5 結論.................................................................................................................... 126
第五章 參考資料 ........................................................................................................ 128
第六章 附錄 ................................................................................................................ 135
-
dc.language.isozh_TW-
dc.title應用創傷模式分析及去氧核糖核酸檢驗於遭犬貓攻擊的野生動物之動物法醫調查zh_TW
dc.titleVeterinary Forensic Investigation of Dog and Cat Attacks in Wild Animals by Injury Pattern Analysis and DNA Detectionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖泰慶;余品奐;顏士清zh_TW
dc.contributor.oralexamcommitteeAlbert Taiching Liao;Pin-Huan Yu;Shih-Ching Yenen
dc.subject.keyword遊蕩犬貓,犬貓攻擊,DNA分析,創傷模式分析,獸醫法醫病理學,野生動物法醫學,臺灣原生物種,zh_TW
dc.subject.keywordfree-roaming dogs and cats,dog and cat attack,DNA analysis,injury pattern,veterinary forensic pathology,wildlife forensics,Taiwanese native species,en
dc.relation.page140-
dc.identifier.doi10.6342/NTU202400735-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-02-21-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept分子暨比較病理生物學研究所-
dc.date.embargo-lift2029-01-31-
顯示於系所單位:分子暨比較病理生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
21.44 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved