Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92325
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊舜涵zh_TW
dc.contributor.advisorShun-Han Yangen
dc.contributor.author黃俊輝zh_TW
dc.contributor.authorJun-Hui Huangen
dc.date.accessioned2024-03-21T16:37:39Z-
dc.date.available2024-03-22-
dc.date.copyright2024-03-21-
dc.date.issued2024-
dc.date.submitted2024-01-26-
dc.identifier.citation[1] IEA, “Net zero roadmap: A global pathway to keep the 1.5 °C goal in reach - 2023 update,” International Energy Agency (IEA), Energy report, Sep. 2023. [Online]. Available: www.iea.org
[2] GWEC, “Global wind report 2023,” Global Wind Energy Council (GWEC), Belgium, Energy report, 2023. [Online]. Available: https://gwec.net/globalwindreport2023/
[3] JONES DAY, “Taiwan offshore wind farm projects: Updates to guide investors and financiers through the legal and regulatory framework,” Aug. 2021. [Online]. Available: https://www.jonesday.com/en/insights/2021/08/taiwan-offshore-wind-farm-projects-update
[4] 能源局, “風力發電4年推動計畫,” 經濟部能源局(Bureau of Energy, Ministry of Economic Affairs, R.O.C.), Government report, 2017. [Online]. Available: https://www.moeaboe.gov.tw/ECW/populace/content/ContentDesc.aspx?menu_id=5493
[5] 焦點事件, “臺灣離岸風電的「三個階段」.” Accessed: May 18, 2023. [Online]. Available: https://eventsinfocus.org/issues/7146027
[6] 臺灣環境資訊中心, “臺灣離岸風電發展過程.” Accessed: May 17, 2023. [Online]. Available: https://e-info.org.tw/wind_turbine_ocean_ecology/
[7] FOWI, “Formosa I – 海洋風電 – Offshore Wind Farm Pioneer.” Accessed: May 31, 2023. [Online]. Available: https://formosa1windpower.com/
[8] TPC, “The offshore wind farm project - Phase I - Engineering information - information disclosure,” Taiwan Power Company (TPC). Accessed: Dec. 04, 2023. [Online]. Available: https://www.taipower.com.tw/en/page.aspx?mid=4509
[9] 郭品琤, “區塊開發/風場環評進度總整理.” Accessed: May 19, 2023. [Online]. Available: https://www.windtaiwan.com/ArticleView.aspx?ID=ART00571
[10] 經濟部能源署, “離岸風電區塊開發第二期機制規劃草案說明會議,” Nov. 17, 2023. [Online]. Available: https://www.moeaea.gov.tw/ECW/populace/news/Board.aspx?kind=3&menu_id=57&news_id=32608
[11] 經濟部能源局, “浮動式離岸風電示範規劃第二次說明會議,” Jan. 18, 2023. [Online]. Available: https://www.moeaboe.gov.tw/ECW/populace/news/Board.aspx?kind=3&menu_id=57&news_id=29297
[12] RE100, “RE100 members,” RE100. Accessed: Dec. 12, 2023. [Online]. Available: https://www.there100.org/re100-members
[13] Technews, “What Is the Actual Capacity of Taiwan Offshore Wind Power?” Accessed: May 31, 2023. [Online]. Available: http://technews.co/2015/04/02/what-is-the-actual-capacity-of-taiwan-offshorewind- power/
[14] A. M. -Z. Gao, C.-H. Huang, J.-C. Lin, and W.-N. Su, “Review of recent offshore wind power strategy in Taiwan: Onshore wind power comparison,” Energy Strategy Reviews, vol. 38, p. 100747, Oct. 2021, doi: 10.1016/j.esr.2021.100747.
