請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92328完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊東漢 | zh_TW |
| dc.contributor.advisor | Tung-Han Chuang | en |
| dc.contributor.author | 朱家慶 | zh_TW |
| dc.contributor.author | Chia-Ching Chu | en |
| dc.date.accessioned | 2024-03-21T16:38:34Z | - |
| dc.date.available | 2024-03-22 | - |
| dc.date.copyright | 2024-03-21 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2024-01-23 | - |
| dc.identifier.citation | [1] Kassakian, J.G.; Jahns, T.M. Evolving and emerging applications of power electronics in systems. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 47–58.
[2] Van Wyk, J.D.; Lee, F.C. On a future for power electronics. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 59–72. [3] Wijesundara, M.; Azevedo, R. Silicon Carbide Microsystems for Harsh Environments; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 22 [4] Guo X, Xun Q, Li Z, Du S. Silicon Carbide Converters and MEMS Devices for High-temperature Power Electronics: A Critical Review. Micromachines (Basel). 2019 Jun 19;10(6):406. doi: 10.3390/mi10060406. PMID: 31248121; PMCID: PMC6631602 [5] Hazra, S.; De, A.; Cheng, L.; Palmour, J.; Schupbach, M.; Hull, B.A.; Allen, S.;Bhattacharya, S. High switching performance of 1700-V, 50-A SiC power MOSFET over Si IGBT/Bi MOSFET for advanced power conversion applications. IEEE Trans. Power Electron. 2016, 31, 4742–4754. [6] Palmour, J.W. Silicon carbide power device development for industrial markets. In Proceedings of the 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014; pp. 1.1.1–1.1.8. [7] Millán, J.; Godignon, P.; Perpiñà, X.; Pérez-Tomás, A.; Rebollo, J. A Survey of Wide Bandgap Power Semiconductor Devices. IEEE Trans. Power Electron. 2014, 29, 2155–2163. [CrossRef] [8] Hertz, J. 2021 Starts With a Hot Streak for Silicon Carbide. 2021. Available online: https://www.allaboutcircuits.com/news/2021-starts-with-a-hot-streak-for-silicon-carbide (accessed on 12 October 2021) [9] Tian, Y.; Zetterling, C.M. A fully integrated silicon-carbide sigma-delta modulator operating up to 500 ◦C. IEEE Trans. Electron. Devices 2017, 64, 2782–2788. [CrossRef] [10] Wu, R.; Wen, J.; Yu, K.; Zhao, D. A discussion of SiC prospects in next electrical grid. In Proceedings of the 2012 Asia-Pacific Power and Energy Engineering Conference, Shanghai, China, 27–29 March 2012; pp. 1–4. [11] Kimoto, T.; Cooper, J.A. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2014; Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118313534 [12] Saddow, S.E.; Agarwal, A.K. Advances in Silicon Carbide Processing and Applications; Artech House: Boston, MA, USA, 2004. [13] Kumar, V.; Kumar, S.; Maan, A.S.; Akhtar, J. Interface improvement of epitaxial 4H-SiC based Schottky didoes by selective heavy ion irradiation. Available online: https://link.springer.com/article/10.1007/s13204-020-01608-3 (accessed on 5 October 2021). [14] Vella, A.; Galioto, G.; Vitale, G.; Lullo, G.; Giaconia, G.C. GaN and SiC Device Characterization by a Dedicated Embedded Measurement System. Electronics 2023, 12, 1555. https://doi.org/10.3390/electronics12071555 [15] Langpoklakpam, C.; Liu, A.-C.; Chu, K.-H.; Hsu, L.-H.; Lee, W.-C.; Chen, S.-C.; Sun, C.-W.; Shih, M.-H.; Lee, K.-Y.; Kuo, H.-C. Review of Silicon Carbide Processing for Power MOSFET. Crystals 2022, 12, 245. https://doi.org/10.3390/cryst12020245 [16] Waldrop, M. M., “The chips are down for Moore’s law”, <i>Nature</i>, vol. 530, no. 7589, pp. 144–147, 2016. doi:10.1038/530144a. [17] Ilatikhameneh, H., Ameen, T., Novakovic, B. et al. Saving Moore’s Law Down To 1 nm Channels With Anisotropic Effective Mass. Sci Rep 6, 31501 (2016). https://doi.org/10.1038/srep31501 [18] Sarawi, S. Abbott, D. Franzon, P. “A Review of 3D packaging Technology”. IEEE Vol 21. No. 1 February 1998. [19] Yole développement. (2019). Status of the Advanced Packaging Industry Report. Yole Group.https://www.yolegroup.com/products/?search=+Status+of+Advanced+Packaging+Industry&sort=relevance [20] 謝文樂,”塑膠IC封裝製程”,工業材料,Volume 117,p121~125 [21] Young, J.J. & Malshe, A.P. & Brown, William & Lenihan, Tess & Albert, Dicky & Ozguz, Volkan. (2001). Thermal modeling and mechanical analysis of very thin silicon chips for conformal electronic systems. Proceedings of SPIE - The International Society for Optical Engineering. 4428. 14-21. [22] 袁啟文(2008)。化學機械研磨製程之控片與樣片之移除率及不平坦度預測與分析。﹝碩士論文。國立交通大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/sye9d2。 [23] Tanwar, Kavita & Canaperi, D. & Lofaro, Michael & Tseng, Wei-tsu & Patlolla, Raghuveer & Penny, Christopher & Waskiewicz, Christopher. (2013). BEOL Cu CMP process evaluation for advanced technology nodes. Journal of the Electrochemical Society. 160. D3247-D3254. 10.1149/2.042312jes. [24] Kroninger, Werner, and Franco Mariani. "Thinning and singulation of silicon: root causes of the damage in thin chips." 56th Electronic Components and Technology Conference 2006. IEEE, 2006. [25] DISCO Cooperation. (2016). “Silicon wafer thinning, the singulation process, and die strength”, DISCO Technical Review. Retrieved from https://www.disco.co.jp/eg/solution/technical_review/doc/TR16-03_Silicon%20wafer%20thinning,%20the%20singulation%20process,%20and%20die%20strength_20160610.pdf [26] Kim, Y.S.; Maeda, N.; Kitada, H.; Fujimoto, K.; Kodama, S.; Kawai, A.; Arai, K.; Suzuki, K.; Nakamura, T.; Ohba, T. Advanced wafer thinning technology and feasibility test for 3D integration. Microelec-Tron. Eng. 2013, 107, 65–71. [27] 邱冠諭,「背晶金屬化矽晶片與DBC陶瓷基板固晶接合研究」,博士論文。國立臺灣大學,2023年 [28] George Riley (Nov.,2001). Solder Bump Flip Chip. Abstract retrieved from March 31, 2015 from http;//flipchips.com/tutorial/bumb-technology/solder-bump-flip-chip/ [29] 葉馥榕(2012)。鈦/鎳/銀/金 金屬化鍍層於熱循環測試後界面反應之研究。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/6z87wj。 [30] R. Ricciari, E.P. Ferlito, G. Pizzo, M. Padalino, G Anastasi, M. Sacchi, G. Pappalardo, C. Consalvo, D. Mello. Auger Electron Spectroscopy characteriza of Ti/NiV/Ag multilayer back-metal for monitoring of Ni migration on Ag surface Microelectron. Reliab., 55 (2015), pp. 1617-1621. [31] Jan Haisma, G.A.C.M. Spierings, Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry: Historical review in a broader scope and comparative outlook, Materials Science and Engineering: R: Reports, Volume 37, Issues 1–2, 2002, Pages 1-60, ISSN 0927-796X, [32] Ramalingam, S. HBM package integration: Technology trends, challenges and applications. In Proceedings of the 2016 IEEE Hot Chips 28 Symposium (HCS), Cupertino, CA, USA, 21–23 August 2016; pp. 1–17. [Google Scholar] [33] F.W.Preston, J.Soc.GlassTech.11,214(1927). [34] Lu o, Jianfeng & Dornfeld, David. (2001). Material Removal Mechanism in Chemical Mechanical Polishing: Theory and Modeling. Semiconductor Manufacturing, IEEE Transactions on. 14. 112 - 133. 10.1109/66.920723. [35] T. A. Michalske, B. C. Bunker. “A chemical kinetic model for glass fracture”, J. Am. Ceram. Soc. Vol. 76 PP.2613-2618(1993) [36] G.Heinicke, Tribochemistry, Hanser, 1984, PP.120-128 [37] M. Bhushan, R. Rouse, and J. E. Lukens, 1995, "Chemical-Mechanical Polishing in Semidirect Contact Mode," Journal of Electrochemical Society, Vol. 142, pp.3845-3851. [38] 楊春欽(譯),1983,磨潤學原理與應用,科技圖書股份有限公司. [39] 劉大中(2001)。化學機械拋光磨耗機制之研究。﹝碩士論文。國立中興大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/2s3jus [40] Runnels, S R. 1994. "Feature-scale fluid-based erosion modeling for chemical-mechanical polishing". United States. https://doi.org/10.1149/1.2055024. [41] Y. Xie, and B. Bhushan, 1996, “Effects of Particle Size, Polishing Pad and Contact Pressure in Free Abrasive Polishing,” Wear, Vol. 200, pp. 281-295. [42] H. Hertz, “Uber die Beriihrung fester elastischer Korper,” J. für die reine und Angew. Math., vol. 92, pp. 156–171, 1882. [43] H. Blok, “Theoretical study of temperature rice at surfaces of actual contact under oilness lubricating conditions, general discussion on lubrication”, Inst. Mech. Engrs, London, Vol.2 PP.220-235(1937) [44] J. C. Jaeger, “moving sources of heat and the temperature at sliding contact”, Proc. Roy. Soc., N.S.W., Vol. 76 PP.203-224(1943) [45] J. F. Archard, “The temperature of rubbing surfaces”, Wear, Vol. 2 PP.438-455(1959) [46] L. M. Cook, ”Chemical processes in glass polishing,” J. Non-Crystalline Solids, vol. 120, pp. 152-171, 1990. [47] Leclerc S., Lecours A., Caron M., Richard E., Turcotte G., Currie J. F., J.Vac. Sci. Technol. A Vol. 16 PP.881-84(1998) [48] T. E. Fischer. “Tribochemistry”, Ann. Rev. Mater. Sci. Vol. 18, PP.303-323 (1988) [49] H.T. Angus, “The significance of hardness” , Wear, 54 (1) (1979), pp. 33-78, 10.1016/0043-1648(79)90046-2 [50] A. Kubota, M. Yoshimura, S. Fukuyama, C. Iwamoto, and M.Touge, “Planarization of C-face 4H-SiC substrate using Fe particles and hydrogen peroxide solution”, Prec Eng, Vol. 36, pp. 37-140, 2012. [51] K. Yagi, J. Murata, A. Kubota, Y. Sano, H. Hara. And T. Okamoto, “Catalyst-referred etching of 4H-SiC substrate utilizing hydroxyl radicals generated from hydrogen peroxide molecules” , Surf Interface Analysis, Vol. 40, pp. 998-1001, 2008. [52] Yan, Z.; Guoshun, P.; Xiaolei, S.; Li, X.; Chunli, Z.; Hua, G.; Guihai, L. XPS, UV–vis spectroscopy and AFM studies on removal mechanisms of Si-face SiC wafer chemical mechanical polishing (CMP). Appl. Surf. Sci. 2014, 316, 643–648 [53] H.S. Lee D. I. Kim, J. H. Lee, K. H. Kim, and H. Jeong. “Hybrid polishing mechanism of single crystal SiC using mixed abrasive slurry”, CIRP Ann Manuf Technol, Vol. 59, pp.333-336, 2010. [54] Ishikawa, Y.; Matsumoto, Y.; Nishida, Y.; Taniguchi, S.; Watanabe‡, J. Surface treatment of silicon carbide using TiO2(IV) photocatalyst. J. Am. Chem. Soc. 2003, 125, 6558–6562. [55] 蔡明義(民國111)。第三代半導體材料單晶碳化矽磨拋加工製程技術。機械新刊,第66期,文28-37。 [56] S. Sahir, N.P. Yerriboina, S.-Y. Han, K.-M. Han, T.-G. Kim, N. Mahadev, J.-G. Park.“Investigation of the effect of different cleaning forces on Ce-O-Si bonding during oxide post-CMP cleaning”, Appl. Surf. Sci., 545 (2021), Article 149035 [57] 美商卡博特徵電子公司,中華民國專利公開公告編號:I378142,「利用水溶性氧化劑之碳化矽研磨方法」,2007 [58] 霓塔哈斯股份有限公司,中華民國專利公開公告編號:201124514,「碳化矽研磨用組合物」,2010 [59] 方樹輝,中華民國專利公開公告編號:I609075,「用以加速碳化矽晶圓化學機械研磨材料移除速率之亞鹵酸鹽碳化矽蝕刻劑」,2016 [60] 卡博特徵電子公司,中華民國專利公開公告編號: 201103965,「拋光碳化矽」,2011 [61] Porter, D. A., Easterling, K. E., & Sherif, M. Y. (2021). Phase transformations in metals and alloys. Fig. 3.7, p. 118-119. [62] W.T. Read Jr., Dislocations in Crystals, McGraw-Hill, New York, 1953. [63] L. E. Murr, “Interfacial Phenomena in Metals and Alloys,” Addison-Wesley, 1975. [64] Hargreaves F, Hills RJ (1929) J Inst Met 41:257 [65] Kronberg M.L., Wilson F.H. Secondary recrystallization in copper. JOM. 1949; 1:501–514. doi: 10.1007/BF03398387. [66] R.A. Johnson. Phys. Rev. A, 134 (1969), p. 1329 [67] Randle, V. Twinning-related grain boundary engineering. Acta Mater. 2004, 52, 4067–4081. [68] R.E. Reed-Hill, R. Abbaschian, R. Abbaschian, Physical metallurgy principles, Van Nostrand New York, 1973 [69] Ojha, A., Sehitoglu, H., Patriarca, L., & Maier, H. J. (2014). Twin nucleation in Fe-based bcc alloys- modeling and experiments. Modelling and Simulation in Materials Science and Engineering, 22(7), 075010 [70] Ogata S, Li J and Yip S, 2005, Energy Landscape of DeformationTwinning In Bcc and Fcc Metals, Phys. Rev. B71224102 [71] R. L. Fullman, J. C. Fisher; Formation of Annealing Twins During Grain Growth. J. Appl. Phys. 1 November 1951; 22 (11): 1350–1355.https://doi.org/10.1063/1.1699865 [72] S. Dash, N. Brown, An investigation of the origin and growth of annealing twins Acta Metall., 11 (1963), pp. 1067-1075, 10.1016/0001-6160(63)90195-0 [73] Zhang, X., Misra, A., Wang, H., Shen, T. D., Nastasi, M., Mitchell, T. E., & Embury, J. D. (2004). Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Materialia, 52(4), 995-1002. [74] Meng Ke-Ke et al 2014 Chinese Phys. B 23 038201. DOI 10.1088/1674-1056/23/3/038201 [75] Xu D, Kwan W L, Chen K ,Zhang X, Ozolins V and Tu K N 2007 Appl. Phys. Lett. 91254105 [76] Read-Hill, R.E.; Abbaschian, R.. Physical metallurgy principles; Van Nostrand New York, 1973. [77] Zhang, X.; Misra, A.; Wang, H.; Nastasi, M.; Embury, J.; Mitchell, T.; Hoagland, R.; Hirth, J. Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. Applied physics letters 2004, 84 (7), 1096-1098. [78] E.O. Hall Proc. Phys. Soc. London B, 64 (1951), p. 747 [79] N.J. Petch J. Iron Steel Inst., 174 (1653), p. 25 [80] J.W. Christian, S. Mahajan, Deformation twinning, Progress in Materials Science, Volume 39, Issues 1–2, 1995, Pages 1-157 [81] Lu, L., Chen, X., Huang, X., & Lu, K. (2009). Revealing the maximum strength in nanotwinned copper. Science, 323(5914), 607-610. [82] O. Anderoglu, A. Misra, H. Wang, X. Zhang, J. Appl. Phys. 2008, 103, 094322 [83] Lu L, Shen Y, Chen X, Qian L, Lu K. Ultrahigh strength and high electrical conductivity in copper. Science. 2004 Apr 16;304(5669):422-6. doi: 10.1126/science.1092905. Epub 2004 Mar 18. PMID: 15031435. [84] Y. Zhao, I.C. Cheng, M.E. Kassner, A.M. Hodge, “The effect of nanotwins on the corrosion behavior of copper,” Acta Materialia, Volume 67, 2014, Pages 181-188, ISSN 1359-6454, https://doi.org/10.1016/j.actamat.2013.12.030. [85] C.-J. Chen, C.-M. Chen, R.-H. Horng, D.-S. Wuu, J.-S. Hong, Thermal management and interfacial properties in high-power GaN-based light-emitting diodes employing diamond added Sn-3 wt.%Ag-0.5 wt.%Cu solder as a die-attach material. J. Electron. Mater. 39(12), 2618–2626 (2010) [86] Y. Tang, D. Liu, H. Yang, P. Yang, Thermal effects on LED lamp with different thermal interface materials. IEEE Trans. Electron Devices 63(12), 4819–4824 (2016). [87] BayererR, HerrmannT, LichtT, et al. Model forpower cycling lifetime of IGBT modules: various factors influencing lifetime, 5th International Conference on Integrated Power Electronics Systems, March 11-13, 2008, Nuremberg, Germany. Hannover: VDE Verlag Gmbh, 2008: 1- 6. [88] Bai, J. G., Yin, J., Zhang, Z., Lu, G. Q., & van Wyk, J. D. (2007). High-temperature operation of SiC power devices by low-temperature sintered silver die-attachment. IEEE transactions on advanced packaging, 30(3), 506-510. [89] B.H. Lee, M.Z. Ng, A.A. Zinn, C.L. Gan, Application of copper nanoparticles as die attachment for high power LED, Proc. Electron. Packag. Technol. Conf. EPTC 2016 (2016), http://dx.doi.org/10.1109/EPTC.2015.7412383, Febru. [90] Chidambaram, V., Hattel, J. and Hald, J. (2010), “Design of lead-free candidate alloys for high-temperature soldering based on the Au–Sn system”, Materials and Design, Vol. 31 No. 10, pp. 4638-4645. [91] MacDonald, W. D., & Eagar, T. W. (1992). Transient liquid phase bonding. Annual review of materials science, 22(1), 23-46. [92] H.S. Shin, H.J. Yang, S.B. Kim, M.S. Lee, "Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution", Journal of colloid and interface science 274 (2004) 89. [93] K.S. Chou, C.Y. Ren, "Synthesis of nanosized silver particles by chemical reduction method", Materials Chemistry and Physics 64 (2000) 241. [94] K.S. Chou, K.C. Huang, "Studies on the chemical synthesis of nanosized nickel powder and its stability", Journal of Nanoparticle Research 3 (2001) 127. [95] Ide, E.; Angata, S.; Hirose, A.; Kobayashi, K. Metal-metal bonding process using Ag metallo-organic nanoparticles. Acta Mater. 2005, 53, 2385–2393. [96] Yan, J.; Zou, G.; Wu, A.; Ren, J.; Yan, J.; Hu, A.; Liu, L.; Zhou, Y.N. Effect of PVP on the low temperature bonding process using polyol prepared Ag nanoparticle paste for electronic packaging application. J. Phys. Conf. Ser. 2012, 379, 012024. [CrossRef] [97] Wang W G, Zou G S, Jia Q, et al. Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for die attachment of SiC power electronics[J]. Materials Science and Engineering: A, 2020, 793: 139894. [98] Yan J. A Review of Sintering-Bonding Technology Using Ag Nanoparticles for Electronic Packaging. Nanomaterials. 2021; 11(4):927. https://doi.org/10.3390/nano11040927 [99] S.-J.L. Kang, Sintering: Densification, Grain Growth and Microstructure (Elsevier, 2005) [100] Kang S JL. Grain growth and densification in porous materials[M] // Kang S J L. Sintering. Amsterdam: Elsevier, 2005: 145- 170. [101] D.L. Johnson, in Concise Encyclopedia of Advanced Ceramic Materials, 1991 [102] Liu, Zhengjian & Cheng, Qiang & Wang, Yao & Li, Yang & Zhang, Jianliang. (2020). Sintering neck growth mechanism of Fe nanoparticles:A Molecular Dynamics Simulation. Chemical Engineering Science. 