請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92365完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯佳吟 | zh_TW |
| dc.contributor.advisor | Chia-Ying Ko | en |
| dc.contributor.author | 巴艾莉 | zh_TW |
| dc.contributor.author | Erica Silk P. dela Paz | en |
| dc.date.accessioned | 2024-03-21T16:48:49Z | - |
| dc.date.available | 2024-04-18 | - |
| dc.date.copyright | 2024-03-21 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-12-25 | - |
| dc.identifier.citation | Akima, H., and Gebhardt, A. (2022). Akima: Interpolation of Irregularly and Regularly Spaced Data. R package version 0.6-3.4. https://CRAN.R-project.org/package=akima
Allen, C.D., and Breshears, D.D. (1998). Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. PNAS, 95, 14839-14842. Alvarez-Cobelas, M., and Rojo C. (2000). Ecological goal functions and plankton communities in lakes. J Plankton Res, 22(4), 729-748. https://doi.org/10.1093/plankt/22.4.729 Andersen, T., and Hessen, D. (1991). Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnol Oceanogr,36(4), 807-814. https://doi.org/10.4319/lo.1991.36.4.0807 Armengol, L., Calbet, A., Franchy, G., Rodríguez-Santos, A., and Hernández-León, S. (2019). Planktonic food webs structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Sci Rep, 9, 2044. doi:10.1038/s41598-019-38507-9 Arteaga, L.A., Boss, E., Behrenfeld, M.J., Westberry, T.K., and Sarmiento, J.L. (2020). Seasonal modulation of phytoplankton biomass in the Southern Ocean. Nat Commun, 11, 5364. doi:10.1038/s41467-020-19157-2 Atkinson, A., Shreeve, R.S., Pakhomov, E.A., Priddle, J., Blight, S.P., and Ward, P. (1996). Zooplankton response to a phytoplankton bloom near South Georgia, Antarctica. Mar Ecol Prog Ser, 144, 195-210. Atkinson, A., Lilley, M.K.S., Hirst, A.G., McEvoy, A.J., Tarran, G.A., Widdicombe, C., Fileman, E.S., Woodward, E.M.S., Schmidt, K., Smyth, T.J., and Somerfield, P.J. (2021). Increasing nutrient stress reduces the efficiency of energy planktonic size spectra. Limnol Oceanogr, 66, 422-437. doi: 10.1002/lno.11613 Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A., and Thingstad, F. (1983). The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser, 19, 257-263. Baek, S.H., Lee, M., Park, B.S., and Lim, Y.K. (2020). Variation in Phytoplankton Community Due to an Autumn Typhoon and Winter Water Turbulence in Southern Korean Coastal Waters. Sustainability, 12(7), 2781. doi:10.3390/su12072781 Baleani, C.A., Mavo Manstretta, G.M., Menéndez, M.C., Vitale, A.J., Piccolo, M.C., and Perillo, G.M.E. (2021). Influence of storms on surface zone zooplankton in a Southwestern Altlantic sandy beach: A preliminary methodology using high-frequency physical data. J Mar Syst, 220, 1-13. doi:10.1016/j.jmarsys.2021.103560 Barneche, D.R., Hulatt, C.J., Dossena, M., Padfield, D., Woodward, G., Trimmer, M., and Yvon-Durocher, G. (2021). Warming impairs trophic transfer efficiency in a long-term field experiment. Nature, 592, 76-79. https://doi.org/10.1038/s41586-021-03352-2 Bar-On, Y.M., Phillips, R., and Milo, R. (2018). The biomass distribution on Earth. PNAS, 115(25), 6506-6511. www.pnas.org/cgi/doi/10.1073/pnas/1711842115 Behrenfeld, M.J., and Falkowski, P.G. (1997). Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr, 42, 1-20. Beklioğlu, M., Bucak, T., Coppens, J., Bezirci, G., Tavşanoğlu, Ü.N., Çakıroğlu, A.I., Levi, E.E., Erdoğan, S ̧., Filiz, N., Özkan, K., and Özen, A. (2017). Restoration of eutrophic lakes with fluctuating water levels: A 20-year monitoring study of two inter-connected lakes. Water, 9(2), 127. https://doi.org/10.1016/j.ecss.2006.08.005. Bermúdez, J.R., Riebessell, U., Larsen, A., and Winder, M. (2016). Ocean acidification reduces transfer of essential biomolecules in a natural plankton community. Sci Rep, 6, 27749. DOI:10.1038/srep27749. Billen, G., Servais, P., and Becquevort, S. (1990). Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control? Hydrobiol, 207, 37-42. Bode, M., Koppelmann, R., Teubar, L., Hagen, W., and Auel, H. (2018). Carbon budgets of mesozooplankton copepod communities in the Eastern Atlantic Ocean—Regional and Vertical Patterns Between 24°N and 21°S. Global Biogeochem Cycles, 32, 840-857. doi:10.1029/2017GB005807 Bottrell, H. (1976). A review of some problems in zooplankton production studies. Norw J Zool, 24, 419–456. Braz, J.E.M., Dias, J.D., Bonecker, C.C., and Simões, N.R. (2020). Oligotrophication affects the size structure and potential ecological interactions of planktonic microcrustaceans. Aquat Sci, 82, 59. https://doi.org/10.1007/s00027-020-00733-z Brooks, J.L, and Dodson, S.I. (1965). Predation, body size, and composition of plankton. Science, 150, 28-35. Brown, J.H., Gillooly, J.H., Allen, A.P., Savage, V.M., and West, G.B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771-1789. Boxhammer, T., Taucher, J., Bach, L.T., Achterberg, E.P., Algueró-Muñiz, M., Bellworthy, J., Czerny, J., Esposito, M., Haunost, M., Hellemann, D., Ludwig, A., Yong, J.C., Zark, M., Riebesell, U., and Anderson, L.G. (2018). Enhanced transfer of organic matter to higher trophic levels caused by ocean acidification and its implications for export production: A mass balance approach. PLoS ONE, 13(5): e0197502. https://doi.org/10.1371/journal.pone.0197502 Brett, M.T., and Müller-Navarra, D.C. (1997). The role of highly unsaturated fatty acids in aquatic food processes. Freshw Biol, 38, 483-499. https://doi.org/10.1046/j.1365-2427.1997.00220.x Bristow, L.A., Mohr, W., Ahmerkamp, S., and Kuypers, M.M. (2017). Nutrients that limit growth in the ocean. Curr Biol, 27, R431–R510. Brown, J.H., Gillooly, J.H., Allen, A.P., Savage, V.M., and West, G.B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771-1789. Burns, C.W., and Schallenberg, M. (1998). Impacts of nutrients and zooplankton on the microbial food web of an ultra-oligotrophic lake. J Plankton Res, 20(8), 1501-1525. Byrnes, J.E., Reed, D.C., Cardinale, B.J., Cavanaugh, K.C., Holbrook, S.J., and Schmitt, R.J. (2011). Climate-driven increases in storm frequency simplify kelp forest food webs. Glob Chang Biol, 17(8), 1-12. doi: 10.1111/j.1365-2486.2011.02409.x Calbet, A., and Saiz, E. (2005). The ciliate-copepod link in marine ecosystems. Aquat Microb Ecol, 38(2), 157–167. doi:10.3354/ame038157. Calbet, A., and Landry, M.R. (1999). Mesozooplankton influences on the microbial food web: Direct and Indirect trophic interactions in the oligotrophic open ocean. Limnol Oceanogr, 44(6), 1370-1380. Calbet, A., Sazhin, A.F., Nejstgaard, J.C., Berger, S.A., Tait, Z.S., Olmos, L., Sousoni, D., Isari, S., Martinez, R.A., Bouquet, J.M., Thompson, E.M., Båmstedt, U. and Jakobsen, H.H. (2014). Future Climate Scenario for coastal productive plankton food web resulting in microplankton phenology changes and decreased trophic transfer efficiency. PLoS ONE, 9(4), e94388. doi:10.1371/journal.pone.0094388 Chai, F., Wang, Y., Xing, X., Yan, Y., Xue, H., Wells, M., and Boss, E. (2021). A limited effect of sub-tropical typhoons on phytoplankton dynamics. Biogeosciences, 18, 849-859. doi:10.5194/bg-18-849-2021 Chang, C.T., Vadeboncoeur, M.A., and Lin, T.C. (2018). Resistance and resilience of social-ecological systems to recurrent typhoon disturbance on a subtropical island: Taiwan. Ecosphere, 9. Chang, C.W., Shiah, F.K., Wu, J.T., Miki, T., and Hsieh, C.h. (2014). The role of food availability and phytoplankton community dynamics in the seasonal succession of zooplankton community in a subtropical reservoir. Limnologica, 46, 131-138. Chang, J., Chung, C.-C., and Gong, G.