[15] 4C Offshore, “Global wind speed information database.” Accessed: May 31, 2023. [Online]. Available: https://www.4coffshore.com/windfarms/windspeeds.aspx
[16] GWEC, “Offshore wind technical potential in Taiwan.” Global Wind Energy Council (GWEC), Jun. 2021. Accessed: May 31, 2023. [Online]. Available: https://gwec.net/wp-content/uploads/2021/06/Taiwan_Offshore-Wind-Technical-Potential_GWEC-OREAC.pdf
[17] J. Bauer, “NREL floats new offshore wind cost optimization vision,” National Renewable Energy Laboratory (NREL). Accessed: Apr. 30, 2023. [Online]. Available: https://www.nrel.gov/news/program/2020/nrel-floats-new-offshore-wind-cost-optimization-tool.html
[18] F. Waisman, K. Gurley, M. Grigoriu, and A. Kareem, “Non-Gaussian model for ringing phenomena in offshore structures,” J. Eng. Mech., vol. 128, no. 7, pp. 730–741, Jul. 2002, doi: 10.1061/(ASCE)0733-9399(2002)128:7(730).
[19] O. Gaidai, J. -X. Xu, Q. -S. Hu, Y. -H. Xing, and F. -X. Zhang, “Offshore tethered platform springing response statistics,” Sci Rep, vol. 12, no. 1, p. 21182, Dec. 2022, doi: 10.1038/s41598-022-25806-x.
[20] K.-T. Ma, Y. Luo, T. Kwan, and Y.-Y. Wu, Mooring system engineering for offshore structures. Cambridge, MA, US: Gulf Professional Publishing, 2019. [Online]. Available: https://www.elsevier.com/books-and-journals
[21] M.-H. Kim and J. Zou, Eds., Spar platforms: Technology and analysis methods. Reston, VA, US: American Society of Civil Engineers, 2012.
[22] L. Castro-Santos and V. Diaz-Casas, Eds., Floating offshore wind farms. in Green Energy and Technology. Switzerland: Springer International Publishing, 2016. doi: 10.1007/978-3-319-27972-5.
[23] J. Cruz and M. Atcheson, Eds., Floating offshore wind energy: The next generation of wind energy. in Green Energy and Technology. Switzerland: Springer International Publishing, 2016. doi: 10.1007/978-3-319-29398-1.
[24] R. James and M. Costa-Ros, “Floating offshore wind: market and technology review: Prepared for the Scottish government,” The Carbon Trust, London, UK, Collaborative project report, Jun. 2015. [Online]. Available: https://www.carbontrust.com/our-work-and-impact/guides-reports-and-tools/floating-offshore-wind-market-technology-review
[25] H. Díaz, J. Serna, J. Nieto, and C. Guedes Soares, “Market needs, opportunities and barriers for the floating wind industry,” J. Mar. Sci. Eng., vol. 10, no. 7, p. 934, Jul. 2022, doi: 10.3390/jmse10070934.
[26] BVG Associates, “B.3 Mooring system,” The guide to a floating offshore wind farm. Accessed: Aug. 09, 2023. [Online]. Available: https://guidetofloatingoffshorewind.com/guide/b-balance-of-plant/b-3-mooring-system/
[27] R. James et al., “Floating wind joint industry project: Phase I summary report: Key findings from electrical systems, mooring systems, and infrastructure & logistics studies,” The Carbon Trust, London, UK, Collaborative project report, May 2018. [Online]. Available: https://www.carbontrust.com/our-work-and-impact/impact-stories/floating-wind-joint-industry-programme-jip/floating-wind-jip-phase-i
[28] RWE AG, “Diving into the world of floating wind.” Accessed: Aug. 09, 2023. [Online]. Available: https://www.rwe.com/en/our-energy/discover-renewables/floating-offshore-wind/floating-wind-education/
[29] Vicinay Cadenas, S.A., “Marine facility catalog: The future of mooring.” 2012. [Online]. Available: http://vicinaycadenas.net/index/
[30] 財團法人船舶暨海洋產業研發中心, 「110年度「新及再生能源前瞻技術掃描評估及研發推動─12MW級風機抗颱浮式平台與錨繫設計及評估創新前瞻計畫」」, 台北,臺灣, 工程技術報告 110-D0101-2, 12月 2021.
[31] K. Kumar, D. Goyal, and S. S. Banwait, “Effect of key parameters on fretting behaviour of wire rope: A review,” Arch. Comput. Methods Eng., vol. 27, no. 2, pp. 549–561, Apr. 2020, doi: 10.1007/s11831-019-09326-y.
