請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92331完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江宏仁 | zh_TW |
| dc.contributor.advisor | Hong-Ren Jiang | en |
| dc.contributor.author | 莊翔崴 | zh_TW |
| dc.contributor.author | Hsiang-Wei Chuang | en |
| dc.date.accessioned | 2024-03-21T16:39:22Z | - |
| dc.date.available | 2024-03-22 | - |
| dc.date.copyright | 2024-03-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-16 | - |
| dc.identifier.citation | [1]. Wen, N., et al., Emerging flexible sensors based on nanomaterials: Recent status and applications. Journal of Materials Chemistry A, 2020. 8(48): p. 25499-25527.
[2]. Han, S.T., et al., An overview of the development of flexible sensors. Advanced materials, 2017. 29(33): p. 1700375. [3]. Kumar, N., et al., Top-down synthesis of graphene: A comprehensive review. FlatChem, 2021. 27: p. 100224. [4]. Zhang, Y., et al., Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano today, 2010. 5(1): p. 15-20. [5]. Gao, W., et al., Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nature nanotechnology, 2011. 6(8): p. 496-500. [6]. El-Kady, M.F., et al., Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science, 2012. 335(6074): p. 1326-1330. [7]. Lin, J., et al., Laser-induced porous graphene films from commercial polymers. Nature communications, 2014. 5(1): p. 5714. [8]. Chyan, Y., et al., Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS nano, 2018. 12(3): p. 2176-2183. [9]. Kulyk, B., et al., Laser-induced graphene from paper for mechanical sensing. ACS Applied Materials & Interfaces, 2021. 13(8): p. 10210-10221. [10]. Su, C., et al., Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nature communications, 2012. 3(1): p. 1298. [11]. Li, Y., et al., Laser‐induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces. Advanced Materials, 2017. 29(27): p. 1700496. [12]. Ferrari, A.C. and D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 2013. 8(4): p. 235-246. [13]. Li, Z., et al., Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres. Progress in Materials Science, 2023: p. 101089. [14]. Nanda, S.S., et al., Raman spectrum of graphene with its versatile future perspectives. TrAC Trends in Analytical Chemistry, 2016. 80: p. 125-131. [15]. Ferrari, A.C., et al., Raman spectrum of graphene and graphene layers. Physical review letters, 2006. 97(18): p. 187401. [16]. Kim, Y.-J., et al., Wood-based flexible graphene thermistor with an ultra-high sensitivity enabled by ultraviolet femtosecond laser pulses. CIRP Annals, 2021. 70(1): p. 443-446. [17]. Yen, Y.-H., et al., Laser-Induced Graphene Stretchable Strain Sensor with Vertical and Parallel Patterns. Micromachines, 2022. 13(8): p. 1220. [18]. Huang, L., et al., Wearable flexible strain sensor based on three-dimensional wavy laser-induced graphene and silicone rubber. Sensors, 2020. 20(15): p. 4266. [19]. Zheng, H., et al., Wearable LIG Flexible Stress Sensor Based on Spider Web Bionic Structure. Coatings, 2023. 13(1): p. 155. [20]. Lamberti, A., et al., A highly stretchable supercapacitor using laser‐induced graphene electrodes onto elastomeric substrate. Advanced Energy Materials, 2016. 6(10): p. 1600050. [21]. Song, W., et al., Flexible, stretchable, and transparent planar microsupercapacitors based on 3D porous laser‐induced graphene. Small, 2018. 