-C. (1996). Influences of cyclones on chlorophyll a concentration and Synechococcus abundance in a subtropical western Pacific coastal ecosystem. Mar Ecol Prog Ser, 140, 199-205. Chen, J., Wang, Z., Tam, C.Y., Lau, N.C., Lau, D.S.D., and Mok, H.Y. (2020). Impacts of climate change on tropical cyclones and induced storm surges in the Pearl River Delta region using pseudo-global-warming method. Sci Rep, 10, 1965. doi:10.1038/s41598-020-58824-8 Chesson, P., Gebauer, R.L., Schwinning, S., Huntly, N., Wiegand, K., Ernest, M.S., Sher, A., Novoplansky A., and Weltzin, J.F. (2004). Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia, 141(2), 236-53. doi: 10.1007/s00442-004-1551-1 Chiang, S.C., and Du, N.S. (1979). Fauna sinica; crustacean: freshwater Cladocera. Freshwater Cladocera. http://agris.fao.org/agris-search/search.do?recordID=XF2015041144 Chow, M.F., Lai, C.C., Kuo, H.Y., Lin, C.H., Chen, T.Y., and Shiah, F.K. (2017). Long Term Trends and Dynamics of Dissolved Organic Carbon (DOC) in a Subtropical Reservoir Basin. Water, 9(545), 1-14. doi:103390/w9070545 Cohen, J.E., Pimm, S.L., Yodzis, P., and Salda, J. (1993). Body sizes of animal predators and animal prey in food webs. J Anim Ecol, 62(1), 67–78. Collos, Y. (1986). Time-lag algal growth dynamics: biological constraints primary production in aquatic environments. Mar Ecol Prog Ser, 33, 193-206. Cotner, J.B., Hall, E.K., Scott, J.T., and Heldal, M. (2010). Freshwater bacteria are stoichiometrically flexible with a nutrient composition similar to seston. Front Microbiol, 1, 1-11. doi: 10.3389/fmicb.2010.00132 Cripps, G., Flynn, K.J., and Lindeque, P.K. (2016). Ocean Acidification Affects the Phyto-Zoo Plankton Trophic Transfer Efficiency. PLoS ONE, 11(4), e0151739. https://doi.org/10.1371/journal.pone.0151739 Cross, W.F., Wallace, J.B., Rosemond, A.D., and Eggert, S.L. (2006). Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. Ecology, 87(6), 1556-1565. Dalgren, K., Andersson, A., Larsson, U., Hajdu, S., and Båmstedt, U. (2010). Planktonic production and carbon transfer efficiency along a north-south gradient in the Baltic Sea. Mar Ecol Prog Ser, 409, 77-94. doi:10.3354/meps08615 Décima, M. (2022). Zooplankton trophic structure and ecosystem productivity. Mar Ecol Prog Ser, 692, 23-42. https://doi.org/10.3354/meps14077 Degerman, R., Lefébure, R., Byström, P., Båmstedt, U., Larsson, S., and Andersson, A. (2018). Food web interactions determine energy transfer efficiency and top consumer responses to inputs of dissolved organic carbon. Hydrobiol, 805, 131-146. https://doi.org/10.1007/s10750-017-3298-9 Delaune, K.D., Nesich, D., Goos, J.M., and Relyea, R.A. (2021). Impacts of salinization on aquatic communities: abrupt vs. gradual exposures. Environ Pollut, 285, 117636. https://doi.org/10.1016/j.envpol.2021.117636 de Azevedo, F., Dias, J.D., Braghin, L. d.S.M., and Bonecker, C.C. (2012). Length-weight regressions of the microcrustacean species from a tropical floodplain. Acta Limnol Bras, 24(1), 01-11. https://doi.org/10.1590/s2179-975x2012005000021. De Coster, L., Laere, K.V., Cleeren, E., Baete, K., Dupont, P., Paesschen, W.V., and Goffin, K.E. (2018). On the optimal z-score threshold for SISCOM analysis to localize the ictal onset zone. EJNMMI Research, 8, 34. doi:10.1186/s13350-018-0381-9 De Laender, F., Van Oevelen, D., Soetaert, K., and Middelburg, JJ. (2010). Carbon transfer in herbivore- and microbial loop-dominated pelagic food webs in the southern Barents Sea during spring and summer. Mar Ecol Prog Ser, 398, 93-107. http://www.jstor.org/stable/24873706 Dickman, E.M., Newell, J.M., González, M.J., and Vanni, M.J. (2008). Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. PNAS, 105(47), 18408-18412. www.pnas.org/cgi/doi/10.1073/pnas.0805566105 Donohoe, A., Dawson, E., and Rhines, A. (2020). Seasonal Asymmetries in the Lag between Insolation and Surface Temperature. AMS, 23, 3921-3945. https://doi.org/10.1175/JCLI-D-19-0329.1 Dressier, A., Dupuy, C., Kerric, A., Mornet, F., Authier, M., Bustamante, P., and Spitz, J. (2018). Variability of energy density among mesozooplankton community: new insights in functional diversity to forage fish. Prog Oceanogr, 166, 121-128. http://dx.doi.org/10.1016/j.pocean.2017.10.009 Ducklow, H.W., Urdue, D.A., Williams, P.J., and Davies, J.M. (1986). Bacterioplankton: A sink for carbon in a coastal marine plankton community. Science, 232, 865-867. https://doi.org/10.1126/science.232.4752.865 Dumont, H.J., Velde, I., and Dumont, S. (1975). The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia, 19(1), 75-97. https://doi.org/10.1007/BF00377592 Ejsmont-Karabin, J. (1998). Empirical equations for biomass calculation of planktonic rotifers. Polskie Archiwum Hydrobiologii/Polish Archives of Hydrobiology, 45(4), 513-522. Emanuel, K.A. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686-688. Eppley, R.W., Chavez, F.P., and Barber, R.T. (1992). Standing stocks of particulate carbon and nitrogen in the equatorial pacific at 150°W. J Geophys Res, 97, 655-661. doi:10.1029/91JC01386 Elser, J.J., Dobberfuhl, D.R., MacKay, N.A., and Shampel, JH. (1996). Organism size, life history, and N:P Stoichiometry. Bioscience, 46, 674-684. Doi: 10.2307/1312897 Ersoy, Z., Jeppesen, E., Sgarzi, S., Arranz, I., Cañedo-Argüelles, M., Quintana, X.D., Landkildehus, F., Lauridsen, T.L., Bartrons, M., and Brucet, S., 2017. Size-based interactions and trophic transfer efficiency are modified by fish predation and cyanobacteria blooms in Lake Mývatn, Iceland. Freshw Biol, 62, 1942-1952. https://doi.org/10.1111/fwb.13039. Falkowski, P.G., and Raven, J.A. (2007). Aquatic Photosynthesis. Princeton University Press, Princeton. Falkowski, P. (2012). Ocean Science: The power of plankton. Nature, 483, S17-S20. https://doi.org/10.1038/483S17a. Fasham, M., Boyd, P., Savidge, G. (1999(. Modelling the relative contributions of autotrophs and heterotrophs to carbon flow at a Lagrangian JGOFS station in the Northeast Atlantic: the importane of DOC. Limnol Oceanogr, 44, 80-94. Feng, C., Han, M., Dong, C., Jia, J., Chen, J., Wong, C.K., and Liu, X. (2020). Mesozooplankton Selective Feeding on Phytoplankton in a Semi-Enclosed Bay as Revealed by HPLC Pigment Analysis. Water, 12, 2031. doi:10.3390/w12072031 Feng, Y., Chai, F., Wells, M.L., Liao, Y., Li, P., Cai, T., Zhao, T., Fu, F., and Hutchins, D.A. (2021). The Combined Effects of Increased pCO2 and Warming on a Coastal Phytoplankton Assemblage: From Species Composition to Sinking Rate. Front Mar Sci, 8, 622319. doi: 10.3389/fmars.2021.622319 Fenovia, I.Y., Karpowicz, M., Gladyshev, M.I., Sushchik, N.N., Petrosyan, V.G., Sakharova, E.G., and Dzialowski, A.R. (2021). Effects of Macrobiota on the transfer efficiency of essential elements and fatty acids from phytoplankton to zooplankton under eutrophic conditions. Front Environ Sci, 9, 739014. Doi: 10.3389/fenvs.2021.739014 Field, C.B., Behrenfeld, M.J., Randerson, J.T., and Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281(5374), 237-240. Fogg, GE. (1986). Picoplankton. Proc R Soc Lond, 228, 1-30. Fortier, L., Le Fevre, J, and Legendre, L. (1994). Export of biogenic carbon to fish and to the deep ocean: The role of large planktonic microphages. J Plankton Res, 16(7), 809-839. doi:10.1093/plankt/16.7.809 Fox, J., and Weisberg, S. (2019). An {R} Companion to Applied Regression, Third Edition. Thousand Oaks CA: Sage. URL: https://socialsciences.mcmaster.ca/jfox/Books/Companion/ Gasol, J.M., del Giorgio, P.A., and Duarte, C.M. (1997). Biomass distribution in marine planktonic communities. Limnol Oceanogr, 42, 1353-1363. Gibert, J.P. (2019). Temperature directly and indirectly influences food web structure. Sci Rep, 9, 5312. https://doi.org/10.1038/s41598-019-41783-0 Gifford, D.J., and Dagg, M.J. (1991). The microzooplankton-mesozooplankton link: consumption of planktonic protozoa by the calanoid copepods Acartiatonsa Dana and Neocalanus plumchurus Murukawa. Mar Microb Food Webs, 5(1), 161e177. Gillooly, J.F., Brown, J.H., West, G.B., Savage, V.M., and Charnov, E.L. 2001. Effects of size and temperature on metabolic rate. Science, 293, 2248-2251. Gladyshev, M.I., Sushchik, N.N., Anishchenko, O.V., Makhutova, O.N., Kolmakov, V.I., Kalachova, G.S., Kolmakova, A.A., and Dubovskaya, O.P. (2011). Efficiency of transfer of essential polysanturated fatty acids versus organic carbon from producers to consumers in a eutrophic reservoir. Oecologia, 165, 521-531. https://doi.org/10.1007/s00442-010-1843-6 Golz, A.L., Burian, A., and Winder, M. (2015). Stoichiometry regulation in micro- and mesozooplankton. J Plankton Res, 37(2), 1-13. Doi: 10.1093/plankt/fbu109 Gonçalves, D.A., Marques, S.C., Primo, A.L., Marthino, F., Bordalo, M.D.B., and Pardal. M.