[32] S. R. Ghoreishi, P. Cartraud, P. Davies, and T. Messager, “Analytical modeling of synthetic fiber ropes subjected to axial loads. Part I: A new continuum model for multilayered fibrous structures,” Int. J. Solids Struct, vol. 44, no. 9, pp. 2924–2942, May 2007, doi: 10.1016/j.ijsolstr.2006.08.033.
[33] S. D. Weller, L. Johanning, P. Davies, and S. J. Banfield, “Synthetic mooring ropes for marine renewable energy applications,” Renewable Energy, vol. 83, pp. 1268–1278, Nov. 2015, doi: 10.1016/j.renene.2015.03.058.
[34] Vryhof, Vryhof manual: The guide to anchoring. Vryhof Anchors B.V., 2015.
[35] BVG Associates, “B.3.1 Anchors,” The guide to a floating offshore wind farm. Accessed: Aug. 15, 2023. [Online]. Available: https://guidetofloatingoffshorewind.com/guide/b-balance-of-plant/b-3-mooring-system/b-3-1-anchors/
[36] J. Jonkman, “Definition of the floating system for Phase IV of OC3,” National Renewable Energy Laboratory (NREL), Technical report NREL/TP-500-47535, 979456, May 2010. doi: 10.2172/979456.
[37] J. Jonkman, S. Butterfield, W. Musial, and G. Scott, “Definition of a 5-MW reference wind turbine for offshore system development,” National Renewable Energy Laboratory (NREL), Technical report NREL/TP-500-38060, 947422, Feb. 2009. doi: 10.2172/947422.
[38] A. Robertson et al., “Definition of the semisubmersible floating system for Phase II of OC4,” National Renewable Energy Laboratory (NREL), Technical report NREL/TP-5000-60601, 1155123, Sep. 2014. doi: 10.2172/1155123.
[39] C. Bak et al., “The DTU 10-MW reference wind turbine,” Denmark Technical University, Denmark, Roskilde, Denmark, Technical report DTU Wind Energy Report-I-0092, 2013. [Online]. Available: https://www.hawc2.dk/models/dtu-10-mw
[40] P. Bortolotti et al., “IEA Wind TCP Task 37: Systems engineering in wind energy - WP2.1 reference wind turbines,” National Renewable Energy Laboratory (NREL), Technical report, May 2019.
[41] C. Allen et al., “Definition of the UMaine VolturnUS-S reference platform developed for the IEA Wind 15-Megawatt offshore reference wind turbine,” National Renewable Energy Laboratory (NREL), Golden, CO, US, Technical report NREL/TP-5000-76773, Jul. 2020. Accessed: May 19, 2023. [Online]. Available: https://www.nrel.gov/docs/fy20osti/76773.pdf
[42] E. Gaertner et al., “Definition of the IEA 15MW reference wind turbine,” National Renewable Energy Laboratory (NREL), Golden, CO, US, Technical report NREL/TP-5000-75698, Mar. 2020. [Online]. Available: https://www.nrel.gov/docs/fy20osti/75698.pdf
[43] I.-J. Hsu et al., “Optimization of semi-submersible hull design for floating offshore wind turbines,” presented at the ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers Digital Collection, Oct. 2022. doi: 10.1115/OMAE2022-86751.
[44] M. Karimirad and C. Michailides, “V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology,” Renewable Energy, vol. 83, pp. 126–143, Nov. 2015, doi: 10.1016/j.renene.2015.04.033.
[45] C. Le, J. Zhang, H. Ding, P. Zhang, and G. Wang, “Preliminary design of a submerged support structure for floating wind turbines,” J. Ocean Univ. China, vol. 19, no. 6, pp. 1265–1282, Dec. 2020, doi: 10.1007/s11802-020-4427-z.
[46] M.-A. Xue, P. Dou, J. Zheng, P. Lin, and X. Yuan, “Pitch motion reduction of semisubmersible floating offshore wind turbine substructure using a tuned liquid multicolumn damper,” Mar. Struct., vol. 84, p. 103237, Jul. 2022, doi: 10.1016/j.marstruc.2022.103237.