218. 115583. 10.1016/j.ces.2020.115583. [103] Blaine, D. C., “The micromechanical influences on the constitutive laws of sintering for a continuum model”, PhDT, 2004. [104] Kang, S.-J. L. and Yoon, K. J., Densification of ceramics containing entrappedgases,J. Eu. Ceram. Soc.,5, 135–39, 1989 [105] Arzt, E., Ashby, M.F. & Easterling, K.E. Practical applications of hotisostatic Pressing diagrams: Four case studies. Metall Trans A 14, 211–221 (1983). https://doi.org/10.1007/BF02651618 [106] Tsukuma, K., Shimada, M. Strength, fracture toughness and Vickers hardness of CeO2-stabilized tetragonal ZrO2 polycrystals (Ce-TZP). J Mater Sci 20, 1178–1184 (1985). https://doi.org/10.1007/BF01026311 [107] 張曼, 張啟凱, 鄒蘭梅, 所世興, & 於少明. (2020). α-Al2O3 奈米粒子拋光漿料穩定性及其對藍寶石拋光性能的影響. 表面技術, 49(2), 331-338 . [108] D. Zhao, S. Letz, J. Leib, A. Schletz, Influence of SiC chip thickness on the power cycling capability of power electronics assemblies – A comprehensive numerical study, Microelectronics Reliability, Volume 150, 2023, 115091, ISSN 0026-2714, https://doi.org/10.1016/j.microrel.2023.115091. [109] 林雅雯(2010)。單晶鑽石的沖擊強度之探討。﹝碩士論文。華梵大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/5t2p7h。 [110] 林敬儒(2019)。化學機械研磨製程對晶圓不均勻度之影響最佳化分析。﹝碩士論文。元智大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/98j6b6。 [111] Shang Gao, Zhigang Dong, Renke Kang, Bi Zhang, Dongming Guo, Warping of silicon wafers subjected to back-grinding process, Precision Engineering, Volume 40, 2015, Pages 87-93 [112] Anderson, P.M.; Hirth, J. P.; Lothe, J. Theory of dislocations; Cambridge University Press, 2017. [113] D. Bufford, H. Wang, X. Zhang, High strength, epitaxial nanotwinned Ag films, Acta Materialia, Volume 59, Issue 1, 2011, Pages 93-101, ISSN 1359-6454, https://doi.org/10.1016/j.actamat.2010.09.011. [114] Agrawal, P.M., Rice, B.M., & Thompson, D.L. (2002). Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. Surface Science, 515, 21-35. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92328 | - |
| dc.description.abstract | 隨著積體電路電子元件的蓬勃發展,在高溫高電力的電子裝置產業,如電動汽車、風力發電機、5G通訊領域等領域,對於元件的能源轉換效率問題越來越重視,傳統的矽逐漸無法滿足新興科技的需求,使得寬能隙半導體備受重視,如碳化矽與氮化鎵,在元件設計上,由於高功率元件為滿足耐高壓的需求,多採取垂直結構,晶圓後端在背晶研磨(BG)與背晶金屬化(BM)製程的品質與性能,將是影響功率模組可靠性的重要因素。
本研究首先探討拋光漿料使用不同磨粒種類、磨粒尺寸對化學機械拋光後晶圓性質的影響,結果顯示需要存在硬度較高的氧化鋁磨料作為主要材料移除源,此外同時使用氧化鈰大尺寸磨料會造成材料表面粗糙值提升,低濃度的氧化鋁和氧化鈰組合可以達成最佳品質的表面粗糙度,並以此為關鍵因素選用適當濃度的15%wt氧化鋁,深入分析添加氧化鈰對拋光製程的影響,結果發現添加氧化鈰的拋光漿料可上升一倍才料移除率,且同時能維持在中心位置有1.9 Å的高表面粗糙度品質,最後研究還發現晶圓邊緣位置由於翹曲會使表面粗糙度上升,本研究使用雙面研磨拋光方法降低晶圓邊緣處的翹曲程度,最終在邊緣處表面粗糙度可以大幅下降,能得到2.73 Å的表面粗糙度值。 此外本研究利用磁控濺鍍法製備(111)高密度銀奈米孿晶,藉由改變製程基板偏壓進行微結構的觀察,結果顯示基板偏壓在一定限度內,會因為給予沉積薄膜的壓應力提升,而產生較高比率的(111)奈米孿晶,結果顯示在-175 V基板偏壓可濺鍍出最高密度之奈米孿晶結構,但是當基板偏壓高到-200 V,氬離子攜帶過多的動能也可能會破壞孿晶結構,形成過強的再濺鍍效應,降低沉積速率同時讓孿晶結構無法穩定成長,因此薄膜中孿晶的比例又下降,透過EBSD技術分析可得知該薄膜內部有高比例的孿晶結構且表面呈現(111)取向的晶格,由於同時存在高擴散速率的(111)晶格取向與孿晶的熱穩定性結構,銀奈米孿晶薄膜是一種具有低溫接合與高溫運用的特殊結構,在工業接合應用上具有巨大的潛力。 本研究根據先前得到銀孿晶薄膜特性,為了驗證其低溫接合的可行性,與樂鑫公司合作使用在碳化矽晶圓蒸鍍高(111)銀奈米孿晶薄膜,並利用納美仕公司開發奈米銀燒結膏,與DBC陶瓷基板進行低溫固晶接合研究,結果發現在250℃時,銀奈米薄膜能與銀奈米顆粒形成良好的燒結作用,在介面處僅存在微小且獨立的小孔隙,接合強度更是高達38.8MPa,相較一般使用的Ti/Ni/Ag背晶金屬化結構,介面處仍存在明顯空隙且接合強度僅為28.2MPa,證明銀奈米孿晶薄膜有更好的低溫接合性能,再加上FIB離子影像觀察孿晶結構仍然存在,因此證明銀奈米孿晶在背晶金屬化製程具有極大的可行性與應用價值。 | zh_TW |
| dc.description.abstract | The vigorous development of integrated circuit and discrete electronic components, in the high-temperature and high-power electronic devices industry, such as electric vehicles, wind turbines, 5G communications and other fields, more and more attention is paid to the energy conversion efficiency. Traditional silicon is gradually unable to meet the needs of emerging technologies. Wide bandgap semiconductors, such as silicon carbide and gallium nitride, have attracted much attention. In terms of component design, since high-power components often adopt vertical structures to sustain the demand for high voltage, the back-end of the wafer is also important key process. The quality and performance of the back grinding (BG) and back metallization (BM) processes will be important factors affecting the reliability of power modules.