Â. (2015). Mesozooplankton biomass and copepod estimated production in a temperate estuary (Mondego estuary): effects of processes operating at different timescales. Zool Stud, 54, 57. doi:10.1186/s40555-015-0135-6 Griffiths, J. R., Kadin, M., Nascimento, F. J. A., Tamelander, T., Törnroos, A., and Bonaglia, S. (2017). The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world. Glob Chang Biol, 23(6), 2179-2196. Grolemund, G., and Wickham, H. (2011). Dates and Times Made Easy with lubridate. J Stat Softw, 40(3), 1-25. URL https://www.jstatsoft.org/v40/i03/. Guerrero, F., and Rodríguez, V. (1997). Estimates of Secondary Production in a Co-Existent Group of Acartia Species (Copepoda, Calanoida). Crustaceana, 70, 584-593. Hall, D.J., Threlkeld, S.T., Burns, C.W., and Crowley, P.H. (1976). The Size-Efficiency Hypothesis and the Size Structure of Zooplankton Communities. Annu Rev Ecol Evol Syst, 7, 177–208. http://www.jstor.org/stable/2096865 Hansen, B., Bjornsen, P.K., and Hansen, P.J. (1994). The size ratio between planktonic predators and their prey. Limnol Oceanogr, 39, 395–403. Hart, R.C. (2011). Zooplankton biomass to chlorophyll ratios in relation to trophic status within and between ten South African reservoirs: Causal inferences, and implications for biomanipulation. Water SA, 37, 513-521. Havens, K.E. (1992). Acidification Effects on the Algal–Zooplankton Interface. Can J Fish Aquat Sci, 49(12), 2507-2514. https://doi.org/10.1139/f92-277 Havens, K.E., and East, T.L. (1997). Carbon dynamics in the ‘grazing food chain’ of a subtropical lake. J Plankton Res, 19(11), 1687-1711. Havens, K.E., Work, K.A., and East, T.L. (2000). Relative efficiencies of carbon transfer from bacteria and algae to zooplankton in a subtropical lake. J Plankton Res, 22, 1801-1809. https://doi.org/10.1093/plankt/22.9.1.1801 Havens, K.E., Beaver, J.R., Casamata, D.A., East, T.L., Thomas James, R., Mccormick, P., Philips, E.J., and Rodusky, A.J. (2011). Hurricane effects on the planktonic food web of a large subtropical lake. J Plankton Res, 33(7), 1081-1094. doi:10.1093/plankt/fbr002 Havens, K.E., and Beaver, J.R. (2013). Zooplankton to phytoplankton biomass ratios in shallow Florida lakes: an evaluation of seasonality and hypotheses about factors controlling variability. Hydrobiol, 703, 177-187. DOI 10.1007/s10750-012-1357-9 Heinrichs, M.E., Mori, C., and Dlugosch, L. (2020). Complex Interactions Between Aquatic Organisms and Their Chemical Environment Elucidated from Different Perspectives. In: Jungblut, S., Liebich, V., Bode-Dalby, M. (eds) YOUMARES 9 - The Oceans: Our Research, Our Future. Springer, Cham. https://doi.org/10.1007/978-3-030-20389-4_15 Hessen, D.O., Faafeng, B.A., and Brettum, P. (2003). Autotroph:herbivore biomass ratios; carbon deficits judged from plankton data. Hydrobiol, 491, 167-175. Hessen, D.O., Faafeng, B.A., Brettum, P., and Andersen, T. (2006). Nutrient Enrichment and Planktonic Biomass Ratios in Lakes. Ecosystems, 9(4), 516-527. http://www.jstor.org/stable/25470357 Hessen, D.O. (2008). Efficiency, energy and stoichiometry in pelagic food webs; reciprocal roles of food quality and food quantity. Freshwater Reviews, 1, 43-57. https://doi.org/10.1608/FRJ-1.1.3 Hessen, D.O., Elser, J.J., Sterner, R.W., and Urabe, J. (2013). Ecological stoichiometry: An elementary approach using basic principles. Limnol Oceanogr, 58, 2219-2236. https://doi.org/10.4319/lo.2013.58.6.2219 Holmgren, M., Scheffer, M., Ezcurra, E., Gutierrez, J.R., and Mohren, G.M.J. (2001). El Niño effects on the dynamics of terrestrial ecosystems. Trends Ecol Evol, 16, 89-94. Hoover, R.S., Hoover, D., Miller, M., Landry, M.R., DeCarlo, E.H., and Mackenzie, F.T. (2006). Zooplankton response to storm runoff in a tropical estuary: bottom-up ad top-down controls. Mar Ecol Prog Ser, 318, 187-201. Ho, P.C., Okuda, N., Miki, T., Itoh, M., Shiah, F.-K., Chang, C.-W., Hsiao, S.-Y., Kao, S.-J., Fujibayashi, M., and Hsieh, C.-H. (2016). Summer profundal hypoxia determines the coupling of methanotrophic production and pelagic food web in a subtropical reservoir. Freshw Biol, 61, 1694-1706. Ho, P.C., Chang, C.W., Shiah, F.K., Wang, P.L., Hsieh, C.H., and Andersen, K.H. (2020). Body size, light intensity, and nutrient supply determine plankton stoichiometry in mixotrophic plankton food webs. Am Nat, 195, E100-E111. doi:10:1086/707394 Hornbeck, R.W. (1975). Numerical Methods. Prentice-Hall, Englewood Cliffs. NJ. Huang, S., Du, Y., Yi, J., Liang, F., Qian, J., Wang, N., and Tu, W. (2022). Understanding human activities in response to typhoon Hato from multi-source geospatial big data: A case study in Guangdong, China. Remote Sensing, 14, 1269. https:// doi.org/10.3390/rs14051269 Hunt, B.P.V., Carlotti, F., Donoso, K., Pagano, M., D’Ortenzio, F., Taillandier, V., and Conan, P. (2017). Trophic pathways of phytoplankton size classes through the zooplankton food web over the spring transition period in the north-west Mediterranean Sea. J Geophys Res Oceans, 122, 6309-6324. doi:10.1002/2016JC012658. Ingrid, G., Andersen, T., and Vadstein, O. (1996). Pelagic food webs and eutrophication of coastal waters: impact of grazers on algal communities. Mar Pollut Bull, 33, 22-35. Irigoien, X., Flynn, K.J., and Harris, R.P. (2005). Phytoplankton blooms: A “loophole” in microzooplankton grazing impact? J Plankton Res, 27, 313-321. doi:10.1093/plankt/fbi011. Itoh, M., Kobayashi, Y., Chen, T.-Y., Tokida, T., Fukui, M., Kojima, H., Miki, T., Tayasu, I., Shiah, F.-K., and Okuda, N. (2015). Effect of interannual variation in winter vertical mixing on CH4 dynamics in a subtropical reservoir. J Geophys Res Biogeosci, 120, 1-16. doi:10.1002/2015JG002972 James, M.R., Schallenberg, M., Gall, M., and Smith, R. (2001). Seasonal changes in plankton and nutrient dynamics and carbon flow in the pelagic zone of a large, glacial lake: Effects of suspended solids and physical mixing. N. Z. J. Mar Freshwater Res, 35, 2, 239-253. doi: 10.1080/00288330.2001.9516995 Jeppesen, E., Jensen, J.P., Sondergaard, M., Lauridsen, T.L., Landkildehus, F. (2000). Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshw Biol, 45, 201-218. https://doi.org/10.1046/j.1365- 2427.2000.00675.x Jewson, D.H. (1977). Light penetration in relation to phytoplankton content of the euphotic zone of Lough Neagh, N. Ireland. Oikos, 28(1), 74-83. https://doi.org/10.2307/3543325 Jiang, T., Wu, G., Niu, P., Cui, Z., Bian, X., Xie, Y., Shi, H., Xu, X., and Qu, K. (2022). Short-term changes in algal blooms and phytoplankton community after the passage of Super Typhoon Lekima in a temperate and inner sea (Bohai Sea) in China. Ecotoxicol Environ Saf, 232, 113223. doi:10.1016/j.ecoenv.2022.113223 Johnsen, G.H. and Jakobsen, P.J. (1987). The effect of food limitation on vertical migration in Daphnia longispina. Limnol Oceanogr, 32, 873-880. John K.D., Huisman J., Sharples J., Sommeijer B., Visser P.M., and Stroom J.M. (2008). Summer heatwaves promote blooms of harmful cyanobacteria. Glob Chang Biol, 14, 495-512. doi: 10.1111/j.1365-2486.2007.01510.x. Jones, R.I., and Grey, J. (2011). Biogenic methane in freshwater food webs. Freshw Biol, 56, 213-229. doi.org/10.1111/j.1365-2427.2010.02494.x Jurikova, H., Guha, T., Abe, O., Shiah, F.K., Wang, C.H., and Liang, M.C. (2016). Variations in triple Isotope composition of dissolved oxygen and primary production in a subtropical reservoir. Biogeosciences, 13, 6683-6698. doi:10.5194/bg-13-6683-2016 Kang, J., Joo, S., Nam, S., Jeong, G., Yang, D., Park, H.K., and Park S. (2009). Secondary productivity of pelagic zooplankton in Lake Paldang and Lake Cheongpyeong. J Ecol Field Biol, 32, 257-265. Karpowicz, M., Feniova, I., Gladyshev, M.I., Ejsmont-Karabin, J., Górniak, A., Sushchik, N.N., Anishchenko, O.V., and Dzialowski, A.R. (2021). Transfer efficiency of carbon, nutrients, and polyunsaturated fatty acids in planktonic food webs under different environmental conditions. Ecol Evol, 11, 8201-8214. doi: 10.1002/ece3.7651 Kharbush, J.J., Close, H.G., Van Mooy, B.A.S., Arnosti, C., Smittenberg, R.H., Le Moigne, F.A.C., Mollenhauer, G., Scholz-Böttcher, B., Obreht, I., Koch, B.P., Becker, K.W., Iversen, M.H. and Mohr, W. (2020). Particulate Organic Carbon Deconstructed: Molecular and Chemical Composition of Particulate Organic Carbon in the Ocean. Front Mar Sci, 7, 518. doi: 10.3389/fmars.2020.00518 Kiørboe, T. (2008). A mechanistic approach to plankton ecology. Princeton University Press, 209 pp. doi:10.1007/s00442-007-0893-x Keitt, T. (2022). colorRamps: Builds Color Tables. R package version 2.3.1. https://CRAN.R-project.org/package=colorRamps Korovchinsky, N.M. (2000). Redescription of Diaphanosoma dubium Manuilova, 1964 (Branchiopoda: Ctenopoda:Sididae), and description of a new, related species. Hydrobiol, 441, 73-92. 10.1023/A:1017574921558. Kossin, J.P. (2018). A global slowdown of tropical-cyclone translation speed. Nature, 558, 104-107. Ko, C.Y., Lai, C.C., Chen, T.Y., Hsu, H.H., and Shiah, F.K. (2016). Typhoon effects on phytoplankton responses in a semi-closed freshwater ecosystem. Mar Freshw Res, 67, 546-555. doi:10.1071/MF14294 Ko, C.Y., Lai, C.C., Hsu, H.H., and Shiah, F.K. (2017). Decadal phytoplankton dynamics in response to episodic climatic disturbances in a subtropical deep freshwater ecosystem. Water Res, 109, 102-113. doi:10.1016/j.watres.2016.11.011. Lacroix, G, Lescher-Moutoue, F., and Bertolo, A. (1999). Biomass and production of plankton in shallow and deep lakes: Are there general patterns? Annales de limnogie – International Journal of Limnology, 35, 111-122. https://doi.org/10.1051/limn/1999016 Lamb, A.L., Wilson, G.P., and Leng, M.J. (2006). A review of coastal palaeoclimate and relative sea-level reconstructions using [delta] 13C and C/N ratios in organic material. Earth Sci Rev, 75(1), 29-57. Doi:10.1016/j.earscirev.2005.10.003 Lampert, W., and Sommer, U. (1997). Limnoecology. Oxford University Press, New York. Lawton, J.H. (1989). Food webs. In Ecological Concepts (Cherrett, J.M., ed.), pp. 43–78, Blackwell Scientific. Leibold, M.A. (1990). Resources and predators can affect the vertical distributions of zooplankton. Limnol Oceanogr, 35, 938-944. Lentink, H.S., Grams, C.M., Riemer, M., and Jones, S.C. (2018). The Effects of Orography on the Extratropical Transition of Tropical Cyclones: A Case Study of Typhoon Sinlaku (2008). BAMS, 146, 4321-4246. doi:10.1175/MWR-D-18-0150.1 Liang, F., Fu, X., Ding, S., and Li, L. (2021). Use of a Network-Based Method to Identify Latent Genes Associated with Hearing Loss in Children. Front Cell Dev Biol, 9, 783500. doi:10.3389/fcell.2021.783500 Lindeman, R.L. (1942). The trophic–dynamic aspect of ecology. Ecology, 23, 399-418. https://doi.org/10.2307/1930126 Lin, T.C., Hogan J.A., and Chang C.T. (2020). Tropical cyclone ecology: A scale-link perspective. Trends Ecol Evol, 35(7), 594-604. Lin, H.C., Tsai, J.W., Tada, K., Matsumoto, H., Chiu, C.Y., and Nakayama, K. (2022). The impacts of the hydraulic retention effect and Typhoon disturbance on the carbon flux in shallow subtropical mountain lakes. Sci Total Environ, 803, 150044. https://doi.org/10.1016/j.scitotenv.2021.150044 Lipp, E.K., Schmidt, N., Luther, M.E., and Rose, J.B. (2001). Determining the effects of El Niño-Southern Oscillations on coastal water quality. Estuaries, 24(4), 491-497. https://doi.org/10.2307/1353251 Litchman, E., de Tezanos Pinto, P., Edwards, K.F., Klausmeier, C.A., Kremer, C.T., and Thomas, M.K. (2015). Global biogeochemical impacts of phytoplankton: a trait-based perspective. J Ecol, 103, 1384-1396. https://doi.org/10.1111/1365-2745.12438 Liu, F., Zhang, H., Ming, J., Zheng, J., Tian, D., and Chen, D. (2020). Importance of precipitation on the upper ocean salinity response to Typhoon Kalmaegi (2014). Water, 12(614), 1-21. doi:10.3390/w12020614 Li, C.H. (2005). A taxonomic study of freshwater rotifers, Brachionina in Taiwan, National Hsinchu University of Education, https://hdl.handle.net/11296/43w2z6. Li, X., Huang, T., Ma, W., Sun, X., and Zhang, H. (2015). Effects of rainfall patterns on water quality in a stratified reservoir subject to eutrophication: Implications for management. Sci Total Environ, 521-522, 27-36. doi:10.1016/j.scitotenv.2015.03.062 Lomartire, S., Marques, J.C., and Gonçalves, A.M.M. (2021). The key role of zooplankton in ecosystem services: A perspective of interaction between zooplankton and fish recruitment. Ecol Indic, 129, 107867. https://doi.org/10.1016/j.ecolind.2021.107867 López-López, L., Molinero, J.C., Tseng, L.-C., Chen, Q.C., Houng, J.W., and Hwang, J.S. (2012). Effects of typhoons on gelatinous carnivore zooplankton off Northern Taiwan. Cah Biol Mar, 53, 349-355. Marrec, P., McNair, H., Franzè, G., Morison, F., Strock, J.P. and Menden-Deuer, S. (2021). Seasonal variability in planktonic food web structure and function of the Northeast U.S. Shelf. Limnol Oceanogr, 66, 1440-1458. https://doi.org/10.1002/lno.11696 Marzetz, V., Spijkerman, E., Striebel, M. and Wacker, A. (2020). Phytoplankton Community Responses to Interactions Between Light Intensity, Light Variations, and Phosphorus Supply. Front Environ Sci, 8, 539733. doi: 10.3389/fenvs.2020.539733 McDonald-Madden, E., Sabbadin, R., Game, E.T., Baxter, P.W.J., Chadès, I., and Possingham, H.P. (2016). Using food-web theory to conserve ecosystems. Nat Commun, 7, 10245. https://doi.org/10.1038/ncomms10245 McKnight, T.L., and Hess, D. (2000). Climate Zones and Types. In: Physical Geography: A Landscape Appreciation. Upper Saddle River, NJ: Prentice Hall. ISBN 978-0-13-020263-5. https://doi.org/10.1080/00221349008979196. Mei, M., Lien, C.C., Lin, I.I., and Xie, S.P. (2015). Tropical cyclone induced ocean response: a comparative study of the South China Sea and Tropical Northwest Pacific. J Clim, 28, 5952-5968. Mehner, T., Betty, L., Scharnweber, K., Attermeyer, K., Brothers, S., Gaedke, U., Hilt, S., and Brucet, S. (2018). Empirical correspondence between trophic transfer efficiency in freshwater food webs and the slope of their size spectra. Ecology, 99(6), 1463-1472. https://www.jstor.org/stable/26625815 Michaloudi, E. (2005). Dry weights of the zooplankton of Lake Mikri Prespa (Macedonia, Greece). Belg J Zool, 135(2), 223-227. Millette, N., Kelble, C., Smith, I., Montenero, K., and Harvey, E. (2022). Spatial variability of microzooplankton grazing on phytoplankton in coastal southern Florida, USA. PeerJ, 10, e13291. DOI 10.7717/peerj.13291 Minamide, M., and Yoshimura, K. (2014). Orographic effect on the precipitation with Typhoon Washi in the Mindanao Island of the Philippines. SOLA, 10, 67-71. doi:10.2151/sola.2014-014 Miriti, M.N., Rodriguez-Buritica, S., Wright, S.J., and Howe, H.F. (2007). Episodic death across species of desert shrubs. Ecology, 88, 32-36. Mehner, T., Betty, L., Scharnweber, K., Attermeyer, K., Brothers, S., Gaedke, U., Hilt, S., and Brucet, S. (2018). Empirical correspondence between trophic transfer efficiency in freshwater food webs and the slope of their size spectra. Ecology, 99(6), 1463-1472. https://www.jstor.org/stable/26625815 Muñoz-Colmenares, M.E., Sendra, M.D., Sòria-Perpinyà, X., Soria, J.M., and Vicente, E. (2021). The Use of Zooplankton Metrics to Determine the Trophic Status and Ecological Potential: An Approach in a Large Mediterranean Watershed. Water, 13, 2382. https://doi.org/ 10.3390/w13172382 Okuda, N., Sakai, Y., Fukumori, K., Yang, S.-M., Hsieh C.-H., and Shiah, F.-K. (2017). Food web properties of the recently constructed, deep subtropical Fei-Tsui Reservoir in comparison with the ancient Lake Biwa. Hydrobiol, 802, 199-210. https://10.1007/s10750-017-3258-4 Pace ML, and Orcutt JD. (1981). The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community. Limnol Oceanogr, 26(5), 822-830. https://doi.org/10.4319/lo.1981.26.5.0822 Paine, R.T., and Trimble, A.C. (2004). Abrupt community change on a rocky shore: Biological mechanisms contributing to the potential formation of an alternative state. Ecol Let, 7, 441-445. Pan, Y. Zhang, Y. and Sun S. (2014). Phytoplankton-zooplankton dynamics vary with nutrients: a microcosm study. J Plankton Res, 36(5), 1323-1332. doi: 10.1093/plankt/fbu057 Parmesan, C., Root, T.L., and Willig, M.R. (2020). Impacts of extreme weather and climate on terrestrial biota. BAMS, 81, 443-450. Parsons, T.R., Maita, Y., and Lalli, C.M. (1984). A Manual of Chemical and Biological Methods for Sea Water Analysis. Pergamon: New York. Pauli, H.R. (1989). A new method to estimate individual dry weights of rotifers. Hydrobiol, 186-187(1), 355 361. https://doi.org/10.1007/BF00048932 Piscia, R., Boggio, E., Bettinetti, R., Mazzoni, M., and Manca, M. (2018). Carbon and nitrogen isotopic signatures of zooplankton taxa in five small subalpine lakes along a trophic gradient. Water, 10(94), 1-9. doi:10.3390/water10010094 Pomati, F., Shurin, J.B., Andersen, K.H., Tellenbach, C., and Barton, A.D. (2020). Interacting Temperature, Nutrients and Zooplankton Grazing Control Phytoplankton Size-Abundance Relationships in Eight Swiss Lakes. Front Microbiol, 10, 3155. doi: 10.3389/fmicb.2019.03155 Post, W.M., and Pimm, S.L. (1983). Community assembly and food web stability. Math Biosci, 64, 169-192. Post, D.M. (2002a). The long and short of food-chain length. Trends Ecol Evol, 17(6), 269-277. Post, D.M. (2002b). Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83(3), 703-718. Priyadarshi, A., Smith, S.L., Mandal, S., Tanaka, M., and Yamazaki, H. (2019). Micro-scale patchiness enhances trophic transfer efficiency and potential plankton biodiversity. Sci Rep, 9, 17243. https://doi.org/10.1038/s41598-019-53592-6 Qiu, G., Xing, X., Chai, F., Yan, X.-H., Liu, Z., and Wang, H. (2021). Far-field impacts of a super typhoon on upper ocean phytoplankton dynamics. Front Mar Sci, 8, 643608. doi: 10.3389/fmars.2021.643608 Quintana, X.D, Arim, M., Badosa, A., Blanco, J.M., Boix, D., Brucet, S., Compte, J., Egozcue, J.J., de Eyto E., Gaedke, U., Gascón, S., de Solá, L.G., Irvine, K., Jeppesen, E., Lauridsen, T.L., López-Flores, R., Mehner, T., Romo, S., and Søndergaard, M. 2015. Predation and competition effects on the size diversity of aquatic communities. Aquat Sci, 77, 45-57. https://doi.org/10.1007/s00027-014-0368-1 Ramos, J.B.E., Schulz, K.G., Voss, M., Narciso, Á., Müller, M.N., Reis, F.V., Cachão, M., and Azevedo, E.B. (2017). Nutrient-specific responses of a phytoplankton community: a case study of the North Atlantic Gyre, Azores. J Plankton Res, 39(4), 744-761. https://doi.org/10.1093/plankt/fbx025 Reynolds, C.S. (1998). What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiol, 369, 11-26. DOI: 10.1023/A:1017062213207 R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Rodil, I.F., Lucena-Moya, P., Tamelander, T., Norkko, J., and Norkko, A. (2020). Seasonal Variability in Benthic–Pelagic Coupling: Quantifying Organic Matter Inputs to the Seafloor and Benthic Macrofauna Using a Multi-Marker Approach. Front Mar Sci, 7, 404. doi: 10.3389/fmars.2020.00404 Rodrigues, R.M.N.V., and Williams, P.J.L.B. (2002). Inorganic nitrogen assimilation by picoplankton and whole plankon in a coastal ecosystem. Limnol Oceanogr, 47(6), 1608-1616. Rooney, G.G., Lipzig, N.V., and Thiery, W. (2018). Estimating the effect of rainfall on the surface temperature of a tropical lake. HESS, 22, 6357-6369. doi:10.5194/hess-22-6357-2018 Ruttner-Kolisko, A. (1977). Suggestions for biomass calculations of planktonic rotifers. Archiv fur Hydrobiologie Beihefte, 21, 71-76. Sanders, R.W., and Wickham, S.A. (1993). Planktonic protozoa and metazoa: predation, food quality and population control. Mar Microb Food Webs, 7, 197-223. Schallenberg, M., and Burns, C.W. (2001). Tests of autotrophic picoplankton as early indicators of nutrient enrichment in an ultra-oligotrophic lake. Freshw Biol, 46, 27-37. Schindler, D.E., Carpenter, S.R., Cole, J.J., Kitchell, J.F., and Pace, M.L. (1997). Influence of food web structure on carbon exchange between lakes and atmosphere. Science, 277(5323), 248-251. Sheldon, R.W., Prakash, A., and Sutcliffe, Jr. W.H. (1972). The size distribution of particles in the ocean. Limnol Oceanogr, 17(3), 327. Shen, J.R., Tai, A.Y., Zhang, C.Z., Li, Z.Y., Song, D.X., and Chen, G. (1979). Fauna sinica, crustacean, freshwater copepod. Institute of zoology, Academia Sinica, Beijing (in Chinese). 中国动物志 节肢动物门 甲壳纲 淡水桡足类 中国科学院动物研究所甲壳动物研究组 编着 科学出版社 1979 沈嘉瑞, 戴愛雲, 張崇洲, 李志英, 宋大祥 & 陳國孝 Sherr, E., and Sherr, B. (1994). Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb Ecol, 28, 223-235. Shiah, F.K., Wu, T.H., Li, K.Y., Kao, S.J., Tseng, Y.F., Chung, J.L., and Jan S. (2006). Thermal effects on heterotrophic processes in a coastal ecosystem adjacent to a nuclear power plant. Mar Ecol Prog Ser, 309, 55-65. Sieburth, J.M., Smetacek, V., and Lenz, J. (1978). Pelagic ecosystem structure: Hetrotrophic compartments of plankton and their relationship to plankton size fractions. Limnol Oceannogr, 23(6), 1256-1263. Sievert, C. (2020). Interactive Web-Based Data Visualization with R, plotly, and shiny. Chapman and Hall/CRC Florida. Šimek, K., Kasalický, V., Jezbera, J. Horňák, K., Nedoma, J., Hahn, M.W., Bass, D., Jost, S., and Boenigk, J. (2013). Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria. ISME J, 7, 1519-1530. https://doi.org/10.1038/ismej.2013.57 Sipaúba-Tavares, L.H., Guariglia, C.S.T., and Braga, F.M.S. (2007). Effects of rainfall on water quality in six sequentially disposed fishponds with continuous water flow. Braz J Biol, 67(4), 643-649. Sipura, J., Lores, E.M., and Snyder, R.A. (2003). Effect of copepods on estuarine microbial plankton in short-term microcosms. Aquat Microb Ecol, 33, 181-190. Sommer, U., Stibor, H., Katechakis, A., Sommer, F., and Hansen, T. (2002). Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: Primary production. Hydrobiol, 484(1), 11-20. Sommer, U., Hansen, T., Blum, O., Holzner, N., Vadstein, O., and Stibor, H. (2005). Copepod and microzooplankton grazing in mesocosms fertilized with different Si:N ratios: no overlap between food spectra and Si:N-influence on zooplankton trophic level. Oecologia, 142, 274:283. Sommer, U., and Soomer, F. (2006). Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia, 147, 183-194. Sommer, U., Charalampous, E., Scotti, M., and Moustaka-Gouni, M. (2018). Big fish eat small fish: implications for food chain length? Community Ecol, 19(2), 107-115. Doi: 10.1556/168.2018.19.2.2 Stecker, A., Cobb, T.P., and Vinebrooke, R.D. (2004). Effects of experimental greenhouse warming on phytoplankton and zooplankton communities in fishless alpine ponds. Limnol Oceanogr, 49(4), 1182-1190. DOI: 10.4319/lo.2004.49.4.1182 Steinberg, D.K., and Landry M.R. (2017). Zooplankton and the Ocean Carbon Cycle. Annu Rev Mar Sci, 9, 413-44. https://doi.org/10.1146/annurev-marine-010814-015924 Stockwell, J.D., Doubek, J.P., Adrian, R., Anneville, O., Carey, C.C., Carvalho, L., De Senerpont Domis, L.N., Dur, G., Frassl, M.A., Grossart, H.-P., Ibelings, B.W., Lajeunesse, M.J., Lewandowska, A.M., Llames, M.E., Matsuzaki, S.-I., Nodine, E.R., Nõges, P., Patil, V.P., Pomati, F., Rinke, K., Rudstam, L.G., Rusak, J.A., Salmaso, Seltmann, C.T., Straile, D., Thackeray, S.T., Thiery, W., Urrutia-Cordero, P., Venail, P., Verburg, P., Woolway, R.I., Zohary, T., Andersen, M.R., Bhattacharya, R., Hejzlar, J., Janatian, N., Kpodonu, A.T.N.K., Stoecker, D.K., and Capuzzo, J.M. (1990). Predation on protozoa: its importance to zooplankton. J Plankton Res, 12, 891-908. Stolte, W., McCollin, T., Noordeloos, A.A.M., and Riegman, R. (1994). Effect of nitrogen source on the size distribution within marine phyto- plankton populations. J Exp Mar Biol Ecol, 184, 83-97. Thibault, K.M., and Brown, J.H. (2008). Impact of an extreme climatic on community assembly. PNAS, 105(9), 3410-3415. doi:10.1073/pnas.0712282105 Theis, K., Quévreux, P., and Loreau, M. (2021). Nutrient cycling and self-regulation determine food web stability. Funct Ecol, 36, 202-213. Doi: 10.1111/1365-2435.13961 Truong, L., Susthers, I.M., Cruz, D.O., and Smith, J.A. (2017). Plankton supports the majority of fish biomass on temperate rocky reefs. Mar Biol, 164, 73. doi: 10.1007/s00227-017-3101-5 Tseng, Y.F., Hsu, T.C., Chen, Y.L., Kao, S.J., Wu, J.T., Lu, J.C., Lai, C.C., Kuo, H.Y., Lin, C.H., Yamamoto, Y., Xiao, T., and Shiah, F.K. (2010). Typhoon effects on DOC dynamics in a phosphate-limited reservoir. Aquat Microb Ecol, 60, 247-260. Tung, C.P., Chen, Y.J., Chen, S.W., and Liu, T.M. (2006). Sustainability Appraisal of Taipei Municipal Water Supply System. Environ Eng Manag J, 16(5), 319-325. Tuo, Y.H., and Young, S.S. (2002). Freshwater Cladocera (Crustacea: Branchiopoda: Cladocera) of Taiwan. Master’s Thesis. National Hsinchu Teachers College. https://hdl.handle.net/11296/x9et74 Tuo, Y.H., and Young, S.S. (2011). Taxonomy of Chydoridae (Crustacea: Branchiopoda: Cladocera) from Taiwan. 台灣生物多樣性研究, 13.3, 183-212. Uye, S.I., Nagano, N., and Shimazu T. (1998). Biomass, production and trophic roles of micro- and net-zooplankton in Dokai Inlet, heavily eutrophic inlet, in summer. Plankton Biol Ecol, 45, 171-182. Vander Zanden, M.J. and Rasmussen, J.B. (1999). Primary consumer 𝛿13C and 𝛿15N and the trophic position of aquatic consumers. Ecol, 80(4), 1395-1404. Vanni, MJ. (1996). Nutrient transport and recycling by consumers in lake food webs: Implication for algal communities. Food webs, 81-95. Doi:10.1007/978-1-4615-7007-3_8 Vecchi, G.A., and Soden, B.J. (2007). Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 1066-1070. Wagner, N.D., Lankadurai, B.P., Simpson, M.J., Simpson, A.J., and Frost, PC. (2015). Metabolic differentiation of nutritional stress in an aquatic invertebrate. Physiol Biochem Zool, 88, 43-52. Doi: 10.1086/679637 Wang, J. (1961). Fauna of freshwater Rotifera of China. Academia Sinica. http://ir.ihb.ac.cn/handle/342005/10488 Wang, H., Morrison, W., Singh, A., and Weiss, H. (2009). Modeling inverted biomass pyramids and refuges in ecosystems. Ecol Modell, 220, 1376-1382. Wang, Z., Myles, P., and Tucker, A. (2021). Generating and evaluating cross-sectional synthetic electronic healthcare data: Preserving data utility and patient privacy. Comput Intell, 37, 819-851. Weisse, R. (1993). Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. Adv Microb Ecol, 13, 327. Wen, Z., Raio, C.M., Pace-Schott, E.F., Lazar, S.W., LeDOux, J.E., Phelps, E.A., and Milad, M.R. (2022). Temporally and anatomically specific contributions of the human amygdala to threat and safety learning. PNAS, 119(26), 1-7. doi:10.1073/pnas.2204066119 White, E.R., and Hastings, A. (2020). Seasonality in ecology: Progress and prospects in theory. Ecol Complex, 44, 100867. https://doi.org/10.1016/j.ecocom.2020.100867 Whitford, W.G., and Duval, B.D. (2020). Chapter 3 - Characterization of Desert Climates. in: Ecology of Desert Systems (2nd edn). Academic Press, p. 47-72. doi:10.1016/B978-0-12-815055-9.00003-5 Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. Wickham, H, Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.L., Miller, E., Bache, S.M., Müller, K., Ooms, J., Robinson, D., Seidel, D.P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H. (2019). Welcome to the tidyverse. JOSS, 4(43), 1686. doi: 10.21105/joss.01686. https://doi.org/10.21105/joss.01686 Wickham, H., and Seidel, D. (2022). scales: Scale Functions for Visualization. R package version 1.2.1. https://CRAN.R-project.org/package=scales Yacobi, Y.Z. (2006). Temporal and vertical variation of chlorophyll a concentration, phytoplankton photosynthesis activity and light attenuation in Lake Kinneret: possibilities and limitations for simulation by remote sensing. J Plankton Res, 28(8), 725-736. doi:10.1093/plankt/fb1004 Yang, S., Wang, J., Cong, W., Cai, Z., and Ouyang, F. (2004). Utilization of nitrite as a nitrogen source by Botryococcus braunii. Biotechnol Lett, 26(3), 239-43. doi: 10.1023/b:bile.0000013722.45527.18. PMID: 15049370. Ye, L., Chang, C.Y., García-Comas, C., Gong, G.C., and Hsieh, C.h. (2013). Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning. J Anim Ecol, 82(5), 1052-1061. https://www.jstor.org/stable/24034896 Ying, M., Knutson, T.R., Kamahori, H., and Lee, T.C. (2012). Impacts of climate change on tropical cyclones in the western North Pacific basin. Part II: Late twenty-frst century projections. Trop cyclone res rev, 1 2, 231-241. doi:10.6057/2012TCRR02.09 Yuan L, and Pollard AI. (2018). Changes in the relationship between zooplankton and phytoplankton biomasses across a eutrophication gradient. Limnol Oceanogr, 63(6), 2493-2507. Doi:10.1002/lno.10955 Zhang, X., Alexander, L., Hegerl, G.C., Jones, P., Tank, A.K., Peterson, T.C., Trewin, B., and Zwiers, F.W. (2011). Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim Change, 2, 851-870. Doi.10.1002/wcc.147 Zhao, H., Tang, D., and Wang, Y. (2008). Comparison of phytoplankton blooms triggered by two typhoons with different intensities and translation speeds in the South China Sea. Mar Ecol Prog Ser, 365, 57-65. doi:10.3354/MEPS07488 Zhao, H., Shao, J., Han, G., Yang, D., and Lv, J. (2015). Influence of Typhoon Matsa on phytoplankton chlorophyll-a off East China. PLoS ONE, 10(9), e0137863. doi:10.1371/journal.pone.0137863 Zhao, Y., Dong, Y., Li, H., Lin, S., Huan, L., Xiao, T., Gregori, G., Zhao, L., and Zhang, W. (2020). Grazing by microzooplankton and copepods on the microbial food web in spring in the southern Yellow Sea, China. Mar Life sci Technol, 2, 442-455. https://doi.org/10.1007/s42995-020-00047-x Zhou, G., Zhao, X., Bi, Y., and Hu, Z. (2012). Effects of rainfall on spring phytoplankton community structure in Xiangxi Bay of the Three-Gorges Reservoir, China. Fresenius Environ Bull, 21(11c), 3533-3541. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92365 | - |
| dc.description.abstract | 貫穿整個浮游食物鏈的營養轉移效率(Trophic Transfer Efficiency, TTE)是較高營養水平的主要能量來源,受到多種因素的影響。 貧營養水庫中浮游植物和浮游動物之間的 TTE 趨於增加並表現出高度的變異性。 環境變化和不同體型物種之間的相互作用可能會導致 TTE 的改變,但這些研究普遍不足。 本研究旨在透過原位調查,綜合分析環境因素和物種體型兩個重要因素如何影響貧營養水庫中浮游植物和浮游動物之間物質的TTE(能量或碳和氮),分三章進行闡述。 第一章研究了熱帶氣旋(TC)經過期間(第一部分)和溫暖和寒冷時期(第二部分)環境因素對2 m深度的能量TTE(生物量的代表,TTEe)的影響。 第二章分析了尺寸分級的浮游植物和浮游動物的TTE之間的差異,以及溫暖和寒冷時期水溫如何影響TTE。 第三章研究了獵物(即POM 和44-74 μm 尺寸分級的浮游動物)和尺寸分級浮游動物(即>500 μm 和74-177 μm 尺寸)之間碳(C) 和氮(N) 的TTE有何不同,以及水溫和無機營養如何影響變異。2012年1月至2021年6月,在翡翠水庫(Fei-Tsui Reservoir, FTR)進行了密集的原位採樣,研究浮游生物體型和環境因素對浮游植物和浮游動物材料TTE的影響。 第一章第一部分的結果表明,受水溫影響,TTEe在溫暖時期顯著降低,在寒冷時期顯著增加。第一章第二部分表明,在熱帶氣旋週期間,TTEe隨著水溫和NO2- 濃度的升高而增加,而在緩慢移動的熱帶氣旋事件期間,TTEe減少。 快速移動的 TC 與較高的 NO2- 濃度和較低的 NO3- 濃度相結合,增強了 TTEe。第二章的結果表明,尺寸分級的浮游植物和浮游動物之間的TTEe存在顯著差異,並且發現從奈米浮游植物輸送至微型浮游植物時, TTEe變得更大。在所研究的各種浮游生物大小組別中,觀察到僅微型浮游植物和中型浮游動物(> 500 μm 和177-500 μm)之間的能量TTE 在受較高溫度負面影響的暖期和冷期之間表現出相當大的變化。 第三章的結果表明,POM與>500μm尺寸分級浮游動物之間的碳TTE(TTEc)在寒冷時期顯著增加,而氮TTE(TTEn)在溫暖和寒冷時期保持恆定。 44-74 μm 和 74-177 μm 大小分級浮游動物的 C 和 N TTE 在溫暖和寒冷時期保持在較高水準。 POM與74-177μm浮游動物之間的C和N TTE在溫暖和寒冷時期保持較低水準。 這些發現表明,不同體型的浮游生物的 C 和 N TTE 表現出差異。對 POM 和 > 500 μm 尺寸分級之間的 TTEc 的進一步分析表明,TTEc 與水溫和全柱平均 PO43- 濃度呈負相關(0-90 m 深度),與透光深度平均(0-15 m 深度)及全柱平均NO2- 濃度呈正相關。本論文強調環境因素(主要是水溫和無機營養鹽)以及浮游生物的體型大小會影響貧營養水庫中浮游植物和浮游動物之間物質的TTE。 由於浮游生物在水生食物鏈中發揮重要作用,並且對環境變化敏感,因此了解浮游生物營養級之間的 TTEc 如何隨時間變化非常重要,因為它反映了生態系統中的物質流動。 | zh_TW |
| dc.description.abstract | The trophic transfer efficiency (TTE) throughout the planktonic food chain, which is the main source of energy for higher trophic levels, is influenced by various factors. TTE between phytoplankton and zooplankton in oligotrophic reservoirs tends to increase and show high variability. Environmental changes and interactions between species with different body sizes potentially lead to alteration of TTE, but these are generally understudied. This study aimed to comprehensively analyze two considerable factors, such as environmental factors and species body sizes, influencing TTEs of materials (e.g., energy or carbon and nitrogen) between phytoplankton and zooplankton in an oligotrophic reservoir through in situ investigation, presented in three chapters. The first chapter examined the influences of environmental factors on the TTE of energy (a proxy for biomass, TTEe) at 2 m depth in warm and cold periods (first part) and during tropical cyclone (TC) passages (second part). The second chapter analyzed how TTEs of energy differ between size-fractioned phytoplankton and zooplankton and how water temperature affects the TTEe in warm and cold periods. The third chapter investigated how TTEs of carbon (C) and nitrogen (N) differ between prey (i.e., POM and 44-74 μm size-fractioned zooplankton) and consumer zooplankton (i.e., >500 μm and 74-177 μm size-fractioned zooplankton) and how water temperature and inorganic nutrients influence the variability. An intensive in situ sampling was conducted in Fei-Tsui Reservoir (FTR) from January 2012 to June 2021 to study the influences of plankton body sizes and environmental factors on TTEs of materials between phytoplankton and zooplankton. The first part of the first chapter showed that the TTEe was significantly decreased in warm periods and increased in cold periods, influenced by the water temperature. The results in the second part of the first chapter showed that, during a TC week, TTEe increased with higher water temperature and NO2- concentration, while it decreased during slow-moving TC events. The combined effects of a fast-moving TC, along with higher NO2- concentration and lower NO3- concentration, enhanced TTEe. The results of the second chapter revealed that TTEe significantly varied between size-fractioned phytoplankton and zooplankton, and it was found to be greater when transported from nanophytoplankton than microphytoplankton. Among the various plankton size groups studied, it was observed that merely TTEs of energy between microphytoplankton and mesozooplankton (>500 μm and 177-500 μm) exhibited considerable variations between warm and cold periods negatively influenced by higher temperature. The results of the third chapter showed that TTE of carbon (TTEc) between POM and >500 μm size-fractioned zooplankton increased significantly in cold periods, and TTE of nitrogen (TTEn) remained constant in both warm and cold periods. The TTEs of C and N between 44-74 μm and 74-177 μm size-fractioned zooplankton remained high in warm and cold periods. The TTEs of C and N between POM and 74-177 μm size-fractioned zooplankton remained low in warm and cold periods. These findings indicate that plankton of different body sizes exhibited variations in their TTEs of C and N. Further analysis on TTEc between POM and >500 μm size-fractioned zooplankton revealed that TTEc had negative relationships with water temperature and whole column-averaged PO43- concentration (0-90 m depth), and it had positive relationships with euphotic depth-averaged (0-15 m depth) and whole column-averaged NO2- concentrations. This thesis highlights that environmental factors, such as water temperature and inorganic nutrients, and plankton body sizes impact the TTEs of materials between phytoplankton and zooplankton in an oligotrophic reservoir. Since plankton play an important role in the aquatic food chain and are sensitive to environmental changes, it is important to understand how TTE between plankton trophic levels changes over time because it reflects the material flows in the ecosystem. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:48:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-21T16:48:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Oral Examination Committee Approval Letter ……………………………………… i
Acknowledgements……………………………… ……………………………...…….……… ii Chinese Abstract ………………………………………..………………………………..….... iii English Abstract ………………………………………..………………………………..…..... v General Introduction…………………….……………………………………………………... 1 Chapter 1 Part 1 Inter-seasonal Variability of Energy Transfer Efficiency between Phytoplankton and Zooplankton……………………………………………………...…………... 5 Abstract………………….……………..…………………………………..….. 5 Introduction……………….…………………………....……………….…… 5 Methods….……………….……………………….…………….………..…... 7 Results....…………………………………….…………..………….…..……. 10 Discussion…………………………………….…………..……….….……... 11 Conclusion……………………………………………………….……………. 13 Part 2 Tropical Cyclone Effects Enhance Trophic Transfer Efficiency of Energy between Phytoplankton and Zooplankton……………………………………………………............…. 15 Abstract…………………………………………..……………..…...……….. 15 Introduction……………………………………….…………..…………….… 16 Methods…………………………………….………………..……….....……...19 Results…………………………………………………………..……………..… 24 Discussion…………………………………………………….………………… 26 Conclusion………………………………………………....………………..… 29 Chapter 2 Influences of Body Sizes and Temperature on Trophic Transfer Efficiency of Energy between phytoplankton and zooplankton …………………………………………..…................……... 31 Abstract……………………….………….…………………………………....… 31 Introduction…………………….…………………………………………….…. 32 Methods……………………………….……………………………………..…... 34 Results……………………………….…………………………….....…….….… 40 Discussion…………………….………………………………………….….….. 43 Conclusion….………………..……..…..……………………………….….... 45 Chapter 3 Influences of Body Sizes and Environmental Factors on Trophic Transfer Efficiencies of Carbon and Nitrogen between Prey and Consumer Zooplankton ….………..….....…............... 47 Abstract……………………..………………………………………..…..….…. 47 Introduction…………………..…………………………….…………...….... 48 Methods………………………..…………………………….….……..……….. 51 Results…………………………………..…………………….….….....…….... 57 Discussion……………………………..………………….………....…..…... 60 Conclusion………………………………..…………………..…..........…... 64 Overall Conclusion……...…………………………….……….…………....67 References……….………………………………………………..…..….…… 71 Appendix……………………………………………….....………..……….... 127 List of Figures Fig. 1. Map of the Fei-Tsui Reservoir, an oligotrophic reservoir in northern Taiwan………... 101 Fig. 2. Time-series pattern and boxplots of 2 m depth water temperature (a), precipitation (b), 0-90 m depth-averaged concentration of NO2- (c), NO3- (d), and PO43- (e) in the Fei-Tsui Reservoir from January 2012 to December 2015.…………………….…………….… 102 Fig. 3. Log-log simple linear regression analysis between the mean of zooplankton biomass at 0-50 m depth versus 2-m depth phytoplankton biomass at a synchronous time (a) and 2-week lag time of mean zooplankton biomass at 0-50 m depth versus 2-m depth phytoplankton biomass……………………………………………..……………….... 103 Fig. 4. Time-series pattern and boxplots of trophic transfer efficiency (TTE) at 2 m depth in the Fei-Tsui Reservoir from January 2012 to December 2015...……………….…….….. 104 Fig. 5. Monthly patterns and boxplots of phytoplankton biomass (PB) at 2 m depth (a) and zooplankton biomass (ZB) at 0-50 m depth-averaged (b) in the Fei-Tsui Reservoir from January 2012 to December 2015…………………………...…………….………….. 105 Fig. 6. Monthly patterns and boxplots of the trophic transfer efficiencies (TTE) of energy at 2 m depth in the Fei-Tsui Reservoir from January 2012 to December 2015. ………….... 106 Fig. 7. Scatterplots of the trophic transfer efficiency (TTE) of energy at 2-m depth in relation to tropical cyclone disturbance ranking (a) and length of tropical cyclone stay (b) in the Fei-Tsui Reservoir from January 2012 to December 2015. ………………..……..…….. 107 Fig. 8. Time series patterns and boxplots of physical parameters including 2 m depth water temperature (a), precipitation (b), 2 m depth concentration of NO2- and PO43- (c-d), and 0-90 m depth-averaged concentration of NO2- (e) in the Fei-Tsui Reservoir from July 2019 to June 2021….…………………………..……….……………….………..……….. 108 Fig. 9. Relative biomass composition of phytoplankton at 2 m depth (a) and zooplankton at 0-50 m depth (b) in the Fei-Tsui Reservoir from July 2019 to June 2021…………………. 109 Fig. 10. Boxplots showing the median and standard deviation of trophic transfer efficiencies (TTEs) of energy in large microphytoplankton and >500 µm, nanophytoplankton and >500 µm, microphytoplankton and 177-500 µm, nanophytoplankton and 177-500 µm, picophytoplankton and 177-500 µm, and microphytoplankton and <177 µm..…..110 Fig. 11. Time series patterns and boxplots comparing the trophic transfer efficiencies (TTEs) of energy between the microphytoplankton and >500 µm (a), microphytoplankton and 177-500 µm (b), microphytoplankton and <177 µm (c), nanophytoplankton and >500 µm (d), nanophytoplankton and 177-500 µm (e), and picophytoplankton and 177-500 µm (f) during warm and cold in the Fei-Tsui Reservoir from July 2019 to June 2021.…....…111 Fig. 12. Time series patterns and boxplots of 0-15 m depth-averaged water temperature (a), precipitation (b), 0-15 m depth-averaged concentrations of NO2- (c), NO3- (d), 0-90 m depth-averaged concentrations of PO43- (e), NO2- (f), and PO43- (g) in the Fei-Tsui Reservoir from July 2014 to November 2020..……………………….……………….112 Fig. 13. Biplots of 𝛿13C and 𝛿15N (a-b) and isotopic distances (ID) (c-d) of size-fractioned plankton in warm and cold periods..…….………………………………………..……113 Fig. 14. Time series patterns and boxplots of POC (a) and biomass of 0-50 m depth-averaged 44-74 μm size-fractioned (b), 74-177 μm size-fractioned (c), and >500 μm size-fractioned zooplankton (d) in the Fei-Tsui Reservoir from July 2014 to November 2020….…… 114 Fig. 15. Time series patterns and boxplots of C and N contents in prey such as POM (a-b) and 44-74 μm size-fractioned zooplankton (c-d), respectively, in the Fei-Tsui Reservoir from July 2014 to November 2020.…………………………………………….……...…… 115 Fig. 16. Time series patterns and boxplots of C and N contents in consumer zooplankton such as >500 μm (a-b) and 74-177 μm (c-d) in the Fei-Tsui Reservoir from July 2014 to November 2020. ……..………………………………..………………….…………… 116 Fig. 17. Time series patterns and boxplots of trophic transfer efficiencies (TTEs) of carbon and nitrogen between POM and >500 μm size-fractioned zooplankton (a-b), POM and 74-177 μm size-fractioned zooplankton(c-d), and 74-44 and 74-177 μm size-fractioned zooplankton (e-f), respectively, in the Fei-Tsui Reservoir from July 2014 to November 2020..…………………………………………………….…………………………..… 117 List of Tables Table 1. Results of multivariate regression analysis with backward elimination between log10 trophic transfer efficiency (TTE) of energy and selected environmental factors.……. 119 Table 2. List of Pacific Tropical Cyclones (TCs) that hit the Fei-Tsui Reservoir from January 2012 to December 2015…………………………………..…………………………... 120 Table 3. Correlations between trophic transfer efficiency (TTE) of energy versus individual tropical cyclone-related environmental factors…………………………………….…. 122 Table 4. Final models of multivariate regression analysis with a stepwise backward selection of the trophic transfer efficiency (TTE) of energy between phytoplankton and zooplankton at 2 m depth versus the combined tropical cyclone-related factors…………....……… 123 Table 5. Results of the multivariate regression analysis with backward elimination investigating the combined effects of environmental factors on trophic transfer efficiencies (TTEs) of energy between microphytoplankton->500 µm and microphytoplankton-177-500 µm between cold and warm periods.…………….……………………………..………..... 124 Table 6. Results of the multivariate regression analysis with backward elimination investigating the influences of environmental factors on trophic transfer efficiency (TTE) of carbon between POM and >500 μm size-fractioned zooplankton in warm and cold periods from July 2014 to November 2020 in the Fei-Tsui Reservoir……………….……………... 125 | - |
| dc.language.iso | en | - |
| dc.subject | 能量傳遞 | zh_TW |
| dc.subject | 生物量比 | zh_TW |
| dc.subject | 颱風 | zh_TW |
| dc.subject | 浮游生物 | zh_TW |
| dc.subject | 淡水生態系統 | zh_TW |
| dc.subject | freshwater ecosystem | en |
| dc.subject | plankton | en |
| dc.subject | typhoon | en |
| dc.subject | energy transfer | en |
| dc.subject | Biomass ratio | en |
| dc.title | 貧營養集水區中浮游生物體型大小和環境因子對食階能量傳遞效率之影響 | zh_TW |
| dc.title | Influences of Body Sizes and Environmental Changes on Trophic Transfer Efficiency of Plankton in an Oligotrophic Reservoir | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 夏復國;謝志豪;賴昭成;何珮綺 | zh_TW |
| dc.contributor.oralexamcommittee | Fuh-kwo Shiah;Chih-hao Hsieh;Chaochen Lai;Pei-Chi Ho | en |
| dc.subject.keyword | 生物量比,能量傳遞,淡水生態系統,浮游生物,颱風, | zh_TW |
| dc.subject.keyword | Biomass ratio,energy transfer,freshwater ecosystem,plankton,typhoon, | en |
| dc.relation.page | 141 | - |
| dc.identifier.doi | 10.6342/NTU202304552 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-12-25 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 漁業科學研究所 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 4.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