[47] 林柏邑, 「二半潛式風機平台水動力性能及裝置垂蕩板效益比較」, 碩士學位論文, 國立臺灣大學, 台北, 臺灣, 2023.
[48] Y. Jiang, G. Hu, Z. Zong, L. Zou, and G. Jin, “Influence of an integral heave plate on the dynamic response of floating offshore wind turbine under operational and storm conditions,” Energies, vol. 13, no. 22, p. 6122, Nov. 2020, doi: 10.3390/en13226122.
[49] K.-T. Ma, Y.-Y. Wu, S. F. Stolen, L. Bello, M. ver Der Horst, and Y. Luo, “Mooring designs for floating offshore wind turbines leveraging experience from the oil & gas industry,” in Volume 1: Offshore Technology, Virtual, Online: American Society of Mechanical Engineers, Oct. 2021. doi: 10.1115/OMAE2021-60739.
[50] 陳乃齊, 吳慧華及楊瑞源, 作者, 「浮動式風機複合繫纜系統設計可行性分析」, 發表於 國際能源論壇暨第45屆海洋工程研討會, 基隆, 臺灣: 社團法人臺灣海洋工程學會, 10月 2023.
[51] A. C. Pillai et al., “Anchor loads for shallow water mooring of a 15 MW floating wind turbine — Part I: Chain catenary moorings for single and shared anchor scenarios,” Ocean Eng., vol. 266, p. 111816, Dec. 2022, doi: 10.1016/j.oceaneng.2022.111816.
[52] R. Niranjan and S. B. Ramisetti, “Dynamic response of 15 MW floating wind turbine with non-redundant and redundant mooring systems under extreme and accidental conditions,” J. Offshore Mech. Arct. Eng., vol. 145, no. 6, p. 062002, Dec. 2023, doi: 10.1115/1.4062169.
[53] B. Liu and J. Yu, “Effect of mooring parameters on dynamic responses of a semi-submersible floating offshore wind turbine,” Sustainability, vol. 14, no. 21, p. 14012, Oct. 2022, doi: 10.3390/su142114012.
[54] Y. Igarashi, “Influence of clump weight on 2 MW floating offshore wind turbine mooring system in extreme sea condition and shallow water,” Master’s thesis, National Taiwan University, Taipei, Taiwan, 2023. [Online]. Available: https://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90186.
[55] T. Lopez-Olocco et al., “Experimental and numerical study of the influence of clumped weights on a scaled mooring line,” J. Mar. Sci. Eng., vol. 10, no. 5, p. 676, May 2022, doi: 10.3390/jmse10050676.
[56] A. Neisi, H. Ghassemi, M. Iranmanesh, and G. He, “Effect of the multi-segment mooring system by buoy and clump weights on the dynamic motions of the floating platform,” Ocean Eng., vol. 260, p. 111990, Sep. 2022, doi: 10.1016/j.oceaneng.2022.111990.
[57] X. Zheng, T. Zhang, Z. Hu, and G. Ma, “Study on characteristics and optimal layout of components in shallow water mooring system of floating wind turbine,” Appl. Sci., vol. 12, no. 19, p. 10137, Oct. 2022, doi: 10.3390/app121910137.
[58] A. Sankalp and Y. De Leeneer, “Mooring systems for very large floating structures,” in WCFS2019, C. M. Wang, S. H. Lim, and Z. Y. Tay, Eds., in Lecture Notes in Civil Engineering. Singapore: Springer, 2020, pp. 253–273. doi: 10.1007/978-981-13-8743-2_14.
[59] Z. Zhao, X. Li, W. Wang, and W. Shi, “Analysis of dynamic characteristics of an ultra-large semi-submersible floating wind turbine,” J. Mar. Sci. Eng., vol. 7, no. 6, p. 169, Jun. 2019, doi: 10.3390/jmse7060169.
[60] K. Xu, “Design and analysis of mooring systems for semi-submersible floating wind turbines in shallow water,” Doctor Dissertation, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, 2020. [Online]. Available: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2678145?locale-attribute=en
[61] Z. Wang, D. Qiao, J. Yan, G. Tang, B. Li, and D. Ning, “A new approach to predict dynamic mooring tension using LSTM neural network based on responses of floating structure,” Ocean Eng., vol. 249, p. 110905, Apr. 2022, doi: 10.1016/j.oceaneng.2022.110905.