This study first explores the impact of different abrasive grain types and abrasive grain sizes used in polishing slurries on the properties of SiC after chemical mechanical polishing. The results show that aluminum oxide abrasives with higher hardness are required as the main material removal source, and cerium oxide is also used. Large-sized abrasives will increase the surface roughness of the material. The combination of low-concentration alumina and cerium oxide can achieve the best quality surface roughness. Using this as a key factor, select an appropriate concentration of 15%wt alumina, and conduct an in-depth analysis of the addition of oxide. The impact of cerium on the polishing process. It was found that adding cerium oxide to the polishing slurry can double the material removal rate while maintaining a high surface roughness quality of 1.9 Å at the center. Finally, the study also found that the wafer edge The surface roughness will increase due to warping. This study uses double-sided grinding and polishing method to reduce the degree of warpage at the edge of the wafer. Finally, the surface roughness at the edge can be greatly reduced, and a surface roughness value of 2.73 Å can be obtained. In addition, this study used magnetron sputtering to prepare (111) high-density silver nanotwins. The microstructure was observed by changing the substrate bias in the process. The results showed that within a certain limit, the substrate bias would cause the deposition of thin films to the compressive stress increases, resulting in a higher ratio of (111) nanotwins. The results show that the highest density nanotwin structure is visible at -175 V substrate bias. However, when the substrate bias reaches -200 V, argon Excessive kinetic energy carried by ions may also destroy the twin structure and form an excessively strong re-sputtering effect, which reduces the deposition rate and prevents the stable growth of the twin structure. Therefore, the proportion of twins in the film decreases. Analysis through EBSD technology It can be seen that the film has a high proportion of twin structures inside and a (111) oriented lattice on the surface. Due to the simultaneous existence of a high diffusion rate (111) lattice orientation and the thermal stability structure of twins, silver nanotwins thin film is a special structure capable of low-temperature bonding and high-temperature application, and has great potential in industrial bonding applications. Based on the previously obtained characteristics of silver twinned films, this study cooperated with Espressif to evaporate high (111) silver nanotwinned films on silicon carbide wafers to verify the feasibility of low-temperature bonding, and used Namex Developed nano-silver sintering paste and conducted low-temperature bonding research with DBC ceramic substrates. It was found that at 250°C, the silver nanofilm can form a good sintering effect with the silver nanoparticles, and there are only tiny and independent lags at the interface. Small pores, the joint strength is as high as 38.8MPa. Compared with the commonly used Ti/Ni/Ag backside metallization structure, there are still obvious gaps at the interface and the joint strength is only 28.2MPa, proving that the silver nanotwin film has better The good low-temperature bonding performance, coupled with the fact that the twin structure still exists according to FIB ion imaging, proves that silver nanotwins have great feasibility and application value in the backside metallization process. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:38:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-21T16:38:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目 錄
致謝…………………………………………………………………………………………………………………………………… I 中文摘要…………………………………………………………………………………………………………………………… II 英文摘要…………………………………………………………………………………………………………………………… IV 目錄……………………………………………………………………………………………………………………………………… VII 圖目錄………………………………………………………………………………………………………………………………… XI 表目錄………………………………………………………………………………………………………………………………… XVII 第一章 前言…………………………………………………………………………………………………………………… 1 1.1 研究背景………………………………………………………………………………………………………………… 1 1.1.1 碳化矽(SiC)半導體的發展……………………………………………………………………… 1 1.1.2 電子封裝的發展……………………………………………………………………………………………… 4 1.1.3 背晶研磨和背晶金屬化的介紹………………………………………………………………… 6 1.1.4 固晶接合技術的發展…………………………………………………………………………………… 10 1.2 研究目的………………………………………………………………………………………………………………… 11 第二章 文獻回顧………………………………………………………………………………………………………… 13 2.1 化學機械拋光(Chemical Mechanical Polishing)相關理論……13 2.1.1 機械磨耗理論……………………………………………………………………………………………………13 2.1.1.1 液動磨耗理論………………………………………………………………………………………………14 2.1.1.2 磨粒磨耗理論………………………………………………………………………………………………18 2.1.2 磨潤化學反應……………………………………………………………………………………………………20 2.1.2.1 摩擦熱………………………………………………………………………………………………………………21 2.1.2.2 外加機械應力的作用…………………………………………………………………………………22 2.1.2.3 潔淨表面的暴露……………………………………………………………………………………………22 2.2 碳化矽晶圓研磨拋光發展…….……………………………………………………………………………23 2.3 碳化矽拋光專利回顧…….……………………………………………………………………………………26 2.4 孿晶(Twin)…….………………………………………………………………………………………………………30 2.4.1 晶界…………………………………………………………………………………………………………………………30 2.4.2 孿晶界……………………………………………………………………………………………………………………32 2.4.3 孿晶生成機制……………………………………………………………………………………………………34 2.4.4 奈米孿晶特性……………………………………………………………………………………………………38 2.5 奈米金屬顆粒燒結………………………………………………………………………………………………43 2.5.1 奈米金屬顆粒燒結膏成分……………………………………………………………………………45 2.5.2 奈米金屬顆粒燒結膏燒結過程……………………………………………………………………48 第三章 實驗方法與步驟………………………………………………………………………………………………53 3.1 實驗流程圖…………………………………………………………………………………………………………………53 3.1.1 碳化矽晶圓研磨拋光流程圖…………………………………………………………………………53 3.1.2 碳化矽背晶Ti/Ag 奈米孿晶鍍膜流程圖………………………………………………53 3.1.2 碳化矽背晶Ti/Ag 奈米孿晶與DBC 陶瓷基板低溫固晶接合流程圖…54 3.2 材料種類及其預處理……………………………………………………………………………………………54 3.2.1 碳化矽晶圓研磨拋光實驗材料……………………………………………………………………54 3.2.1.1 晶圓……………………………………………………………………………………………………………………54 3.2.1.2 磨料與拋光液…………………………………………………………………………………………………54 3.2.1.2.1 碳化矽磨料 (GC#320)…………………………………………………………………………54 3.2.1.2.2 鑽石拋光液(DI900 Diamond SLURRY)………………………………………55 3.2.1.2.3 氧化鈰拋光粉……………………………………………………………………………………………55 3.2.1.2.4 化學機械拋光液 (CMP slurry)……………………………………………………56 3.2.2 碳化矽背晶Ti/Ag 奈米孿晶薄膜實驗材料…………………………………………57 3.2.2.1 碳化矽基板……………………………………………………………………………………………………57 3.2.2.2 鍍膜材料…………………………………………………………………………………………………………57 3.2.2.3 鍍膜氣體…………………………………………………………………………………………………………57 3.2.3 碳化矽Ti/Ag 薄膜固晶接合實驗材料……………………………………………………57 3.2.3.1 碳化矽背晶金屬化晶片……………………………………………………………………………57 3.2.3.2 DBC 氧化鋁基板…………………………………………………………………………………………58 3.2.3.3 奈米銀燒結膏………………………………………………………………………………………………58 3.3 實驗設備……………………………………………………………………………………………………………………59 3.3.1 碳化矽晶圓研磨拋光設備……………………………………………………………………………59 3.3.1.1 無臘墊和上蠟機…………………………………………………………………………………………59 3.3.1.2 研磨拋光機……………………………………………………………………………………………………60 3.3.2 濺鍍製程實驗設備…………………………………………………………………………………………61 3.3.2.1 磁控射頻系統(Magnetron RF sputtering system)…………61 3.3.3 奈米銀燒結製程設備……………………………………………………………………………………62 3.3.3.1 真空加熱爐……………………………………………………………………………………………………62 3.3.3.2 真空熱壓設備………………………………………………………………………………………………62 3.3.3.3 研磨機……………………………………………………………………………………………………………63 3.4 實驗方法…………………………………………………………………………………………………………………64 3.4.1 碳化矽晶圓研磨拋光實驗……………………………………………………………………………64 3.4.1.1 碳化矽CMP 拋光實驗………………………………………………………………………………64 3.4.1.2 碳化矽晶圓單面薄化………………………………………………………………………………65 3.4.1.2 碳化矽晶圓雙面薄化………………………………………………………………………………66 3.4.2 碳化矽背晶Ti/Ag 奈米孿晶鍍膜實驗…………………………………………………67 3.4.2.1 基板預處理…………………………………………………………………………………………………67 3.4.2.2 碳化矽背晶Ti/Ag 奈米孿晶鍍膜實驗流程…………………………………68 3.4.3 碳化矽背晶Ti/Ag 奈米孿晶鍍膜與DBC 陶瓷基板低溫固晶接合…69 3.4.3.1 碳化矽與DBC 基板固晶貼合………………………………………………………………69 3.4.3.2 真空加熱製程……………………………………………………………………………………………70 3.4.3.3 真空熱壓製程……………………………………………………………………………………………70 3.4.3.3 固晶接合面分析前處理…………………………………………………………………………70 3.5 材料結構與性質分析儀器………………………………………………………………………………71 3.5.1 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)………71 3.5.2 聚焦離子束與電子束顯微系統 (Dual Beam Focused Ion Beam)…72 3.5.3 原子力顯微鏡 (Atomic Force Microscope, AFM)………………………………73 3.5.4 表面輪廓儀 (Surface Profilometer)………………………………………………………74 3.5.5 高功率X 光繞射分析儀……………………………………………………………………………………………75 3.5.6 推拉力測試儀…………………………………………………………………………………………………………………76 第四章 結果與討論……………………………………………………………………………………………………………………77 4.1 碳化矽晶圓研磨拋光結果……………………………………………………………………………………………77 4.1.1 碳化矽CMP 拋光實驗………………………………………………………………………………………………77 4.1.1.1 不同CMP 拋光漿料材料移除率分析………………………………………………………………77 4.1.1.2 不同CMP 拋光漿料表面粗糙度分析………………………………………………………………79 4.1.2 碳化矽單面拋光實驗…………………………………………………………………………………………………81 4.1.2.1 未拋光碳化矽晶圓厚度與表面形貌觀察……………………………………………………81 4.1.2.2 碳化矽晶圓研磨與拋光後表面形貌觀察與厚度量測……………………………83 4.1.2.3 碳化矽晶圓研磨與拋光的材料移除率、表面粗糙度和翹曲分析……85 4.1.2.4 碳化矽晶圓晶化學機械拋光後表面形貌觀察與厚度量測…………………88 4.1.2.5 碳化矽晶圓研磨與拋光的材料移除率、表面粗糙度和翹曲分析……90 4.1.3 碳化矽雙面薄化實驗…………………………………………………………………………………………………92 4.1.3.1 碳化矽晶圓化學機械拋光的翹曲、厚度和表面粗糙度分析………………92 4.2 碳化矽背晶Ti/Ag 奈米孿晶鍍膜結果……………………………………………………………………94 4.2.1 基板偏壓對薄膜孿晶影響FIB 離子束影像分析…………………………………………94 4.2.2 基板偏壓對薄膜孿晶影響的XRD 分析………………………………………………………………96 4.2.3 基板偏壓對薄膜孿晶影響的表面EBSD 分析…………………………………………………97 4.2.4 基板偏壓對薄膜孿晶影響的橫截面EBSD 分析……………………………………………99 4.3 碳化矽背晶Ti/Ag 奈米孿晶薄膜與DBC 陶瓷基板低溫固晶接合……………101 4.3.1 碳化矽背晶Ti/Ag 奈米孿晶鍍膜分析……………………………………………………………101 4.3.2 碳化矽背晶Ti/Ag 奈米孿晶與DBC 陶瓷基板低溫奈米銀燒結固晶接合……103 4.3.2.1 無壓接合介面微結構分析…………………………………………………………………………………103 4.3.2.2 加壓接合介面微結構分析…………………………………………………………………………………105 4.3.2.3 接合介面強度分析………………………………………………………………………………………………107 4.3.2.4 接合破斷面微結構分析………………………………………………………………………………………109 4.4 碳化矽背晶Ti/Ni/Ag 薄膜與DBC 陶瓷基板低溫固晶接合………………………112 4.4.1 碳化矽背晶Ti/Ni/Ag 鍍膜分析………………………………………………………………………112 4.4.2 加壓10MPa、250℃,接合介面微結構、接合強度、破斷面分析………114 第五章 結論…………………………………………………………………………………………………………………………………117 5.1 碳化矽晶圓研磨拋光研究……………………………………………………………………………………………117 5.2 碳化矽背晶Ti/Ag 奈米孿晶鍍膜研究…………………………………………………………………119 5.3 碳化矽背晶Ti/Ag 奈米孿晶鍍膜與DBC 陶瓷基板低溫固晶接合研究…120 參考文獻………………………………………………………………………………………………………………122 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 背晶研磨拋光 | zh_TW |
| dc.subject | 磁控濺鍍 | zh_TW |
| dc.subject | 銀奈米孿晶 | zh_TW |
| dc.subject | 銀奈米燒結 | zh_TW |
| dc.subject | 固晶接合 | zh_TW |
| dc.subject | 機械化學拋光 | zh_TW |
| dc.subject | 碳化矽 | zh_TW |
| dc.subject | 背晶金屬化 | zh_TW |
| dc.subject | silver nanosintering | en |
| dc.subject | megnetron of sputtering | en |
| dc.subject | backside metallization | en |
| dc.subject | mechanical chemical polishing | en |
| dc.subject | backside grinding and polishing | en |
| dc.subject | silicon carbide | en |
| dc.subject | silver nanotwins | en |
| dc.subject | die bonding | en |
| dc.title | 碳化矽背晶研磨拋光與Ti/Ag奈米孿晶鍍膜及其與DBC陶瓷基板固晶接合 | zh_TW |
| dc.title | Backside Grinding and Polishing for SiC Wafers and Ti/nanotwinned Ag Metallization and Die Bonding with DBC Ceramic substrates | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 林招松 | zh_TW |
| dc.contributor.coadvisor | Chao-Sung Lin | en |
| dc.contributor.oralexamcommittee | 陳俊豪;周眾信;鄭明達 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Hao Chen;Ju-stin Chou;Ming-Da Cheng | en |
| dc.subject.keyword | 碳化矽,背晶研磨拋光,機械化學拋光,背晶金屬化,磁控濺鍍,銀奈米孿晶,銀奈米燒結,固晶接合, | zh_TW |
| dc.subject.keyword | silicon carbide,backside grinding and polishing,mechanical chemical polishing,backside metallization,megnetron of sputtering,silver nanotwins,silver nanosintering,die bonding, | en |
| dc.relation.page | 129 | - |
| dc.identifier.doi | 10.6342/NTU202400147 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-01-24 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