14(1): p. 1702249. [22]. Tang,L.et al.,Laser-Induced Graphene Electrodes on Poly (ether–ether–ketone)/PDMS Composite Films for Flexible Strain and Humidity Sensors. ACS Applied Nano Materials, 2023. 6(19): p. 17802-17813. [23]. Wang, H., et al., Laser-induced porous graphene on Polyimide/PDMS composites and its kirigami-inspired strain sensor. Theoretical and Applied Mechanics Letters, 2021. 11(2): p. 100240. [24]. Parmeggiani, M., et al., PDMS/polyimide composite as an elastomeric substrate for multifunctional laser-induced graphene electrodes. ACS applied materials & interfaces, 2019. 11(36): p. 33221-33230. [25]. Sinha, K., et al., Laser induction of graphene onto lignin-upgraded flexible polymer matrix. Materials Letters, 2021. 286: p. 129268. [26]. Zaccagnini, P., et al., Laser‐Induced Graphenization of PDMS as Flexible Electrode for Microsupercapacitors. Advanced Materials Interfaces, 2021. 8(23): p. 2101046. [27]. Zhu, Y., et al., Fabrication of low-cost and highly sensitive graphene-based pressure sensors by direct laser scribing polydimethylsiloxane. ACS applied materials & interfaces, 2019. 11(6): p. 6195-6200. [28]. Brassard, J.-D., D.K. Sarkar, and J. Perron, Studies of drag on the nanocomposite superhydrophobic surfaces. Applied Surface Science, 2015. 324: p. 525-531. [29]. Nine, M.J., et al., Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties. ACS applied materials & interfaces, 2015. 7(51): p. 28482-28493. [30]. Chakradhar, R., et al., Fabrication of superhydrophobic surfaces based on ZnO–PDMS nanocomposite coatings and study of its wetting behaviour. Applied Surface Science, 2011. 257(20): p. 8569-8575. [31]. Xi, J. and L. Jiang, Biomimic superhydrophobic surface with high adhesive forces. Industrial & Engineering Chemistry Research, 2008. 47(17): p. 6354-6357. [32]. Farshchian, B., et al., Laser-induced superhydrophobic grid patterns on PDMS for droplet arrays formation. Applied Surface Science, 2017. 396: p. 359-365. [33]. Chakraborty, A., N.R. Gottumukkala, and M.C. Gupta, Superhydrophobic Surface by Laser Ablation of PDMS. Langmuir, 2023. 39(32): p. 11259-11267. [34]. Jiang, H.-R.and D.-C.Chan, Superhydrophobicity on nanostructured porous hydrophilic material. Applied Physics Letters, 2016. 108(17). [35]. Seo, J. and L.P. Lee, Effects on wettability by surfactant accumulation/depletion in bulk polydimethylsiloxane (PDMS). Sensors and Actuators B:Chemical, 2006. 119(1): p. 192-198. [36]. Ren, X., et al., Electroosmotic properties of microfluidic channels composed of poly (dimethylsiloxane). Journal of Chromatography B:Biomedical Sciences and Applications, 2001. 762(2): p. 117-125. [37]. Gomathi, N., et al., Surface modification of poly (dimethylsiloxane) through oxygen and nitrogen plasma treatment to improve its characteristics towards biomedical applications. Surface Topography: Metrology and Properties, 2015. 3(3): p. 035005. [38]. Yang, C. and Y.J. Yuan, Investigation on the mechanism of nitrogen plasma modified PDMS bonding with SU-8. Applied Surface Science, 2016. 364: p. 815-821. [39]. Keranov, I., et al., Topography characterization and initial cellular interaction of plasma‐based Ar+ beam‐treated PDMS surfaces. Journal of Applied Polymer Science, 2009. 111(5): p. 2637-2646. [40]. Bodas, D. and C. Khan-Malek, Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments. Microelectronic engineering, 2006. 83(4-9): p. 1277-1279. [41]. Chen, H.-Y. and J. Lahann, Fabrication of discontinuous surface patterns within microfluidic channels using photodefinable vapor-based polymer coatings. Analytical chemistry, 2005. 77(21): p. 6909-6914. [42]. Moon, H., et al., Low voltage electrowetting-on-dielectric. Journal of applied physics, 2002. 92(7): p. 4080-4087. [43]. Shen, H.-H., et al., EWOD microfluidic systems for biomedical applications. Microfluidics and Nanofluidics, 2014. 16: p. 965-987. [44]. Van Grinsven, K.L., A. Ousati Ashtiani, and H. Jiang, Fabrication and actuation of an electrowetting droplet array on a flexible substrate. Micromachines, 2017. 8(11): p. 334. [45]. Dai, H., et al., Controllable high‐speed electrostatic manipulation of water droplets on a superhydrophobic surface. Advanced Materials, 2019. 31(43): p. 1905449. [46]. Liu, Y., X. Xu, and J. Liu, Forces and charge analysis of a water droplet dragged by an electric field. Physics of Fluids, 2022. 34(11). [47]. Kawamoto, H. and S. Hayashi, Fundamental investigation on electrostatic travelling-wave transport of a liquid drop. Journal of physics D: Applied physics, 2006. 39(2): p. 418. [48]. Washizu, M., Electrostatic actuation of liquid droplets for micro-reactor applications. IEEE transactions on industry applications, 1998. 34(4): p. 732-737. [49]. Seethapathy, S. and T. Gorecki, Applications of polydimethylsiloxane in analytical chemistry: A review. Analytica chimica acta, 2012. 750: p. 48-62. [50]. Hebbar, R., A. Isloor, and A. Ismail, Contact angle measurements, in Membrane characterization. 2017, Elsevier. p. 219-255. [51]. Shin, J., et al., Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis. Nature Materials, 2021. 20(1): p. 100-107. [52]. Nakajima, Y., et al., Femtosecond laser-based modification of PDMS to electrically conductive silicon carbide. Nanomaterials, 2018. 8(7): p. 558. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92331 | - |
| dc.description.abstract | 近年來,聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)矽膠材料由於其化學穩定性、柔軟性與生物相容性,使其在生物醫學、柔性感測器與微流體晶片的應用日益廣泛。為了賦予PDMS更多樣的功能與增加在各領域的應用,許多研究常透過添加高分子聚合物或是具有功能性的微奈米顆粒來製作PDMS複合材料。儘管如此,要精確控制這些複合材料的特性通常需要複雜的製造流程與較高的生產成本。
本論文提出一種藉由445nm藍光二極體雷射誘導生成石墨烯(Laser-induced Graphene)的技術,在PDMS混和石墨(Graphite)所製作的PDMS/Graphite柔性基材上調控表面潤濕性與導電性的方法。為了提高PDMS在可見光波段的吸收率,我們在PDMS中加入了石墨粉末使雷射過程中有更好的轉換並且降低對焦系統的要求,也發現加入不同重量百分濃度的石墨在PDMS中經由雷射轉換過後所產生的石墨烯結構與導電性都有所差異,更高濃度所產生的石墨烯層較厚且與基材的附著力較高。為了更進一步提升導電率也加入可溶於PDMS中的TEG,製作PDMS/Graphite/TEG的複合材料,並且證實在PDMS此類矽膠材料中加入含有碳源的物質是有利於生成石墨烯。 上述方法主要是透過改變基材組成來調控表面特性,而本研究亦透過不同雷射功率來對PDMS/Graphite基材調控其表面潤濕性與導電性,較低雷射功率所產的石墨烯結構為片狀且具有超疏水特性,而使用較高雷射功率所產生之石墨烯為粉狀且為超親水表面,而藉由功率的連續調控使表面潤濕性從超疏水連續變化到超親水。 根據先前研究之成功我們可一步製作可圖案化的超疏水電極,並將此作為共平面式靜電操縱液滴的驅動電極,此裝置可用來進行液滴的傳輸與合併,而高導電率與較厚的石墨烯層所製作出的電極則可用來作為柔性應變感測器。此研究之方法不僅可一步驟在柔性基材上產生電極,並且賦予其連續潤濕性的變化,相信開拓了更多柔性電極的應用可能性。 | zh_TW |
| dc.description.abstract | In recent years, the silicone material Polydimethylsiloxane (PDMS) has become widely used in biomedicine, flexible sensors, and microfluidic chips due to its chemical stability, flexibility, and biocompatibility. To enhance the functionality of PDMS and increase the applications in various field, many studies often fabricate PDMS composite materials by adding high molecular polymers or functional micro- and nanoparticles.Despite these efforts, precise control composite materials properties often require complex manufacturing processes and make production costs increase.
In this study we propose a technique using 445nm blue diode laser to induce Graphene on PDMS/Graphite flexible substrates. This method allows the modulation of surface wettability and conductivity on a flexible PDMS/Graphite substrates. To improve PDMS absorption in the visible wavelength. We added graphite powder into PDMS to achieve easier conversion during the laser process and reducing the requirements of the focus system. We also found adding different weight percentage concentrations of graphite into PDMS, after laser conversion the structure and conductivity of graphene were different. The graphene have thicker structure and higher adhesion to the substrate was produced in higher concentration. In order to further improve the conductivity, TEG was added to PDMS/Graphite composite material, and it was confirmed that adding carbon source-containing substances to PDMS is beneficial to the generation of graphene. The above methods primarily involve altering the substrate composition to regulate surface conductivity. This study also demonstrates the control of surface wettability in PDMS/Graphite substrates by using different laser powers. The graphene with superhydrophobic and flake structures characteristics was produced by lower laser power, while the graphene with a hydrophilic property was produced by higher laser power. Continuous adjustment of laser power leds to a transition in surface wettability from superhydrophobic to hydrophilic. Based on our results, we can fabricate patternable superhydrophobic electrodes in one step and use this as a driving electrode for coplanar electrostatic manipulation of droplets. This device can be used to transport and combine droplets. Electrodes made from high conductivity and thick graphene layers can also be used as flexible strain sensors. The method in this study can generate electrodes on flexible substrates in one step and control the surface wettability. This may open up more application possibilities for flexible electrodes | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:39:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-21T16:39:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
誌謝 i 摘要 ii ABSTRACT iii 目次 v 圖次 viii 表次 xi 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 內容簡介 2 第二章 文獻回顧與理論基礎 3 2.1 石墨烯介紹 3 2.1.1 石墨烯簡介 3 2.1.2 雷射誘導生成石墨烯(Laser-induced Graphene, LIG) 4 2.1.3 石墨烯的拉曼光譜(Raman Spectrum) 6 2.1.4 雷射誘導石墨烯於Polydimethylsiloxane, PDMS 9 2.2 PDMS表面潤濕性 10 2.3 超疏水表面液滴輸送裝置 12 2.3.1 介電質電潤濕(Electrowetting-on-dielectric,EWOD) 13 2.3.2 靜電驅動 14 第三章 實驗方法 17 3.1 實驗材料與設備 17 3.1.1 聚二甲基矽氧烷(Polydimethylsiloxane, PDMS) 17 3.1.2 石墨粉末 17 3.1.3 三乙二醇(Triethylene glycol, TEG) 18 3.1.4 導電銀膠 18 3.1.5 445nm 藍光雷射切割機 19 3.1.6 高壓直流電源供應器 20 3.2 基材與實驗樣本製作 21 3.2.1 PDMS/Graphite, PDMS/Graphite/TEG複合基材的製備 21 3.2.2 應變感測器的製作 22 3.2.3 共平面式電極靜電液滴傳輸裝置的製作 23 3.3 實驗設置 24 3.3.1 接觸角量測 24 3.3.2 應變感測器量測系統 25 第四章 實驗結果與討論 27 4.1 雷射誘導石墨稀於矽膠複合基材表面 27 4.1.1 不同石墨添加比例的閥值功率 27 4.1.2 不同雷射速度下的閥值功率 29 4.1.3 拉曼光譜分析 30 4.1.4 紅外光譜(FTIR)分析 33 4.1.5 445nm雷射功率對石墨烯生成的影響 35 4.1.6 不同PDMS/Graphite複合基材組成比例的電性與結構 37 4.1.7 不同PDMS/Graphite複合基材組成比例的表面撕除實驗 40 4.1.8 透過添加三甘醇(TEG)增強石墨烯電性 42 4.1.9 透過雷射功率調控表面潤濕性 44 4.2 柔性應變感測器 47 4.2.1 無塗覆PDMS作為保護層的柔性應變感測器 48 4.3 有塗覆PDMS作為保護層的柔性應變感測器 51 4.3.1 小結 55 4.4 共平面式靜電液滴傳輸裝置 56 第五章 總結與未來展望 57 參考文獻 58 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 表面潤濕性改質 | zh_TW |
| dc.subject | 柔性應變感測器 | zh_TW |
| dc.subject | 液滴傳輸 | zh_TW |
| dc.subject | 圖案化 | zh_TW |
| dc.subject | 雷射誘導石墨烯 | zh_TW |
| dc.subject | droplet transport | en |
| dc.subject | Laser-induced graphene | en |
| dc.subject | patterning | en |
| dc.subject | surface wettability modification | en |
| dc.subject | flexible strain sensor | en |
| dc.title | 矽膠複合材料透過雷射直寫轉換調控表面導電與潤濕性 | zh_TW |
| dc.title | Control of surface conductivity and wettability by laser direct-write transformations on PDMS composites | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李雨;陳彥榮;許淳茹 | zh_TW |
| dc.contributor.oralexamcommittee | U Lei;Edward Chern;Chun-Ru Hsu | en |
| dc.subject.keyword | 雷射誘導石墨烯,圖案化,表面潤濕性改質,液滴傳輸,柔性應變感測器, | zh_TW |
| dc.subject.keyword | Laser-induced graphene,patterning,surface wettability modification,droplet transport,flexible strain sensor, | en |
| dc.relation.page | 61 | - |
| dc.identifier.doi | 10.6342/NTU202400697 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-02-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2026-02-26 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 4.14 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