[62] Y. Yang, T. Peng, and S. Liao, “Predicting 3-DoF motions of a moored barge by machine learning,” J. Ocean Eng. Sci., vol. 8, no. 4, pp. 336–343, Aug. 2023, doi: 10.1016/j.joes.2022.08.001.
[63] DNV A/S, “DNV-OS-E301: Offshore Standards-Position Mooring.” Det Norske Veritas (DNV), Jul. 2021.
[64] SINTEF Ocean, “RIFLEX User Guide: Version 4.18.1.” Stiftelsen for industriell og teknisk forskning (SINTEF), Feb. 06, 2020. [Online]. Available: https://community.dnv.com/s/
[65] NREL, “The NREL reference opensource controller (ROSCO): Version 2.8.0.” National Renewable Energy Laboratory (NREL), 2022. [Online]. Available: https://github.com/NREL/rosco
[66] SINTEF Ocean, “RIFLEX theory manual: Version 4.18.1.” Stiftelsen for industriell og teknisk forskning (SINTEF), Feb. 06, 2020. [Online]. Available: https://community.dnv.com/s/
[67] SINTEF Ocean, “SIMO user guide: Version 4.18.1.” Stiftelsen for industriell og teknisk forskning (SINTEF), Feb. 06, 2020. [Online]. Available: https://community.dnv.com/s/
[68] SINTEF Ocean, “SIMO theory manual: Version 4.18.1.” Stiftelsen for industriell og teknisk forskning (SINTEF), Feb. 06, 2020. [Online]. Available: https://community.dnv.com/s/
[69] DNVGL A/S, “DNVGL-RP-C205: Recommended Practice- Environmental conditions and environmental loads.” Det Norske Veritas Germanischer Lloyd (DNVGL), Aug. 2017.
[70] IACS, “UR-W22: Unified Requirement-Offshore mooring chain.” International Association of Classification Societies (IACS), 2016. [Online]. Available: https://iacs.org.uk/publications/unified-requirements/ur-w/ur-w22-rev6-cln/
[71] DNV A/S, “DNV-OS-E302: Offshore Standards-Offshore Mooring Chain.” Det Norske Veritas (DNV), Aug. 2021.
[72] BV, “NI-572: Classification and certification of floating offshore wind turbines.” Bureau Veritas (BV), Jan. 2019. Available: https://marine-offshore.bureauveritas.com/ni572-classification-and-certification-floating-offshore-wind-turbines
[73] ABS, “Guide for building and classing floating offshore wind turbines.” American Bureau of Shipping (ABS), Jul. 2020.
[74] IEC, “IEC TS 61400-1: Wind energy generation systems-Part 1: Design requirements.” International Electrotechnical Commission (IEC), 2019.
[75] 黃政彰, 吳彥威, 許顥騰, 楊雯媗, 鍾承憲及吳華桐, 作者, 「浮動式風力機之繫泊系統設計與耦合分析探討」, 發表於 臺灣風能學術研討會, 台中港, 臺灣: 臺灣風能協會, 12月 2021.
[76] BV, “NR-493: Classification of mooring systems for permanent and mobile offshore units.” Bureau Veritas (BV), Jul. 2021. [Online]. Available: https://marine-offshore.bureauveritas.com/nr493-classification-mooring-systems-permanent-and-mobile-offshore-units#:~:text=Sign%20in-,NR493%20Classification%20of%20mooring%20systems%20for%20permanent%20and%20mobile%20offshore,installation%20of%20the%20mooring%20systems.
[77] F. Vigara et al., “D1.2: Design basis,” European Union (EU), Collaborative project report, Sep. 2020. [Online]. Available: https://corewind.eu/
[78] K. Hasselmann et al., “Measurements of wind-wave growth and swell decay during the joint North Sea wave project (JONSWAP),” Deutsches Hydrographisches Institut, Humburg, Germany, UDC 551.466.31, 1973.
[79] DNV A/S, “Sesam user manual HydroD: Wave loads and stability and floating structures Version 5.1-07.” Det Norske Veritas (DNV), Oct. 05, 2018. [Online]. Available: https://community.dnv.com/s/
[80] B. Bechtold, “Violin plots for MATLAB.” 2016. Accessed: Aug. 04, 2023. [Online]. Available: https://github.com/bastibe/Violinplot-Matlab
[81] WAFO Group, “A MATLAB toolbox for analysis of random waves and loads: tutorial for WAFO version 2017.” Faculty of Engineering Center for Mathematical Sciences Mathematical Statistics, Lund University, Lund, Swedan, 2017. [Online]. Available: http://www.maths.lth.se/.
[82] A. D. D. Craik, “The origins of water wave theory,” Annu. Rev. Fluid Mech., vol. 36, no. 1, pp. 1–28, 2004, doi: 10.1146/annurev.fluid.36.050802.122118.
[83] R. G. Dean and Robert. A. Dalrymple, Water wave mechanics for engineers and scientists, vol. 2. in Advanced Series on Ocean Engineering, vol. 2. World Scientific Publishing Co. Pte. Ltd., 1991.
[84] M. Faltinsen, Sea loads on ships and offshore structures. in Cambridge Ocean Technology. Cambridge, UK: Cambridge University Press, 1990.
[85] J. M. J. Journée and W. W. Massie, Offshore hydromechanics, 1st ed. TU Delft, Denmark: Delft University of Technology (DTU), 2001. [Online]. Available: https://ocw.tudelft.nl/course-readings/offshore-hydromechanics-part-1-readings/
[86] J. N. Newman, “Second-order, slowly varying forces on vessels in irregular waves,” Department of Ocean Engineering, Massachusetts Institute of Technology (MIT), US, MIT Paper 19, 1974. [Online]. Available: https://repository.tudelft.nl/islandora/object/uuid%3A740c99a2-8545-475b-8c6a-5a098e987521
[87] J. R. Morison, J. W. Johnson, and M. P. O’Brien, “Experimental studies of forces on piles,” Int. Conf. Coastal. Eng., vol. 1, no. 4, p. 25, Jan. 1953, doi: 10.9753/icce.v4.25.
[88] N. D. P. Barltrop, A. J. Adams, and M. G. Hallam, Dynamics of fixed marine structures, 3rd ed. Epsom, UK: Butterworth-Heinemann Ltd.; Marine Technology Directorate Ltd. (MTD Ltd.), 1991.
[89] A. K. Chopra, Dynamics of structures: Theory and applications to earthquake engineering, 4th ed. Upper Saddle River, NJ, US: Prentice Hall, 2012.
[90] J. L. Hintze and R. D. Nelson, “Statistical computing and graphics violin plots: A box plot-density trace synergism,” The American Statistician, vol. 52, no. 2, pp. 181–184, May 1998, doi: 10.2307/2685478.
[91] Mathworks, “Kernel smoothing function estimate for univariate and bivariate data - Matlab Ksdensity,” MATLAB R2022b. Accessed: Jul. 14, 2023. [Online]. Available: https://www.mathworks.com/help/stats/ksdensity.html
[92] Graphreader, “graphreader.com - Online tool for reading graph image values and save as CSV / JSON.” Accessed: Jan. 17, 2024. [Online]. Available: https://www.graphreader.com/
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92325-
dc.description.abstract本研究旨在於系統化地設計IEA 15 MW浮動式風機 (floating offshore wind turbine, FOWT) 的繫泊系統,而後在完成繫泊系統設計後探討浮台運動和繫泊索軸向力響應之行為。在繫泊系統設計階段,利用了兩個檢查點以評估最初的21個繫泊系統模型。首先,第一檢查點進行1小時50年的極端事件模擬,用於快速消除超過其自身容許張力的不適合模型。在隨後的第二檢查點的50 年極端事件之模擬結果,則基於法國驗船協會 (Bureau Veritas, BV) 的NR-493設計規範,奠立了三項設計標準,分別檢驗與確保了繫泊索的強度、浮台的水平位移和錨碇點的垂直位移。透過本系統化設計,揀選出了僅有兩種繫泊系統模型能夠承受得住50年的極端事件,即M2L445d185 和 M2L445d162,其中M2L445d185 能夠在較低的繫泊索軸向力響應和浮台水平位移下承受該極端事件。
在設計階段中,造成最大軸向力響應增加的因素為較短的繫泊索長度、較重的繫泊錨鏈以及採用無冗餘繫泊模式。此外,從自由衰減模擬之結果可以得到。造成在縱移 (surge)、橫移 (sway)、平擺 (yaw) 方向上之浮台的整體系統運動的自然頻率增加的方式有較大的錨鍊直徑、較短的繫泊索長度、採用有冗餘餘繫泊系統以及水深的減少。
在分析階段中,由頻譜特徵值分析結果了解到,浮台運動以波浪尖峰頻率和各方向上的自然頻率為主,而與此同時,繫泊纜軸向力響應則與以一階波浪負荷和二階低頻波浪負荷為主。
透過本研究的系統化設計,海洋工程師們能夠快速縮小繫泊系統設計中與繫泊相關的變數範圍。其未來的發展可以拓展應用到半自動之目標導向的繫泊系統設計。
zh_TW
dc.description.abstractThe objectives of this study were to systematically design the mooring system of the IEA 15-MW floating offshore wind turbine (FOWT) and then analyze the behaviors of the floater motions and the mooring line axial force responses. During the mooring system design phase, two checkpoints were carried out to assess the initial 21 mooring system models. First, checkpoint 1 with a 1-hr 50-yr extreme event simulation was to find out and quickly eliminate the improper models that exceeded their own allowable tensions. The subsequent checkpoint 2 with 3-hr extreme event simulations would ensure the strength of the mooring line, the horizontal displacement of the buoy and the vertical displacement of the anchor point in accordance with the Bureau Veritas (BV)’s NR-493 regulation. Through this systematic design, only two mooring system models could withstand the 50-yr extreme event, viz., M2L445d185 and M2L445d162. In addition, M2L445d185 was able to withstand this extreme event under lower mooring line axial forces and floater horizontal offsets.
At the design phase, the factors to increase the maximum axial force responses was because of shorter mooring line lengths, heavier mooring chain, and the adoption of non-redundant mooring patterns. In addition, through free decay tests, the natural frequencies of floater motions in surge, sway, and yaw were particularly related to the configuration of mooring system models, such as larger chain diameter, shorter mooring line length, adoption of redundant mooring system, and reduced water depths.
At the analysis phase, the results of spectral eigenvalue analysis showed that the floater motions were dominated by the wave peak frequency and each DoF-natural frequency, and meanwhile the mooring line axial force responses were dominated by the first-order wave loads and the second-order low frequency wave loads.
Inspired from this systematic design procedure of this study, ocean engineers could quickly narrow down the scope of mooring-related parameters for mooring system design. The future development could be extended to the semiautomatic target-oriented mooring system design.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:37:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-21T16:37:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
ABSTRACT iii
中文摘要 v
CONTENTS vi
LIST OF FIGURES x
LIST OF TABLES xiv
LIST OF ABBREVIATIONS xvi
LIST OF NOTATIONS xviii
Chapter 1 Overview 1
1.1 Background 1
1.2 Review of the state-of-the-art floating platforms 3
1.2.1 Tension leg platform 4
1.2.2 SPAR-type platform 5
1.2.3 Semisubmersible platform 5
1.2.4 Summary of the state-of-the-art floating platforms 5
1.3 Review of state-of art station-keeping systems 7
1.3.1 Catenary versus taut mooring system 7
1.3.2 Materials of mooring line 8
1.3.3 Types of anchors 11
1.4 Literature review 12
1.5 Research objectives 16
1.6 Outlines of this study 17
Chapter 2 Floating offshore wind turbine model 18
2.1 Wind turbine model 18
2.2 Floating platform model 20
2.3 Mooring system model configuration 22
2.3.1 Definition of global coordinate and incoming direction 23
2.3.2 Anchor radius spacing and mooring pattern 25
2.3.3 Mooring chain and mooring line models 28
2.3.4 Summary of mooring chain properties 31
Chapter 3 Design basis 33
3.1 Design criteria 33
3.1.1 Mooring line design axial force (ML DAF) 33
3.1.2 Floater design horizontal offset (Floater DHO) 34
3.1.3 Up-lift displacement at anchor 35
3.2 Extreme environmental conditions 36
3.2.1 Wind condition 36
3.2.2 Current condition 37
3.2.3 Wave condition 38
3.3 Load cases 40
Chapter 4 Methodology 42
4.1 Introduction to adopted software 42
4.2 Design and analysis phases for mooring system 42
4.2.1 Workflow 42
4.2.2 Floating offshore wind turbine model building 44
4.2.3 Restoring assessment and free decay tests 45
4.2.4 1-hr 50-yr extreme event simulation at checkpoint 1 46
4.2.5 Sensitivity assessment 46
4.2.6 3-hr 50-yr extreme event simulations at checkpoint 2 49
4.2.7 Mooring system analyses 49
4.3 Aerodynamics load theory 50
4.4 Wave theory 50
4.4.1 Linear regular wave theory 50
4.4.2 Wave power spectral density model and irregular waves 52
4.4.3 Response amplitude operator (RAO) 54
4.4.4 Quadratic transfer function (QTF) 54
4.5 Current theory 55
4.6 Finite element method model of a mooring line 56
4.6.1 Coordinate definition related to mooring lines 57
4.6.2 Morison’s formula for hydrodynamic forces on mooring lines 58
4.6.3 Static calculation 60
4.6.4 Dynamic calculation 61
4.7 Equation of motion and its solution 62
4.7.1 Equation of motion 62
4.7.2 Exciting load terms 63
4.7.3 Solution to the equation of motion 63
4.8 Restoring assessment and free decay tests 64
4.8.1 Concept of restoring assessment 64
4.8.2 Theory of free decay tests 64
4.8.3 Restoring assessment and free decay test simulation parameter settings 66
4.9 Mooring analyses theory 67
4.9.1 Violin plot analysis 67
4.9.2 Spectral eigenvalue analysis 68
Chapter 5 Results and discussions 70
5.1 Floating offshore wind turbine model validation 70
5.2 Restoring assessments and free decay tests 72
5.3 1-hr 50-yr extreme event simulation at checkpoint 1 77
5.4 Sensitivity assessment 79
5.4.1 Negative axial stiffness assessment (NGASA) 79
5.4.2 Spatial convergence analysis (SCA) 80
5.4.3 Time convergence analysis (TCA) 81
5.4.4 Summary of sensitivity assessments 83
5.5 3-hr 50-yr extreme event simulations at checkpoint 2 83
5.5.1 Mooring line design axial force (ML DAF) 83
5.5.2 Floater design horizontal offset (Floater DHO) 87
5.5.3 Up-lift displacement at anchors 88
5.5.4 Summary of design criteria assessment at checkpoint 2 91
5.6 Mooring analyses 92
5.6.1 Violin plot analysis 92
5.6.2 Spectral eigenvalue analysis 95
Chapter 6 Conclusions and future works 98
6.1 Conclusions 98
6.2 Future works 99
REFERENCE 101
Appendix A Mooring system-related parameters I
Appendix B In-house MATLAB code for free decay test calculation II
Appendix C Calculation of CoG applied on free decay test simulations IV
-
dc.language.isoen-
dc.title單一極端海況下IEA 15-MW浮動式風機的繫泊系統之設計與分析zh_TW
dc.titleDesign and analysis of mooring system for the IEA 15-MW floating offshore wind turbine for an extreme conditionen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李雅榮;呂學信;柯彥廷zh_TW
dc.contributor.oralexamcommitteeYa-Jung Lee;Syue-Sinn Leu;Yen-Ting Koen
dc.subject.keyword懸垂式繫泊系統設計,緬因大學浮台,IEA 15 MW浮動式風機,極端條件,50年極端事件,zh_TW
dc.subject.keywordCatenary mooring system design,UMaine VolturnUS-S floater,IEA 15-MW floating offshore wind turbine,Extreme condition,50-yr extreme event,en
dc.relation.page116-
dc.identifier.doi10.6342/NTU202304455-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-01-30-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-lift2027-06-10-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  此日期後於網路公開 2027-06-10
19.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved