Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92340
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧炯敏zh_TW
dc.contributor.advisorHyungmin Rhoen
dc.contributor.author洪靖媛zh_TW
dc.contributor.authorChing-Yuan Hungen
dc.date.accessioned2024-03-21T16:41:56Z-
dc.date.available2024-03-22-
dc.date.copyright2024-03-21-
dc.date.issued2024-
dc.date.submitted2024-01-19-
dc.identifier.citationAFA. 2023. Annual report. Taiwan Agriculture and Food Administration. Taiwan.
Ali S, Rizwan M, Arif MS, Ahmad R, Hasanuzzaman M, Ali B, and Hussain A. 2020. Approaches in enhancing thermotolerance in plants: an updated review. J Plant Growth Regul 39(1):456-480. https://doi.org/10.1007/s00344-019-09994-x.
Bassett MJ. 1986. Breeding vegetable crops. AVI Pub. Co., Westport, Conn.
Berg G, Rybakova D, Grube M, and Koberl M. 2016. The plant microbiome explored: implications for experimental botany. J. Exp. Bot. 67(4):995-1002. https://doi.org/10.1093/jxb/erv466.
Bhattarai S, Harvey JT, Djidonou D, and Leskovar DI. 2021. Exploring morpho-physiological variation for heat stress tolerance in tomato. Plants 10(2):347.
Bilger W and Björkman O. 1990. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25(3):173-185. https://doi.org/10.1007/BF00033159.
Bláha L. 2019. Importance of root-shoot ratio for crops production. Agron Agric Sci. 2(2):1-7. https://doi.org/10.24966/aas-8292/100012.
Bolivar-Anillo HJ, González-Rodríguez VE, Cantoral JM, García-Sánchez D, Collado IG, and Garrido C. 2021. Endophytic bacteria Bacillus subtilis, isolated from Zea mays, as potential biocontrol agent against Botrytis cinerea. Biol 10(6):492. https://doi.org/10.3390/biology10060492.
Calleja-Cabrera J, Boter M, Oñate-Sánchez L, and Pernas M. 2020. Root growth adaptation to climate change in crops. Front. Plant Sci. 11. https://doi.org/10.3389/fpls.2020.00544.
Cassán F, Coniglio A, López G, Molina R, Nievas S, De Carlan CLN, Donadio F, Torres D, Rosas S, Pedrosa FO, De Souza E, Zorita MD, De-Bashan L, and Mora V. 2020. Everything you must know about Azospirillum and its impact on agriculture and beyond. Biol Fertility Soils 56(4):461-479. https://doi.org/10.1007/s00374-020-01463-y.
Chan T-H, Rho H, and Ariyawansa H. 2022. The effects of plant growth-promoting bacteria on the physiological properties, nutrition contents and growth performance in lettuce under heat-stress conditions. Int Hortic Congress 2022.
Chaudhary S, Devi P, HanumanthaRao B, Jha UC, Sharma KD, Prasad PVV, Kumar S, Siddique KHM, and Nayyar H. 2022. Physiological and molecular approaches for developing thermotolerance in vegetable crops: a growth, yield and sustenance perspective. Front Plant Sci 13:878498. https://doi.org/10.3389/fpls.2022.878498.
Collier GF and Tibbitts TW. 1984. Effects of relative humidity and root temperature on calcium concentration and tipburn development in lettuce. J Am Soc Hort Sci 109(2):128-131. https://doi.org/10.21273/jashs.109.2.128.
Deng Y, Chen H, Li C, Xu J, Qi Q, Xu Y, Zhu Y, Zheng J, Peng D, Ruan L, and Sun M. 2019. Endophyte Bacillus subtilis evade plant defense by producing lantibiotic subtilomycin to mask self-produced flagellin. Commun Biol 2(1). https://doi.org/10.1038/s42003-019-0614-0.
Filho JLSdC, Gomes LAA, Biguzzi FA, Maluf WR, and Ferreira S-d. 2009. F4 families of crispleaf lettuce with tolerance to early bolting and homozygous for resistance to Meloidogyne incognita race 1. Hortic Bras 27:335-339.
Food and Agriculture Organization of the United Nation. 2023. FAOSTAT statistical database. [Rome] : FAO, c1997-. [2023/11/18]
Frantz JM, Ritchie G, Cometti NN, Robinson J, and Bugbee B. 2004. Exploring the limits of crop productivity: beyond the limits of tipburn in lettuce. J Am Soc Hort Sci 129(3):331-338. https://doi.org/10.21273/jashs.129.3.0331.
Fussy A and Papenbrock J. 2022. An overview of soil and soilless cultivation techniques—chances, challenges and the neglected question of sustainability. Plants 11(9):1153. https://doi.org/10.3390/plants11091153.
GmbH HW. 2019. Portable gas exchange fluorescence system GFS-3000 handbook of operation. Germany.
H.-O. Pörtner, D.C. Roberts, E.S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, and Okem A. 2022. IPCC, 2022: Summary for Policymakers, p. 3-33. In: H.-O. Pörtner DCR, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (ed.), Climate change 2022: Impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge, UK and New York, NY, USA. https://doi.org/10.1017/9781009325844.001.
Haj-Amor Z, Dhaouadi L, Al-Omran A, and Bouri S. 2021. Climate change and agricultural sustainable intensification in the arid lands, p 103-135. In: Jhariya MK, Meena RS, and Banerjee A (eds.). Ecological intensification of natural resources for sustainable agriculture. Springer Singapore, Singapore. https://doi.org/10.1007/978-981-33-4203-3_4.
Hashem A, Tabassum B, and Fathi Abd Allah E. 2019. Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26(6):1291-1297. https://doi.org/10.1016/j.sjbs.2019.05.004.
He F, Thiele B, Santhiraraja-Abresch S, Watt M, Kraska T, Ulbrich A, and Kuhn AJ. 2020. Effects of root temperature on the plant growth and food quality of chinese broccoli (Brassica oleracea var. alboglabra Bailey). Agron 10(5):702. https://doi.org/10.3390/agronomy10050702.
He J, Lee SK, and Dodd IC. 2001. Lmitations to photosynthesis of lettucegrown under tropical conditions: alleviation by root-zoone cooling. J Exp Bot 52(No.359):1323-1330.
He J, See XE, Qin L, and Choong TW. 2016. Effects of root-zone temperature on photosynthesis, productivity and nutritional quality of aeroponically grown salad rocket (Eruca sativa) Vegetable. Am J Plant Sci 07(14):1993-2005. https://doi.org/10.4236/ajps.2016.714181.
Heath RL and Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189-198. https://doi.org/https://doi.org/10.1016/0003-9861(68)90654-1.
Insights PM. 2023. Global hydroponic lettuce market research report 2022.
Junglee S, Urban L, Sallanon H, and Lopez-Lauri F. 2014. Optimized assay for hydrogen peroxide determination in plant tissue using potassium iodide. Am J Anal Chem 05(11):730-736. https://doi.org/10.4236/ajac.2014.511081.
Kao T-C. 2017a. A novel design of dynamic root floating hydroponic system specially for leafy vegetable cultivation in humid hot season. Special Issue of Taichung District Agricultural Research and Extension Station 133:1-24.
Kao T-C. 2017b. The rational application of liquid fertilizer on soilless vegetable cultivation. Special Issue of Taichung District Agricultural Research and Extension Station 133:189 - 205.
Karnoutsos P, Karagiovanidis M, Bantis F, Chatzistathis T, Koukounaras A, and Ntinas GK. 2020. Controlled root-zone temperature effect on baby leaf vegetables yield and quality in a floating system under mild and extreme weather conditions. J Sci Food Agric https://doi.org/10.1002/jsfa.11033.
Katsenios N, Andreou V, Sparangis P, Djordjevic N, Giannoglou M, Chanioti S, Kasimatis C-N, Kakabouki I, Leonidakis D, Danalatos N, Katsaros G, and Efthimiadou A. 2022. Assessment of plant growth promoting bacteria strains on growth, yield and quality of sweet corn. Sci Rep 12(1). https://doi.org/10.1038/s41598-022-16044-2.
Kawasaki Y, Matsuo S, Suzuki K, Kanayama Y, and Kanahama K. 2013. Root-zone cooling at high air temperatures enhances physiological activities and internal structures of roots in young tomato plants. J Jpn Soc for Hortic Sci 82(4):322-327. https://doi.org/10.2503/jjshs1.82.322.
Koevoets IT, Venema JH, Elzenga JTM, and Testerink C. 2016. Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front Plant Sci 7(1335). https://doi.org/10.3389/fpls.2016.01335.
Kuronuma T and Watanabe H. 2021. Identification of the causative genes of calcium deficiency disorders in horticulture crops: a systematic review. Agric 11(10):906. https://doi.org/10.3390/agriculture11100906.
Lam VP, Kim SJ, Bok GJ, Lee JW, and Park JS. 2020. The effects of root temperature on growth, physiology, and accumulation of bioactive compounds of Agastache rugosa. Agric 10(5):162. https://doi.org/10.3390/agriculture10050162.
Lee JG, Choi CS, Jang YA, Jang SW, Lee SG, and Um YC. 2013. Effects of air temperature and air flow rate control on the tipburn occurrence of leaf lettuce in a closed-type plant factory system. Hortic Environ Biotechnol 54(4):303-310. https://doi.org/10.1007/s13580-013-0031-0.
Lee RJ, Bhandari SR, Lee G, and Lee JG. 2019. Optimization of temperature and light, and cultivar selection for the production of high-quality head lettuce in a closed-type plant factory. Hortic Environ Biotechnol 60(2):207-216. https://doi.org/10.1007/s13580-018-0118-8.
LI-COR I. 2023. Using the LI-600 Porometer/Fluorometer Instruction Manual.
Li M-H. 2019. An analysis of the factors affecting taiwan’s iceberg lettuce export to target markets. National Taiwan University. 2019. https://doi.org/10.6342/ntu201901823.
Liu M-H, Xin Z-M, Xu J, Sun F, Dou L-J, and Li Y-H. 2013. Influence of leaf size of plant on leaf transpiration and temperature in arid regions. Chin J Plant Ecol 37(5):436-442. https://doi.org/10.3724/sp.j.1258.2013.00045.
Liu R, Su Z, Zhou H, Huang Q, Fan S, Liu C, and Han Y. 2020. LsHSP70 is induced by high temperature to interact with calmodulin, leading to higher bolting resistance in lettuce. Sci Rep 10(1):15155. https://doi.org/10.1038/s41598-020-72443-3.
Lutts S, Kinet JM, and Bouharmont J. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78(3):389-398. https://doi.org/https://doi.org/10.1006/anbo.1996.0134.
Maxwell K and Johnson GN. 2000. Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659-668. https://doi.org/10.1093/jexbot/51.345.659.Moncada A, Vetrano F, and Miceli A. 2020. Alleviation of salt stress by plant growth-promoting bacteria in hydroponic leaf lettuce. Agron 10(10):1523. https://doi.org/10.3390/agronomy10101523.
Morgan L. 2021. Hydroponics and protected cultivation : a practical guide. CAB International, Oxford.
Nemali K. 2022. History of controlled environment horticulture: greenhouses. HortScience 57(2):239-246. https://doi.org/10.21273/hortsci16160-21.
Nguyen, Lu, Kagawa, and Takagaki. 2019. Optimization of photosynthetic photon flux density and root-zone temperature for enhancing secondary metabolite accumulation and production of coriander in plant factory. Agron 9(5):224. https://doi.org/10.3390/agronomy9050224.
Ogawa E, Hikosaka S, and Goto E. 2018. Effects of nutrient solution temperature on the concentration of major bioactive compounds in red perilla. J Agric Meterol 74(2):71-78. https://doi.org/10.2480/agrmet.D-17-00037.
Olle M and Bender I. 2009. Causes and control of calcium deficiency disorders in vegetables: a review. J Hortic Sci Biotechnol 84(6):577-584. https://doi.org/10.1080/14620316.2009.11512568.
Orozco-Mosqueda MDC, Flores A, Rojas-Sánchez B, Urtis-Flores CA, Morales-Cedeño LR, Valencia-Marin MF, Chávez-Avila S, Rojas-Solis D, and Santoyo G. 2021. Plant growth-promoting bacteria as bioinoculants: attributes and challenges for sustainable crop improvement. Agron 11(6):1167. https://doi.org/10.3390/agronomy11061167.
Paidhungat M, Setlow B, Daniels WB, Hoover D, Papafragkou E, and Setlow P. 2002. Mechanisms of induction of germination of Bacillus subtilis spores by high pressure. Appl Environ Microbiol 68(6):3172-3175. https://doi.org/10.1128/aem.68.6.3172-3175.2002.
Pathak RK, Singh DB, Sharma H, Pandey D, and Dwivedi S. 2021. Chapter 21 - Calcium uptake and translocation in plants, p 373-386. In: Upadhyay SK (ed.). Calcium transport elements in plants. academic press. https://doi.org/https://doi.org/10.1016/B978-0-12-821792-4.00018-7.
Periard Y, Caron J, Lafond JA, and Jutras S. 2015. Root water uptake by romaine lettuce in a muck soil: linking tip burn to hydric deficit. Vadose Zone J 14(6). https://doi.org/10.2136/vzj2014.10.0139.
Rho H, Van Epps V, Wegley N, Doty SL, and Kim SH. 2018. Salicaceae endophytes modulate stomatal behavior and increase water use efficiency in rice. Front Plant Sci 9:188. https://doi.org/10.3389/fpls.2018.00188.
Rosental L, Still DW, You Y, Hayes RJ, and Simko I. 2021. Mapping and identification of genetic loci affecting earliness of bolting and flowering in lettuce. Theor Appl Genet 134(10):3319-3337. https://doi.org/10.1007/s00122-021-03898-9.
Sambo P, Nicoletto C, Giro A, Pii Y, Valentinuzzi F, Mimmo T, Lugli P, Orzes G, Mazzetto F, Astolfi S, Terzano R, and Cesco S. 2019. Hydroponic solutions for soilless production systems: issues and opportunities in a smart agriculture perspective. Front Plant Sci 10:923. https://doi.org/10.3389/fpls.2019.00923.
Saure MC. 1998. Causes of the tipburn disorder in leaves of vegetables. Sci Hortic 76:131-147.
Shi R. 2019. Effects of air and root-zone temperatures on growth and quality of indoor hydroponic lettuce. Auburn University, Master thesis.
Su Y, Liu C, Fang H, and Zhang D. 2020. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microbial Cell Factories 19(1). https://doi.org/10.1186/s12934-020-01436-8.
Tang R, Niu S, Zhang G, Chen G, Haroon M, Yang Q, Rajora OP, and Li X-Q. 2018. Physiological and growth responses of potato cultivars to heat stress. Bot 96(12):897-912. https://doi.org/10.1139/cjb-2018-0125.
Thompson HC, Langhans RW, Both A-J, and Albright LD. 1998. Shoot and root temperature effects on lettuce growth in a floating hydroponic system. J Am Soc Hort Sci 123(3):361-364. https://doi.org/10.21273/jashs.123.3.361.
Turan M, Yildirim E, Kitir N, Unek C, Nikerel E, Ozdemir BS, Güneş A, and N.E.P M. 2017. Beneficial role of plant growth-promoting bacteria in vegetable production under abiotic stress, p 151-166. Springer International Publishing. https://doi.org/10.1007/978-3-319-54401-4_7.
United Nations Department of Economic and Social Affairs PD. 2022. World population prospects 2022: summary of results, New York.
Vetrano F, Miceli C, Angileri V, Frangipane B, Moncada A, and Miceli A. 2020. Effect of bacterial inoculum and fertigation management on nursery and field production of lettuce plants. Agron 10(10):1477. https://doi.org/10.3390/agronomy10101477.
Wahid A, Gelani S, Ashraf M, and Foolad M. 2007. Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199-223. https://doi.org/10.1016/j.envexpbot.2007.05.011.
Wang X, Zhang W, Miao Y, and Gao L. 2016. Root-zone warming differently benefits mature and newly unfolded leaves of cucumis sativus l. seedlings under sub-optimal temperature stress. PLOS ONE 11(5):e0155298. https://doi.org/10.1371/journal.pone.0155298.
Welbaum GE. 2015. Vegetable production and practices. CABI.
Westers L, Westers H, and Quax WJ. 2004. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim. Biophys. Acta 1694(1-3):299-310. https://doi.org/10.1016/j.bbamcr.2004.02.011.
Wien HC. 2020. lettuce, p 333-356. In: Stützel H and Wien HC (eds.). The physiology of vegetable crops. CAB International, UK.
Xu Q and Huang B. 2000. Effects of differential air and soil temperature on carbohydrate metabolism in creeping bentgrass. Crop Sci 40(5):1368-1374. https://doi.org/10.2135/cropsci2000.4051368x.
Xu W, Yang Q, Yang F, Xie X, Goodwin PH, Deng X, Tian B, and Yang L. 2022. Evaluation and genome analysis of Bacillus subtilis YB-04 as a potential biocontrol agent against fusarium wilt and growth promotion agent of cucumber. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.885430.
Yaghoubi Khanghahi M, Leoni B, and Crecchio C. 2021. Photosynthetic responses of durum wheat to chemical/microbiological fertilization management under salt and drought stresses. Acta Physiologiae Plantarum 43(8). https://doi.org/10.1007/s11738-021-03289-z.
Zhang L, Su W, Tao R, Zhang W, Chen J, Wu P, Yan C, Jia Y, Larkin RM, Lavelle D, Truco M-J, Chin-Wo SR, Michelmore RW, and Kuang H. 2017. RNA sequencing provides insights into the evolution of lettuce and the regulation of flavonoid biosynthesis. Nature Commun 8(1):2264. https://doi.org/10.1038/s41467-017-02445-9.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92340-
dc.description.abstract根據政府間氣候變化專門委員會(Intergovernmental Panel on Climate Change, IPCC)的調查報告,全球地表溫度至2100年預計上升2到5°C,而溫度的上升將影響萵苣的生產。萵苣為全球重要的經濟作物,使用以下兩種方法評估是否能於未來較高溫度的環境下維持萵苣生產:根部溫度(root zone temperature, RZT)降低與施用由宜蘭三星蔥分離出的植物生長促進細菌 (plant growth-promoting bacteria, PGPB) ― 枯草桿菌(Bacillus subtilis GFB04).
在前三個試驗中,根溫隨環境變動(RZT-A)與根溫維持低溫(RZT-CO)兩種根溫處理,和高空氣溫度(H-Tair 35/30°C)與低空氣溫度(L-Tair 30/25 或25/20 °C)兩種氣溫處理。在第四個試驗中,根溫和接種枯草桿菌與否則為兩個主要因子。結果顯示,RZT-CO比RZT-A顯著增加了萵苣的地上部鮮重47%至53%,同時地上部的相對含水量(RWC)增加,而根部鮮重降低乾重卻升高,係因根部RWC於RZT-CO組顯著降低,這可能與根部活力有關。在試驗中,葉片的生理表現沒有呈現一致的趨勢,然葉片溫度與環境溫度差(Tdif) 隨萵苣生長而整體降低,可能與萵苣整體對於環境的適應力提升相關。接種枯草桿菌在高溫下減少植物的鮮重和氣孔導度,同時顯著增加丙二醛(malondialdehyde, MDA)的含量,顯示接種之後的萵苣相比於未接種的萵苣,於高溫下面臨更強的逆境。或許此菌株與本奶油萵苣品種於水耕環境下並不相容,未來若想於水耕環境中施用PGPB可能需要尋找其他菌株方可有其他發現。
zh_TW
dc.description.abstractAccording to IPCC (Intergovernmental Panel on Climate Change), the global surface temperature is expected to increase by 2°C to 5°C by 2100, which could impact the production of lettuce, an important vegetable worldwide. Two approaches were evaluated to maintain or increase lettuce production under heat stress: cooling the root zone temperature (RZT) and applying Bacillus subtilis GFB04, one of the plant growth-promoting bacteria (PGPB) isolated from Welsh onion.
Ambient RZT (RZT-A) compared to RZT cooling (RZT-CO), and high air temperature (H-Tair, 35/30°C) compared to low air temperature (L-Tair, 30/25 or 25/20) were the main two factors in the first three experiments (Expts.). In Expt. 4, RZT and inoculation (LB compared to Inoc.) were investigated. The results indicated that RZT-CO significantly increased lettuce shoot fresh weight (FW) by 47% to 53% under H-Tair. The relative water content (RWC) of the shoot increased under RZT-CO, but root RWC was reduced under RZT-CO, which might relate to the root vigor. The leaf physiological performance did not exhibit a consistent trend in the Expts. The B. subtilis strain did not appear compatible with butterhead lettuce in a hydroponic system, as it decreased plant FW and gs and increased the malondialdehyde contents under H-Tair.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:41:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-21T16:41:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTABLE OF CONTENTS
致謝 i
摘要 ii
Abstract iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Research Background and Literature Review 1
1.1.1 Heat Stress Effect Plant Performance 1
1.1.2 Root Zone Temperature Affects Crops’ Growth Performance 2
1.1.3 Plant Growth-promoting Bacteria 4
1.1.4 Brief Introduction of Lettuce 7
1.1.5 Hydroponic System 9
1.1.6 Hydroponic Lettuce in Taiwan 11
1.2 Aim of the Study 13
1.3 Hypothesis 13
Chapter 2 The effects of root zone temperature on lettuce in the hydroponic system 16
2.1 Materials and Methods 16
2.1.1 Experiment Design 16
2.1.2 Seedling Nursing 17
2.1.3 Environmental Settings in Phytotron 18
2.1.4 Hydroponic System Settings 18
2.1.5 Leaf Physiology Measurement 20
2.1.6 Harvest Quality 24
2.1.7 Data Analysis 28
2.2 Results 28
2.2.1 Expt. 1- Preliminary Test of RZT Effects on Lettuce Growth and Physiology 28
2.2.2 Expt. 2- Investigation of Effects of RZT-CO on Lettuce Growth and Physiology 30
2.2.3 Expt. 3- Validation of Effects of RZT-CO on Lettuce Growth and Physiology 31
2.3 Discussion 33
2.3.1 Biomass Change 33
2.3.2 Stem Elongation 33
2.3.3 Relative Water Content and R/S Ratio 34
2.3.4 Leaf Physiological Changes Over the Growth Period 35
2.3.5 Diurnal Pattern of Leaf Physiology 36
2.3.4 Stress Indicators 36
Chapter 3 Investigation of PGPB on lettuce in hydroponic system under heat stress 66
3.1 Materials and Methods 66
3.1.1 Experiment Design 66
3.1.2. Bacteria Inoculation 66
3.1.3 Seedling Nursing 67
3.1.4 Environment Settings in Phytotron 67
3.1.5 Hydroponic System Settings 68
3.1.6 Leaf Physiology Measurement 68
3.1.7 Harvest Quality 68
3.1.8 Data Analysis 68
3.2 Results 68
3.2.1 Biomass and Growth Parameters Changes 68
3.2.2 Leaf Physiology Change Over the Growth Period 69
3.2.3 Diurnal Pattern of Leaf Physiology 70
3.2.4 Stress Indicators 70
3.3 Discussion 70
Chapter 4. Overall Conclusions 84
References 86
Supplementary 92
-
dc.language.isoen-
dc.subject水耕zh_TW
dc.subject氣孔導度zh_TW
dc.subject枯草桿菌zh_TW
dc.subject植物生長促進細菌zh_TW
dc.subject丙二醛zh_TW
dc.subjecthydroponicen
dc.subjectmalondialdehydeen
dc.subjectstomatal conductanceen
dc.subjectBacillus subtilisen
dc.subjectPGPBen
dc.title根溫降低與植物生長促進細菌在熱逆境下對萵苣生長的影響zh_TW
dc.titleThe Effects of Root Zone Cooling and Plant Growth-promoting Bacteria on Lettuce (Lactuca sativa) Growth under Heat Stressen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊雯如;林淑怡;陳葦玲zh_TW
dc.contributor.oralexamcommitteeWen-Ju Yang;Shu-I Lin;Wei-Ling Chenen
dc.subject.keyword水耕,植物生長促進細菌,枯草桿菌,氣孔導度,丙二醛,zh_TW
dc.subject.keywordhydroponic,PGPB,Bacillus subtilis,stomatal conductance,malondialdehyde,en
dc.relation.page98-
dc.identifier.doi10.6342/NTU202400116-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-01-22-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
dc.date.embargo-lift2029-01-16-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
4.49 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved