Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92347
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志鴻zh_TW
dc.contributor.advisorChih-Hung Chenen
dc.contributor.author黃偉傑zh_TW
dc.contributor.authorWei-Jie Huangen
dc.date.accessioned2024-03-21T16:43:57Z-
dc.date.available2025-02-01-
dc.date.copyright2024-03-21-
dc.date.issued2023-
dc.date.submitted2024-02-02-
dc.identifier.citation[1] V. V. Vasiliev and E. V. Morozov, Advanced mechanics of composite materials and structural elements. Newnes, 2013.
[2] T. W. Clyne and D. Hull, An introduction to composite materials. Cambridge uni versity press, 2019.
[3] Y. Zhou, M. A. Baseer, H. Mahfuz, and S. Jeelani, “Monte carlo simulation on ten sile failure process of unidirectional carbon fiber reinforced nano-phased epoxy,” Materials Science and Engineering: A, vol. 420, no. 1-2, pp. 63–71, 2006.
[4] L. Zu, S. Koussios, and A. Beukers, “Design of filament–wound domes based on continuum theory and non-geodesic roving trajectories,” Composites Part A: Applied Science and Manufacturing, vol. 41, no. 9, pp. 1312–1320, 2010.
[5] 王俊堯 et al., “纏繞複合材料等效勁度之模擬,” Ph.D. dissertation, 2006.
[6] 黃一萍, “複材編織製程技術與應用,” 機械工業雜誌, no. 446, pp. 60–68, 2020.
[7] D. Cohen, “Influence of filament winding parameters on composite vessel quality and strength,” Composites Part A: Applied Science and Manufacturing, vol. 28, no. 12, pp. 1035–1047, 1997.
[8] P. Stabla, M. Smolnicki, and W. Błażejewski, “The numerical approach to mosaic patterns in filament-wound composite pipes,” Applied Composite Materials, vol. 28, pp. 181–199, 2021.
[9] S.-l. Ren, L. Hua, Y.-z. Wang, and H.-y. FU, “Development of plc-based tension control system,” Chinese Journal of Aeronautics, vol. 20, no. 3, pp. 266–271, 2007.
[10] T. Sofi, S. Neunkirchen, and R. Schledjewski, “Path calculation, technology and opportunities in dry fiber winding: a review,” Advanced Manufacturing: Polymer & Composites Science, vol. 4, no. 3, pp. 57–72, 2018.
[11] D. Gay and S. V. Hoa, Composite materials: design and applications. CRC press, 2007.
[12] V. V. Vasiliev and E. V. Morozov, Mechanics and analysis of composite materials. Elsevier, 2001.
[13] L. Zu, H. Xu, X. Jia, Q. Zhang, H. Wang, and B. Zhang, “Winding path design based on mandrel profile updates of composite pressure vessels,” Composite Structures, vol. 235, p. 111766, 2020.
[14] M.-G. Han, S.-H. Chang et al., “Prediction of composite layer thickness for type iii hydrogen pressure vessel at the dome part,” Composite Structures, vol. 271, p. 114177, 2021.
[15] J. You, S. M. Jee, Y. M. Lee, S.-S. Lee, M. Park, T. A. Kim, and J. H. Park, “Car bon fiber-reinforced polyamide composites with efficient stress transfer via plasma assisted mechanochemistry,” Composites Part C: Open Access, vol. 6, p. 100209, 2021.
[16] 謝岳穎, “應用疊層參數之複合材料複合式最佳化方法,” Ph.D. dissertation, 2012.
[17] S. T. Peters, Composite filament winding. ASM International, 2011.
[18] I. Dalibor, T. Lisbôa, R. Marczak, and S. Amico, “A geometric approach for filament winding pattern generation and study of the influence of the slippage coefficient,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 41, pp. 1–16, 2019.
[19] F. Eggers, J. H. S. Almeida Jr, C. B. Azevedo, and S. C. Amico, “Mechanical re sponse of filament wound composite rings under tension and compression,” Polymer Testing, vol. 78, p. 105951, 2019.
[20] R. Rafiee, M. A. Torabi, and S. Maleki, “Investigating structural failure of a filament wound composite tube subjected to internal pressure: experimental and theoretical evaluation,” Polymer Testing, vol. 67, pp. 322–330, 2018.
[21] T. V. Lisbôa, J. H. S. Almeida Jr, A. Spickenheuer, M. Stommel, S. C. Amico, and R. J. Marczak, “Fem updating for damage modeling of composite cylinders under radial compression considering the winding pattern,” Thin-Walled Structures, vol. 173, p. 108954, 2022.
[22] A. Öchsner and M. Öchsner, The finite element analysis program MSC Marc/Mentat. Springer, 2016.
[23] A. Standard, “D2412, standard test method for determination of external loading characteristics of plastic pipe by parallel-plate loading,” Philadelphia, PA.: Ameri can Society for Testing and Materials, 2011.
[24] S. Nunna, A. R. Ravindran, J. Mroszczok, C. Creighton, and R. J. Varley, “A re view of the structural factors which control compression in carbon fibres and their composites,” Composite Structures, p. 116293, 2022.
[25] 蕭樂群 et al., “非對稱複合層板之自由振動分析,” 2005
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92347-
dc.description.abstract本研究主要在探討纖維纏繞此製造工藝對管件產品機械性質或破壞增長的影響,其被認為是製造複合材料軸對稱零件,例如壓力容器、管件等最有效的技術。然而一些研究論文指出是其中來回交織的纖維層所產生的上下交叉處會造成纖維層之間的機械性質或力學行為與單純疊層理論的纖維層不同,且無法利用市面上現有套裝軟體裡疊層理論產生的二維簡化模型來得知其差異,因此在生產管件產品時,無法選擇出較合適的製造工藝來進行製造。因此本研究將以壓力容器扣除圓蓋結構之複合材料管件為首要分析目標,利用上述兩種製造工藝分別製造出相同參數的管件並比較其差異,藉以分析出纏繞因素所造成之影響,而後並進一步透過完成纏繞模型壓縮實驗來驗證纏繞模型與模擬的可行性。

首先,本研究先透過 MATLAB 撰寫管件不同尺度之纏繞與疊貼 3D 模型,而後將其匯入有限元素軟體 Marc Mentat 進行徑向壓縮分析以探討兩種工藝結構可能存在的差異。而本文發現的第一點為機械性質的差異,在管件半徑尺寸放大的模型實驗,纏繞模型明顯的比疊貼模型更硬。第二點則是達到壓縮強度的形變,因為纏繞結構中的纖維層交疊起伏,不管是哪一個尺寸大小模型的壓縮試驗,纖維纏繞的模型都較快的達到壓縮強度並導致破壞,以上結果都可能是兩種不同工藝製造時可能產生的機械性質差異。

而本研究除了建立了不同尺度的疊貼與纏繞模型並從模擬中探討兩種工藝結構可能存在的差異,也進一步透過完成纏繞模型壓縮實驗來驗證纏繞模型與模擬的可行性。而在實驗與模擬試驗的結果比較下,本研究所建立的模擬模型在斷裂前與實驗的機械性質百分比誤差大約為 6% 以內,因此能推測本文的分析算是有效的方法。而在破壞預測的驗證上,在真實試驗中驗證了模擬中纖維會先從管件上下部分先開始斷裂的結果,且在破壞的位移上,本研究觀察到實驗的模型斷裂的位移則與本研究預測其達到壓縮強度的破壞位移接近。
zh_TW
dc.description.abstractThis study mainly explores the impact of the filament winding manufacturing pro cess on the mechanical properties or damage growth of pipe fittings. It is considered to be the most effective technology for manufacturing composite axisymmetric parts, such as pressure vessels, pipe fittings, etc.However, some research papers point out that the upper and lower intersections caused by the back-and-forth interwoven fiber layers will cause the mechanical properties or mechanical behaviors between the fiber layers to be differ ent from those of the fiber layers in the simple lamination theory, And it is impossible to use the two-dimensional simplified model generated by the stacking theory in the existing software packages on the market to know the difference. As a result, when producing pipe fittings, it is impossible to select a more suitable manufacturing process for manu facturing.Therefore, this study will take the composite pipe fittings of the pressure vessel minus the dome structure as the primary analysis target. The above two manufacturing processes are used to manufacture pipe fittings with the same parameters and comparethe differences, so as to analyze the impact of the winding factor, and then combine The feasibility of the winding model and simulation was further verified by completing the winding model compression experiment.
First, this study first used MATLAB to write 3D models of winding and prepreg of different scales of pipe, and then imported them into the finite element software Marc Mentat to conduct radial compression analysis to explore the possible differences between the two process structures. the first point discovered in this article is the difference in stiffness. In the model experiment of enlarging the radius of the pipe, the winding model is obviously harder than the prepreg model. The second point is the deformation that reaches the compressive strength. Because the fiber layers in the winding structure overlap and undulate, no matter which size model is tested in the compression test, the winding model reaches the compressive strength faster and causes damage. The above results It may be due to the difference in mechanical properties that may occur during the manufacturing of two different processes. In addition to establishing prepreg and winding models of different scales and explor ing the possible differences between the two process structures through simulation, this study also further verified the feasibility of the winding model and simulation by com pleting a compression experiment on the winding model. Comparing the results of experiments and simulation tests, the stiffness percentage error between the simulation model established in this study and the experiment before fracture is approximately within 6%. Therefore, it can be inferred that the analysis in this article is an effective method. In terms of verification of damage prediction, real tests have verified that the fibers in the simulation will break first from the upper and lower parts of the pipe. In terms of damage displacement, this study observed that the experimental model fracture displacement is consistent with this study, and the predicted failure displacement to reach compressive strength is close to that.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:43:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-21T16:43:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
目次 vii
圖次 x
表次 xii
Chapter 1 序論 1
1.1 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 碳纖維介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 製作過程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 影響複合材料成品表現之變因 . . . . . . . . . . . . . . . . . . . . 5
1.4.1 製程選擇 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2 材料的選擇 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.3 張力控制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.4 含浸過程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 研究主題與目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 本文概述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 2 應力應變與材料參數計算 10
2.1 等向性與異向性複合材料 . . . . . . . . . . . . . . . . . . . . . . 10
2.2 複合材料的應力應變分析原理 . . . . . . . . . . . . . . . . . . . . 11
2.3 複合材料層模型之材料特性與定義 . . . . . . . . . . . . . . . . . 12
2.3.1 纖維與樹脂之體積百分比計算 . . . . . . . . . . . . . . . . . . . 13
2.3.2 複合材料的質量密度計算 . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 複合層材料的厚度計算 . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 複合單層材料參數計算 . . . . . . . . . . . . . . . . . . . . . . . . 15
Chapter 3 模擬模型建立與輸出檔案 17
3.1 纏繞氣瓶之基本理論 . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1 纏繞角度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 聚集纏繞理論 (Band Pattern Concept) . . . . . . . . . . . . . . . . 17
3.1.3 纏繞角度之變化與修正過後之模型 . . . . . . . . . . . . . . . . 18
3.1.4 測地線 (Geodesic Paths) 之纏繞路徑與考慮摩擦力之偏移測地
線路徑理論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 纖維纏繞圖案的生成與路徑設計 . . . . . . . . . . . . . . . . . . 21
3.2.1 生成的纏繞圖案及特性 . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 纏繞一圈纖維的路徑與順序 . . . . . . . . . . . . . . . . . . . . 23
3.2.3 纏繞一循環纖維的路徑與順序 . . . . . . . . . . . . . . . . . . . 25
3.3 MATLAB 之各項參數模型輸出 . . . . . . . . . . . . . . . . . . . 26
3.3.1 纏繞心軸半徑 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 管壁之厚度比例 . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 本研究固定之參數 . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3.1 纏繞角度 . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3.2 材料參數 . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3.3 邊界條件 . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 有限元素與結果之分析方法 . . . . . . . . . . . . . . . . . . . . . 31
Chapter 4 結果與討論 34
4.1 心軸半徑 25mm 之徑向壓縮分析 . . . . . . . . . . . . . . . . . . 34
4.2 心軸半徑 75mm 之徑向壓縮分析 . . . . . . . . . . . . . . . . . . 36
4.3 在模擬中壓縮兩種模型之碳纖維拉伸壓縮應力分布 . . . . . . . . 40
4.4 驗證結果之壓縮試驗 . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.1 第一組纏繞模型驗證實驗 . . . . . . . . . . . . . . . . . . . . . . 43
4.4.2 第二組纏繞模型驗證實驗 . . . . . . . . . . . . . . . . . . . . . . 44
Chapter 5 結論與未來展望 47
5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
參考文獻 49
-
dc.language.isozh_TW-
dc.subject纖維纏繞zh_TW
dc.subject有限元素分析zh_TW
dc.subject複合材料管件zh_TW
dc.subject徑向壓縮zh_TW
dc.subjectFinite element methoden
dc.subjectComposite pipeen
dc.subjectFilament windingen
dc.subjectRadial compressionen
dc.title有限元素法分析纏繞與疊貼工藝製造之碳纖維複材管件的機械性質差異zh_TW
dc.titleFinite element analysis of the differences in mechanical properties of carbon fiber composite pipes manufactured by filament-winding and prepregen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee魏世昕;郭茂坤zh_TW
dc.contributor.oralexamcommitteeShi-Xin Wei;Mao-Kuen Kuoen
dc.subject.keyword纖維纏繞,有限元素分析,複合材料管件,徑向壓縮,zh_TW
dc.subject.keywordFilament winding,Finite element method,Composite pipe,Radial compression,en
dc.relation.page51-
dc.identifier.doi10.6342/NTU202400385-
dc.rights.note未授權-
dc.date.accepted2024-02-05-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
4.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved