請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92322完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳韻如 | zh_TW |
| dc.contributor.advisor | Yun-Ru Chen | en |
| dc.contributor.author | 張育仁 | zh_TW |
| dc.contributor.author | Yu-Jen Chang | en |
| dc.date.accessioned | 2024-03-21T16:36:50Z | - |
| dc.date.available | 2024-03-23 | - |
| dc.date.copyright | 2024-03-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-18 | - |
| dc.identifier.citation | 1. L. Xu, T. Liu, L. Liu, X. Yao, L. Chen, D. Fan, S. Zhan, S. Wang, Global variation in prevalence and incidence of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol 267, 944-953 (2020).
2. P. Masrori, P. Van Damme, Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol 27, 1918-1929 (2020). 3. G. Logroscino, B. J. Traynor, O. Hardiman, A. Chiò, D. Mitchell, R. J. Swingler, A. Millul, E. Benn, E. Beghi, Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry 81, 385-390 (2010). 4. C. A. Johnston, B. R. Stanton, M. R. Turner, R. Gray, A. H. Blunt, D. Butt, M. A. Ampong, C. E. Shaw, P. N. Leigh, A. Al-Chalabi, Amyotrophic lateral sclerosis in an urban setting: a population based study of inner city London. J Neurol 253, 1642-1643 (2006). 5. M. Ryan, M. Heverin, R. L. McLaughlin, O. Hardiman, Lifetime Risk and Heritability of Amyotrophic Lateral Sclerosis. JAMA Neurol 76, 1367-1374 (2019). 6. Z. R. Manjaly, K. M. Scott, K. Abhinav, L. Wijesekera, J. Ganesalingam, L. H. Goldstein, A. Janssen, A. Dougherty, E. Willey, B. R. Stanton, M. R. Turner, M. A. Ampong, M. Sakel, R. W. Orrell, R. Howard, C. E. Shaw, P. N. Leigh, A. Al-Chalabi, The sex ratio in amyotrophic lateral sclerosis: A population based study. Amyotroph Lateral Scler 11, 439-442 (2010). 7. M. R. Turner, A. Al-Chalabi, A. Chio, O. Hardiman, M. C. Kiernan, J. D. Rohrer, J. Rowe, W. Seeley, K. Talbot, Genetic screening in sporadic ALS and FTD. J Neurol Neurosurg Psychiatry 88, 1042-1044 (2017). 8. M. DeJesus-Hernandez, Ian R. Mackenzie, Bradley F. Boeve, Adam L. Boxer, M. Baker, Nicola J. Rutherford, Alexandra M. Nicholson, NiCole A. Finch, H. Flynn, J. Adamson, N. Kouri, A. Wojtas, P. Sengdy, G.-Yuek R. Hsiung, A. Karydas, William W. Seeley, Keith A. Josephs, G. Coppola, Daniel H. Geschwind, Zbigniew K. Wszolek, H. Feldman, David S. Knopman, Ronald C. Petersen, Bruce L. Miller, Dennis W. Dickson, Kevin B. Boylan, Neill R. Graff-Radford, R. Rademakers, Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron 72, 245-256 (2011). 9. Alan E. Renton, E. Majounie, A. Waite, J. Simón-Sánchez, S. Rollinson, J. R. Gibbs, Jennifer C. Schymick, H. Laaksovirta, John C. van Swieten, L. Myllykangas, H. Kalimo, A. Paetau, Y. Abramzon, Anne M. Remes, A. Kaganovich, Sonja W. Scholz, J. Duckworth, J. Ding, Daniel W. Harmer, Dena G. Hernandez, Janel O. Johnson, K. Mok, M. Ryten, D. Trabzuni, Rita J. Guerreiro, Richard W. Orrell, J. Neal, A. Murray, J. Pearson, Iris E. Jansen, D. Sondervan, H. Seelaar, D. Blake, K. Young, N. Halliwell, Janis B. Callister, G. Toulson, A. Richardson, A. Gerhard, J. Snowden, D. Mann, D. Neary, Michael A. Nalls, T. Peuralinna, L. Jansson, V.-M. Isoviita, A.-L. Kaivorinne, M. Hölttä-Vuori, E. Ikonen, R. Sulkava, M. Benatar, J. Wuu, A. Chiò, G. Restagno, G. Borghero, M. Sabatelli, D. Heckerman, E. Rogaeva, L. Zinman, Jeffrey D. Rothstein, M. Sendtner, C. Drepper, Evan E. Eichler, C. Alkan, Z. Abdullaev, Svetlana D. Pack, A. Dutra, E. Pak, J. Hardy, A. Singleton, Nigel M. Williams, P. Heutink, S. Pickering-Brown, Huw R. Morris, Pentti J. Tienari, Bryan J. Traynor, A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron 72, 257-268 (2011). 10. D. R. Rosen, T. Siddique, D. Patterson, D. A. Figlewicz, P. Sapp, A. Hentati, D. Donaldson, J. Goto, J. P. O''Regan, H. X. Deng, et al., Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59-62 (1993). 11. T. J. Kwiatkowski, D. A. Bosco, A. L. LeClerc, E. Tamrazian, C. R. Vanderburg, C. Russ, A. Davis, J. Gilchrist, E. J. Kasarskis, T. Munsat, P. Valdmanis, G. A. Rouleau, B. A. Hosler, P. Cortelli, P. J. de Jong, Y. Yoshinaga, J. L. Haines, M. A. Pericak-Vance, J. Yan, N. Ticozzi, T. Siddique, D. McKenna-Yasek, P. C. Sapp, H. R. Horvitz, J. E. Landers, R. H. Brown, Mutations in the <i>FUS/TLS</i> Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis. Science 323, 1205-1208 (2009). 12. C. Vance, B. Rogelj, T. Hortobágyi, K. J. De Vos, A. L. Nishimura, J. Sreedharan, X. Hu, B. Smith, D. Ruddy, P. Wright, J. Ganesalingam, K. L. Williams, V. Tripathi, S. Al-Saraj, A. Al-Chalabi, P. N. Leigh, I. P. Blair, G. Nicholson, J. de Belleroche, J. M. Gallo, C. C. Miller, C. E. Shaw, Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208-1211 (2009). 13. E. Kabashi, P. N. Valdmanis, P. Dion, D. Spiegelman, B. J. McConkey, C. Vande Velde, J. P. Bouchard, L. Lacomblez, K. Pochigaeva, F. Salachas, P. F. Pradat, W. Camu, V. Meininger, N. Dupre, G. A. Rouleau, TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40, 572-574 (2008). 14. M. Neumann, D. M. Sampathu, L. K. Kwong, A. C. Truax, M. C. Micsenyi, T. T. Chou, J. Bruce, T. Schuck, M. Grossman, C. M. Clark, L. F. McCluskey, B. L. Miller, E. Masliah, I. R. Mackenzie, H. Feldman, W. Feiden, H. A. Kretzschmar, J. Q. Trojanowski, V. M. Lee, Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130-133 (2006). 15. T. J. Cohen, A. W. Hwang, C. R. Restrepo, C.-X. Yuan, J. Q. Trojanowski, V. M. Y. Lee, An acetylation switch controls TDP-43 function and aggregation propensity. Nature Communications 6, 5845 (2015). 16. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 16, 505-512 (2017). 17. L. Lacomblez, G. Bensimon, P. N. Leigh, P. Guillet, L. Powe, S. Durrleman, J. C. Delumeau, V. Meininger, A confirmatory dose-ranging study of riluzole in ALS. ALS/Riluzole Study Group-II. Neurology 47, S242-250 (1996). 18. B. D. Kretschmer, U. Kratzer, W. J. Schmidt, Riluzole, a glutamate release inhibitor, and motor behavior. Naunyn Schmiedebergs Arch Pharmacol 358, 181-190 (1998). 19. S. J. Wang, K. Y. Wang, W. C. Wang, Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes). Neuroscience 125, 191-201 (2004). 20. A. Prasad, V. Bharathi, V. Sivalingam, A. Girdhar, B. K. Patel, Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 12, 25 (2019). 21. E. S. Pinarbasi, T. Cağatay, H. Y. J. Fung, Y. C. Li, Y. M. Chook, P. J. Thomas, Active nuclear import and passive nuclear export are the primary determinants of TDP-43 localization. Sci Rep 8, 7083 (2018). 22. C. F. Sephton, S. K. Good, S. Atkin, C. M. Dewey, P. Mayer, 3rd, J. Herz, G. Yu, TDP-43 is a developmentally regulated protein essential for early embryonic development. J Biol Chem 285, 6826-6834 (2010). 23. I. R. Mackenzie, R. Rademakers, M. Neumann, TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9, 995-1007 (2010). 24. J. Gao, L. Wang, M. L. Huntley, G. Perry, X. Wang, Pathomechanisms of TDP-43 in neurodegeneration. J Neurochem, (2018). 25. H. X. Deng, W. Chen, S. T. Hong, K. M. Boycott, G. H. Gorrie, N. Siddique, Y. Yang, F. Fecto, Y. Shi, H. Zhai, H. Jiang, M. Hirano, E. Rampersaud, G. H. Jansen, S. Donkervoort, E. H. Bigio, B. R. Brooks, K. Ajroud, R. L. Sufit, J. L. Haines, E. Mugnaini, M. A. Pericak-Vance, T. Siddique, Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477, 211-215 (2011). 26. S. Boeynaems, E. Bogaert, P. Van Damme, L. Van Den Bosch, Inside out: the role of nucleocytoplasmic transport in ALS and FTLD. Acta Neuropathol 132, 159-173 (2016). 27. K. J. De Vos, M. Hafezparast, Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? Neurobiol Dis 105, 283-299 (2017). 28. C. Vilariño-Güell, C. Wider, A. I. Soto-Ortolaza, S. A. Cobb, J. M. Kachergus, B. H. Keeling, J. C. Dachsel, M. M. Hulihan, D. W. Dickson, Z. K. Wszolek, R. J. Uitti, N. R. Graff-Radford, B. F. Boeve, K. A. Josephs, B. Miller, K. B. Boylan, K. Gwinn, C. H. Adler, J. O. Aasly, F. Hentati, A. Destée, A. Krygowska-Wajs, M. C. Chartier-Harlin, O. A. Ross, R. Rademakers, M. J. Farrer, Characterization of DCTN1 genetic variability in neurodegeneration. Neurology 72, 2024-2028 (2009). 29. D. Brenner, R. Yilmaz, K. Müller, T. Grehl, S. Petri, T. Meyer, J. Grosskreutz, P. Weydt, W. Ruf, C. Neuwirth, M. Weber, S. Pinto, K. G. Claeys, B. Schrank, B. Jordan, A. Knehr, K. Günther, A. Hübers, D. Zeller, C. Kubisch, S. Jablonka, M. Sendtner, T. Klopstock, M. de Carvalho, A. Sperfeld, G. Borck, A. E. Volk, J. Dorst, J. Weis, M. Otto, J. Schuster, K. Del Tredici, H. Braak, K. M. Danzer, A. Freischmidt, T. Meitinger, T. M. Strom, A. C. Ludolph, P. M. Andersen, J. H. Weishaupt, Hot-spot KIF5A mutations cause familial ALS. Brain 141, 688-697 (2018). 30. S. C. Barber, P. J. Shaw, Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 48, 629-641 (2010). 31. L. Ferraiuolo, J. Kirby, A. J. Grierson, M. Sendtner, P. J. Shaw, Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7, 616-630 (2011). 32. H. Mitsumoto, R. M. Santella, X. Liu, M. Bogdanov, J. Zipprich, H. C. Wu, J. Mahata, M. Kilty, K. Bednarz, D. Bell, P. H. Gordon, M. Hornig, M. Mehrazin, A. Naini, M. Flint Beal, P. Factor-Litvak, Oxidative stress biomarkers in sporadic ALS. Amyotroph Lateral Scler 9, 177-183 (2008). 33. C. Colombrita, E. Zennaro, C. Fallini, M. Weber, A. Sommacal, E. Buratti, V. Silani, A. Ratti, TDP-43 is recruited to stress granules in conditions of oxidative insult. J Neurochem 111, 1051-1061 (2009). 34. C. W. Goh, I. C. Lee, J. R. Sundaram, S. E. George, P. Yusoff, M. H. Brush, N. S. K. Sze, S. Shenolikar, Chronic oxidative stress promotes GADD34-mediated phosphorylation of the TAR DNA-binding protein TDP-43, a modification linked to neurodegeneration. J Biol Chem 293, 163-176 (2018). 35. X. Zuo, J. Zhou, Y. Li, K. Wu, Z. Chen, Z. Luo, X. Zhang, Y. Liang, M. A. Esteban, Y. Zhou, X. D. Fu, TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS. Nat Struct Mol Biol 28, 132-142 (2021). 36. J. Sreedharan, I. P. Blair, V. B. Tripathi, X. Hu, C. Vance, B. Rogelj, S. Ackerley, J. C. Durnall, K. L. Williams, E. Buratti, F. Baralle, J. de Belleroche, J. D. Mitchell, P. N. Leigh, A. Al-Chalabi, C. C. Miller, G. Nicholson, C. E. Shaw, TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis. Science 319, 1668-1672 (2008). 37. E. T. Cirulli, B. N. Lasseigne, S. Petrovski, P. C. Sapp, P. A. Dion, C. S. Leblond, J. Couthouis, Y. F. Lu, Q. Wang, B. J. Krueger, Z. Ren, J. Keebler, Y. Han, S. E. Levy, B. E. Boone, J. R. Wimbish, L. L. Waite, A. L. Jones, J. P. Carulli, A. G. Day-Williams, J. F. Staropoli, W. W. Xin, A. Chesi, A. R. Raphael, D. McKenna-Yasek, J. Cady, J. M. Vianney de Jong, K. P. Kenna, B. N. Smith, S. Topp, J. Miller, A. Gkazi, A. Al-Chalabi, L. H. van den Berg, J. Veldink, V. Silani, N. Ticozzi, C. E. Shaw, R. H. Baloh, S. Appel, E. Simpson, C. Lagier-Tourenne, S. M. Pulst, S. Gibson, J. Q. Trojanowski, L. Elman, L. McCluskey, M. Grossman, N. A. Shneider, W. K. Chung, J. M. Ravits, J. D. Glass, K. B. Sims, V. M. Van Deerlin, T. Maniatis, S. D. Hayes, A. Ordureau, S. Swarup, J. Landers, F. Baas, A. S. Allen, R. S. Bedlack, J. W. Harper, A. D. Gitler, G. A. Rouleau, R. Brown, M. B. Harms, G. M. Cooper, T. Harris, R. M. Myers, D. B. Goldstein, Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347, 1436-1441 (2015). 38. I. Le Ber, A. De Septenville, S. Millecamps, A. Camuzat, P. Caroppo, P. Couratier, F. Blanc, L. Lacomblez, F. Sellal, M. C. Fleury, V. Meininger, C. Cazeneuve, F. Clot, O. Flabeau, E. LeGuern, A. Brice, TBK1 mutation frequencies in French frontotemporal dementia and amyotrophic lateral sclerosis cohorts. Neurobiol Aging 36, 3116.e3115-3116.e3118 (2015). 39. M. Abo-Rady, N. Kalmbach, A. Pal, C. Schludi, A. Janosch, T. Richter, P. Freitag, M. Bickle, A. K. Kahlert, S. Petri, S. Stefanov, H. Glass, S. Staege, W. Just, R. Bhatnagar, D. Edbauer, A. Hermann, F. Wegner, J. L. Sterneckert, Knocking out C9ORF72 Exacerbates Axonal Trafficking Defects Associated with Hexanucleotide Repeat Expansion and Reduces Levels of Heat Shock Proteins. Stem Cell Reports 14, 390-405 (2020). 40. P. Rizzu, C. Blauwendraat, S. Heetveld, E. M. Lynes, M. Castillo-Lizardo, A. Dhingra, E. Pyz, M. Hobert, M. Synofzik, J. Simón-Sánchez, M. Francescatto, P. Heutink, C9orf72 is differentially expressed in the central nervous system and myeloid cells and consistently reduced in C9orf72, MAPT and GRN mutation carriers. Acta Neuropathologica Communications 4, 37 (2016). 41. P. Frick, C. Sellier, I. R. A. Mackenzie, C.-Y. Cheng, J. Tahraoui-Bories, C. Martinat, R. J. Pasterkamp, J. Prudlo, D. Edbauer, M. Oulad-Abdelghani, R. Feederle, N. Charlet-Berguerand, M. Neumann, Novel antibodies reveal presynaptic localization of C9orf72 protein and reduced protein levels in C9orf72 mutation carriers. Acta Neuropathologica Communications 6, 72 (2018). 42. R. Ferguson, E. Serafeimidou-Pouliou, V. Subramanian, Dynamic expression of the mouse orthologue of the human amyotropic lateral sclerosis associated gene C9orf72 during central nervous system development and neuronal differentiation. J Anat 229, 871-891 (2016). 43. R. A. K. Atkinson, C. M. Fernandez-Martos, J. D. Atkin, J. C. Vickers, A. E. King, C9ORF72 expression and cellular localization over mouse development. Acta Neuropathologica Communications 3, 59 (2015). 44. S. Byrne, M. Elamin, P. Bede, A. Shatunov, C. Walsh, B. Corr, M. Heverin, N. Jordan, K. Kenna, C. Lynch, R. L. McLaughlin, P. M. Iyer, C. O''Brien, J. Phukan, B. Wynne, A. L. Bokde, D. G. Bradley, N. Pender, A. Al-Chalabi, O. Hardiman, Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurol 11, 232-240 (2012). 45. S. Van Mossevelde, J. van der Zee, M. Cruts, C. Van Broeckhoven, Relationship between C9orf72 repeat size and clinical phenotype. Curr Opin Genet Dev 44, 117-124 (2017). 46. I. Gijselinck, S. Van Mossevelde, J. van der Zee, A. Sieben, S. Engelborghs, J. De Bleecker, A. Ivanoiu, O. Deryck, D. Edbauer, M. Zhang, B. Heeman, V. Bäumer, M. Van den Broeck, M. Mattheijssens, K. Peeters, E. Rogaeva, P. De Jonghe, P. Cras, J. J. Martin, P. P. de Deyn, M. Cruts, C. Van Broeckhoven, B. C. on behalf of the, The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter. Molecular Psychiatry 21, 1112-1124 (2016). 47. A. Nordin, C. Akimoto, A. Wuolikainen, H. Alstermark, P. Jonsson, A. Birve, S. L. Marklund, K. S. Graffmo, K. Forsberg, T. Brännström, P. M. Andersen, Extensive size variability of the GGGGCC expansion in C9orf72 in both neuronal and non-neuronal tissues in 18 patients with ALS or FTD. Hum Mol Genet 24, 3133-3142 (2015). 48. Z. Xi, M. van Blitterswijk, M. Zhang, P. McGoldrick, J. R. McLean, Y. Yunusova, E. Knock, D. Moreno, C. Sato, P. M. McKeever, R. Schneider, J. Keith, N. Petrescu, P. Fraser, M. C. Tartaglia, M. C. Baker, N. R. Graff-Radford, K. B. Boylan, D. W. Dickson, I. R. Mackenzie, R. Rademakers, J. Robertson, L. Zinman, E. Rogaeva, Jump from pre-mutation to pathologic expansion in C9orf72. Am J Hum Genet 96, 962-970 (2015). 49. J. Beck, M. Poulter, D. Hensman, J. D. Rohrer, C. J. Mahoney, G. Adamson, T. Campbell, J. Uphill, A. Borg, P. Fratta, R. W. Orrell, A. Malaspina, J. Rowe, J. Brown, J. Hodges, K. Sidle, J. M. Polke, H. Houlden, J. M. Schott, N. C. Fox, M. N. Rossor, S. J. Tabrizi, A. M. Isaacs, J. Hardy, J. D. Warren, J. Collinge, S. Mead, Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet 92, 345-353 (2013). 50. M. van Blitterswijk, M. DeJesus-Hernandez, E. Niemantsverdriet, M. E. Murray, M. G. Heckman, N. N. Diehl, P. H. Brown, M. C. Baker, N. A. Finch, P. O. Bauer, G. Serrano, T. G. Beach, K. A. Josephs, D. S. Knopman, R. C. Petersen, B. F. Boeve, N. R. Graff-Radford, K. B. Boylan, L. Petrucelli, D. W. Dickson, R. Rademakers, Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study. Lancet Neurol 12, 978-988 (2013). 51. H. Tran, S. Almeida, J. Moore, T. F. Gendron, U. Chalasani, Y. Lu, X. Du, J. A. Nickerson, L. Petrucelli, Z. Weng, F. B. Gao, Differential Toxicity of Nuclear RNA Foci versus Dipeptide Repeat Proteins in a Drosophila Model of C9ORF72 FTD/ALS. Neuron 87, 1207-1214 (2015). 52. S. Ciura, S. Lattante, I. Le Ber, M. Latouche, H. Tostivint, A. Brice, E. Kabashi, Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Ann Neurol 74, 180-187 (2013). 53. V. V. Belzil, P. O. Bauer, M. Prudencio, T. F. Gendron, C. T. Stetler, I. K. Yan, L. Pregent, L. Daughrity, M. C. Baker, R. Rademakers, K. Boylan, T. C. Patel, D. W. Dickson, L. Petrucelli, Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol 126, 895-905 (2013). 54. C. J. Donnelly, P. W. Zhang, J. T. Pham, A. R. Haeusler, N. A. Mistry, S. Vidensky, E. L. Daley, E. M. Poth, B. Hoover, D. M. Fines, N. Maragakis, P. J. Tienari, L. Petrucelli, B. J. Traynor, J. Wang, F. Rigo, C. F. Bennett, S. Blackshaw, R. Sattler, J. D. Rothstein, RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415-428 (2013). 55. A. R. Haeusler, C. J. Donnelly, G. Periz, E. A. J. Simko, P. G. Shaw, M.-S. Kim, N. J. Maragakis, J. C. Troncoso, A. Pandey, R. Sattler, J. D. Rothstein, J. Wang, C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507, 195-200 (2014). 56. M. A. Farg, V. Sundaramoorthy, J. M. Sultana, S. Yang, R. A. Atkinson, V. Levina, M. A. Halloran, P. A. Gleeson, I. P. Blair, K. Y. Soo, A. E. King, J. D. Atkin, C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet 23, 3579-3595 (2014). 57. M. Nassif, U. Woehlbier, P. A. Manque, The Enigmatic Role of C9ORF72 in Autophagy. Front Neurosci 11, 442 (2017). 58. E. Sudria-Lopez, M. Koppers, M. de Wit, C. van der Meer, H. J. Westeneng, C. A. Zundel, S. A. Youssef, L. Harkema, A. de Bruin, J. H. Veldink, L. H. van den Berg, R. J. Pasterkamp, Full ablation of C9orf72 in mice causes immune system-related pathology and neoplastic events but no motor neuron defects. Acta Neuropathol 132, 145-147 (2016). 59. M. Koppers, A. M. Blokhuis, H. J. Westeneng, M. L. Terpstra, C. A. Zundel, R. Vieira de Sá, R. D. Schellevis, A. J. Waite, D. J. Blake, J. H. Veldink, L. H. van den Berg, R. J. Pasterkamp, C9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Ann Neurol 78, 426-438 (2015). 60. Z. Su, Y. Zhang, T. F. Gendron, P. O. Bauer, J. Chew, W. Y. Yang, E. Fostvedt, K. Jansen-West, V. V. Belzil, P. Desaro, A. Johnston, K. Overstreet, S. Y. Oh, P. K. Todd, J. D. Berry, M. E. Cudkowicz, B. F. Boeve, D. Dickson, M. K. Floeter, B. J. Traynor, C. Morelli, A. Ratti, V. Silani, R. Rademakers, R. H. Brown, J. D. Rothstein, K. B. Boylan, L. Petrucelli, M. D. Disney, Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron 83, 1043-1050 (2014). 61. P. Fratta, S. Mizielinska, A. J. Nicoll, M. Zloh, E. M. Fisher, G. Parkinson, A. M. Isaacs, C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Sci Rep 2, 1016 (2012). 62. K. Reddy, B. Zamiri, S. Y. R. Stanley, R. B. Macgregor, Jr., C. E. Pearson, The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures. J Biol Chem 288, 9860-9866 (2013). 63. B. Zamiri, M. Mirceta, K. Bomsztyk, R. B. Macgregor, Jr., C. E. Pearson, Quadruplex formation by both G-rich and C-rich DNA strands of the C9orf72 (GGGGCC)8•(GGCCCC)8 repeat: effect of CpG methylation. Nucleic Acids Res 43, 10055-10064 (2015). 64. S. Vatovec, A. Kovanda, B. Rogelj, Unconventional features of C9ORF72 expanded repeat in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neurobiol Aging 35, 2421.e2421-2421.e2412 (2014). 65. A. Kovanda, M. Zalar, P. Šket, J. Plavec, B. Rogelj, Anti-sense DNA d(GGCCCC)n expansions in C9ORF72 form i-motifs and protonated hairpins. Scientific Reports 5, 17944 (2015). 66. Y. Zhang, C. Roland, C. Sagui, Structure and Dynamics of DNA and RNA Double Helices Obtained from the GGGGCC and CCCCGG Hexanucleotide Repeats That Are the Hallmark of C9FTD/ALS Diseases. ACS Chem Neurosci 8, 578-591 (2017). 67. Z. Xu, M. Poidevin, X. Li, Y. Li, L. Shu, D. L. Nelson, H. Li, C. M. Hales, M. Gearing, T. S. Wingo, P. Jin, Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proc Natl Acad Sci U S A 110, 7778-7783 (2013). 68. E. G. Conlon, L. Lu, A. Sharma, T. Yamazaki, T. Tang, N. A. Shneider, J. L. Manley, The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS brains. Elife 5, (2016). 69. K. Mori, S.-M. Weng, T. Arzberger, S. May, K. Rentzsch, E. Kremmer, B. Schmid, H. A. Kretzschmar, M. Cruts, C. Van Broeckhoven, C. Haass, D. Edbauer, The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS. Science 339, 1335-1338 (2013). 70. J. Cooper-Knock, M. J. Walsh, A. Higginbottom, J. Robin Highley, M. J. Dickman, D. Edbauer, P. G. Ince, S. B. Wharton, S. A. Wilson, J. Kirby, G. M. Hautbergue, P. J. Shaw, Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions. Brain 137, 2040-2051 (2014). 71. A. Bajc Česnik, S. Darovic, S. Prpar Mihevc, M. Štalekar, M. Malnar, H. Motaln, Y. B. Lee, J. Mazej, J. Pohleven, M. Grosch, M. Modic, M. Fonovič, B. Turk, M. Drukker, C. E. Shaw, B. Rogelj, Nuclear RNA foci from C9ORF72 expansion mutation form paraspeckle-like bodies. J Cell Sci 132, (2019). 72. S. Mizielinska, S. Grönke, T. Niccoli, C. E. Ridler, E. L. Clayton, A. Devoy, T. Moens, F. E. Norona, I. O. C. Woollacott, J. Pietrzyk, K. Cleverley, A. J. Nicoll, S. Pickering-Brown, J. Dols, M. Cabecinha, O. Hendrich, P. Fratta, E. M. C. Fisher, L. Partridge, A. M. Isaacs, C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 345, 1192 (2014). 73. R. Simone, P. Fratta, S. Neidle, G. N. Parkinson, A. M. Isaacs, G-quadruplexes: Emerging roles in neurodegenerative diseases and the non-coding transcriptome. FEBS Lett 589, 1653-1668 (2015). 74. J. D. Cleary, L. P. Ranum, Repeat associated non-ATG (RAN) translation: new starts in microsatellite expansion disorders. Curr Opin Genet Dev 26, 6-15 (2014). 75. M. G. Kearse, K. M. Green, A. Krans, C. M. Rodriguez, A. E. Linsalata, A. C. Goldstrohm, P. K. Todd, CGG Repeat-Associated Non-AUG Translation Utilizes a Cap-Dependent Scanning Mechanism of Initiation to Produce Toxic Proteins. Mol Cell 62, 314-322 (2016). 76. K. M. Green, M. R. Glineburg, M. G. Kearse, B. N. Flores, A. E. Linsalata, S. J. Fedak, A. C. Goldstrohm, S. J. Barmada, P. K. Todd, RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nature Communications 8, 2005 (2017). 77. L. D. Goodman, M. Prudencio, A. R. Srinivasan, O. M. Rifai, V. M. Lee, L. Petrucelli, N. M. Bonini, eIF4B and eIF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72-associated ALS. Acta Neuropathol Commun 7, 62 (2019). 78. R. Tabet, L. Schaeffer, F. Freyermuth, M. Jambeau, M. Workman, C.-Z. Lee, C.-C. Lin, J. Jiang, K. Jansen-West, H. Abou-Hamdan, L. Désaubry, T. Gendron, L. Petrucelli, F. Martin, C. Lagier-Tourenne, CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts. Nature Communications 9, 152 (2018). 79. Y. J. Chang, U. S. Jeng, Y. L. Chiang, I. S. Hwang, Y. R. Chen, Glycine-Alanine Dipeptide Repeat from C9orf72 Hexanucleotide Expansions Forms Toxic Amyloids Possessing Cell-to-cell Transmission Property. J Biol Chem, (2016). 80. Y.-J. Zhang, T. F. Gendron, J. C. Grima, H. Sasaguri, K. Jansen-West, Y.-F. Xu, R. B. Katzman, J. Gass, M. E. Murray, M. Shinohara, W.-L. Lin, A. Garrett, J. N. Stankowski, L. Daughrity, J. Tong, E. A. Perkerson, M. Yue, J. Chew, M. Castanedes-Casey, A. Kurti, Z. S. Wang, A. M. Liesinger, J. D. Baker, J. Jiang, C. Lagier-Tourenne, D. Edbauer, D. W. Cleveland, R. Rademakers, K. B. Boylan, G. Bu, C. D. Link, C. A. Dickey, J. D. Rothstein, D. W. Dickson, J. D. Fryer, L. Petrucelli, C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat Neurosci 19, 668-677 (2016). 81. Q. Guo, C. Lehmer, A. Martínez-Sánchez, T. Rudack, F. Beck, H. Hartmann, M. Pérez-Berlanga, F. Frottin, M. S. Hipp, F. U. Hartl, D. Edbauer, W. Baumeister, R. Fernández-Busnadiego, In Situ Structure of Neuronal C9orf72 Poly-GA Aggregates Reveals Proteasome Recruitment. Cell 172, 696-705.e612 (2018). 82. S. May, D. Hornburg, M. H. Schludi, T. Arzberger, K. Rentzsch, B. M. Schwenk, F. A. Grässer, K. Mori, E. Kremmer, J. Banzhaf-Strathmann, M. Mann, F. Meissner, D. Edbauer, C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathol 128, 485-503 (2014). 83. B. Khosravi, K. D. LaClair, H. Riemenschneider, Q. Zhou, F. Frottin, N. Mareljic, M. Czuppa, D. Farny, H. Hartmann, M. Michaelsen, T. Arzberger, F. U. Hartl, M. S. Hipp, D. Edbauer, Cell-to-cell transmission of C9orf72 poly-(Gly-Ala) triggers key features of ALS/FTD. The EMBO journal 39, e102811 (2020). 84. T. Nonaka, M. Masuda-Suzukake, M. Hosokawa, A. Shimozawa, S. Hirai, H. Okado, M. Hasegawa, C9ORF72 dipeptide repeat poly-GA inclusions promote intracellular aggregation of phosphorylated TDP-43. Human Molecular Genetics 27, 2658-2670 (2018). 85. S. Al-Sarraj, A. King, C. Troakes, B. Smith, S. Maekawa, I. Bodi, B. Rogelj, A. Al-Chalabi, T. Hortobágyi, C. E. Shaw, p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol 122, 691-702 (2011). 86. J. Jiang, D. W. Cleveland, Bidirectional Transcriptional Inhibition as Therapy for ALS/FTD Caused by Repeat Expansion in C9orf72. Neuron 92, 1160-1163 (2016). 87. M. H. Schludi, S. May, F. A. Grasser, K. Rentzsch, E. Kremmer, C. Kupper, T. Klopstock, D. German Consortium for Frontotemporal Lobar, A. Bavarian Brain Banking, T. Arzberger, D. Edbauer, Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta Neuropathol 130, 537-555 (2015). 88. X. Wen, W. Tan, T. Westergard, K. Krishnamurthy, S. S. Markandaiah, Y. Shi, S. Lin, N. A. Shneider, J. Monaghan, U. B. Pandey, P. Pasinelli, J. K. Ichida, D. Trotti, Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 84, 1213-1225 (2014). 89. K. H. Lee, P. Zhang, H. J. Kim, D. M. Mitrea, M. Sarkar, B. D. Freibaum, J. Cika, M. Coughlin, J. Messing, A. Molliex, B. A. Maxwell, N. C. Kim, J. Temirov, J. Moore, R. M. Kolaitis, T. I. Shaw, B. Bai, J. Peng, R. W. Kriwacki, J. P. Taylor, C9orf72 Dipeptide Repeats Impair the Assembly, Dynamics, and Function of Membrane-Less Organelles. Cell 167, 774-788.e717 (2016). 90. L. R. Hayes, L. Duan, K. Bowen, P. Kalab, J. D. Rothstein, C9orf72 arginine-rich dipeptide repeat proteins disrupt karyopherin-mediated nuclear import. Elife 9, (2020). 91. S. Hutten, S. Usluer, B. Bourgeois, F. Simonetti, H. M. Odeh, C. M. Fare, M. Czuppa, M. Hruska-Plochan, M. Hofweber, M. Polymenidou, J. Shorter, D. Edbauer, T. Madl, D. Dormann, Nuclear Import Receptors Directly Bind to Arginine-Rich Dipeptide Repeat Proteins and Suppress Their Pathological Interactions. Cell reports 33, 108538 (2020). 92. N. J. Kramer, M. S. Haney, D. W. Morgens, A. Jovičić, J. Couthouis, A. Li, J. Ousey, R. Ma, G. Bieri, C. K. Tsui, Y. Shi, N. T. Hertz, M. Tessier-Lavigne, J. K. Ichida, M. C. Bassik, A. D. Gitler, CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity. Nat Genet 50, 603-612 (2018). 93. K. Y. Shi, E. Mori, Z. F. Nizami, Y. Lin, M. Kato, S. Xiang, L. C. Wu, M. Ding, Y. Yu, J. G. Gall, S. L. McKnight, Toxic PR(n) poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export. Proc Natl Acad Sci U S A 114, E1111-e1117 (2017). 94. R. Lopez-Gonzalez, Y. Lu, T. F. Gendron, A. Karydas, H. Tran, D. Yang, L. Petrucelli, B. L. Miller, S. Almeida, F. B. Gao, Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons. Neuron 92, 383-391 (2016). 95. S. Y. Choi, R. Lopez-Gonzalez, G. Krishnan, H. L. Phillips, A. N. Li, W. W. Seeley, W.-D. Yao, S. Almeida, F.-B. Gao, C9ORF72-ALS/FTD-associated poly(GR) binds Atp5a1 and compromises mitochondrial function in vivo. Nat Neurosci 22, 851-862 (2019). 96. A. Swaminathan, M. Bouffard, M. Liao, S. Ryan, J. B. Callister, S. M. Pickering-Brown, G. A. B. Armstrong, P. Drapeau, Expression of C9orf72-related dipeptides impairs motor function in a vertebrate model. Hum Mol Genet 27, 1754-1762 (2018). 97. T. García-Muse, A. Aguilera, R Loops: From Physiological to Pathological Roles. Cell 179, 604-618 (2019). 98. C. Niehrs, B. Luke, Regulatory R-loops as facilitators of gene expression and genome stability. Nat Rev Mol Cell Biol 21, 167-178 (2020). 99. L. A. Sanz, S. R. Hartono, Y. W. Lim, S. Steyaert, A. Rajpurkar, P. A. Ginno, X. Xu, F. Chédin, Prevalent, Dynamic, and Conserved R-Loop Structures Associate with Specific Epigenomic Signatures in Mammals. Mol Cell 63, 167-178 (2016). 100. J. Y. Chen, X. Zhang, X. D. Fu, L. Chen, R-ChIP for genome-wide mapping of R-loops by using catalytically inactive RNASEH1. Nat Protoc 14, 1661-1685 (2019). 101. P. A. Ginno, P. L. Lott, H. C. Christensen, I. Korf, F. Chédin, R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 45, 814-825 (2012). 102. E. Massé, M. Drolet, Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. J Biol Chem 274, 16659-16664 (1999). 103. K. Reddy, M. H. Schmidt, J. M. Geist, N. P. Thakkar, G. B. Panigrahi, Y. H. Wang, C. E. Pearson, Processing of double-R-loops in (CAG)·(CTG) and C9orf72 (GGGGCC)·(GGCCCC) repeats causes instability. Nucleic Acids Res 42, 10473-10487 (2014). 104. O. Shih, K. F. Liao, Y. Q. Yeh, C. J. Su, C. A. Wang, J. W. Chang, W. R. Wu, C. C. Liang, C. Y. Lin, T. H. Lee, C. H. Chang, L. C. Chiang, C. F. Chang, D. G. Liu, M. H. Lee, C. Y. Liu, T. W. Hsu, B. Mansel, M. C. Ho, C. Y. Shu, F. Lee, E. Yen, T. C. Lin, U. Jeng, Performance of the new biological small- and wide-angle X-ray scattering beamline 13A at the Taiwan Photon Source. J Appl Crystallogr 55, 340-352 (2022). 105. O. Shih, Y.-Q. Yeh, K.-F. Liao, C.-J. Su, P.-H. Wu, R. K. Heenan, T.-Y. Yu, U. S. Jeng, Membrane Charging and Swelling upon Calcium Adsorption as Revealed by Phospholipid Nanodiscs. The Journal of Physical Chemistry Letters 9, 4287-4293 (2018). 106. D. G. Liu, C. H. Chang, L. C. Chiang, M. H. Lee, C. F. Chang, C. Y. Lin, C. C. Liang, T. H. Lee, S. W. Lin, C. Y. Liu, C. S. Hwang, J. C. Huang, C. K. Kuan, H. S. Wang, Y. C. Liu, F. H. Tseng, J. Y. Chuang, W. R. Liao, H. C. Li, C. J. Su, K. F. Liao, Y. Q. Yeh, O. Shih, W. R. Wu, C. A. Wang, U. Jeng, Optical design and performance of the biological small-angle X-ray scattering beamline at the Taiwan Photon Source. J Synchrotron Radiat 28, 1954-1965 (2021). 107. A. Roy, A. Kucukural, Y. Zhang, I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols 5, 725-738 (2010). 108. A. J. A. P. Guinier, La diffraction des rayons X aux très petits angles : application à l''étude de phénomènes ultramicroscopiques. 11, 161-237 (1939). 109. Y. Zhang, I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40 (2008). 110. J. Yang, R. Yan, A. Roy, D. Xu, J. Poisson, Y. Zhang, The I-TASSER Suite: protein structure and function prediction. Nature Methods 12, 7-8 (2015). 111. J. Yang, Y. Zhang, I-TASSER server: new development for protein structure and function predictions. Nucleic acids research 43, W174-W181 (2015). 112. S. Wu, J. Skolnick, Y. Zhang, Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biology 5, 17 (2007). 113. D. Svergun, C. Barberato, M. H. J. Koch, CRYSOL– a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates. Journal of Applied Crystallography 28, 768-773 (1995). 114. R. Das, D. Baker, Macromolecular Modeling with Rosetta. Annual Review of Biochemistry 77, 363-382 (2008). 115. K. W. Kaufmann, G. H. Lemmon, S. L. DeLuca, J. H. Sheehan, J. Meiler, Practically Useful: What the Rosetta Protein Modeling Suite Can Do for You. Biochemistry 49, 2987-2998 (2010). 116. K. Stovgaard, C. Andreetta, J. Ferkinghoff-Borg, T. Hamelryck, Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models. BMC bioinformatics 11, 429-429 (2010). 117. B. J. Bender, A. Cisneros, A. M. Duran, J. A. Finn, D. Fu, A. D. Lokits, B. K. Mueller, A. K. Sangha, M. F. Sauer, A. M. Sevy, G. Sliwoski, J. H. Sheehan, F. DiMaio, J. Meiler, R. Moretti, Protocols for Molecular Modeling with Rosetta3 and RosettaScripts. Biochemistry 55, 4748-4763 (2016). 118. B. Samatanga, A. Cléry, P. Barraud, F. H.-T. Allain, I. Jelesarov, Comparative analyses of the thermodynamic RNA binding signatures of different types of RNA recognition motifs. Nucleic Acids Research 45, 6037-6050 (2017). 119. A. Loregian, E. Sinigalia, B. Mercorelli, G. Palù, D. M. Coen, Binding parameters and thermodynamics of the interaction of the human cytomegalovirus DNA polymerase accessory protein, UL44, with DNA: implications for the processivity mechanism. Nucleic Acids Res 35, 4779-4791 (2007). 120. Z.-W. Du, H. Chen, H. Liu, J. Lu, K. Qian, C.-L. Huang, X. Zhong, F. Fan, S.-C. Zhang, Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nature Communications 6, 6626 (2015). 121. W. B. Rippon, A. G. Walton, Optical properties of the polyglycine II helix. Biopolymers 10, 1207-1212 (1971). 122. H. Yamashita, T. Kato, M. Oba, T. Misawa, T. Hattori, N. Ohoka, M. Tanaka, M. Naito, M. Kurihara, Y. Demizu, Development of a Cell-penetrating Peptide that Exhibits Responsive Changes in its Secondary Structure in the Cellular Environment. Scientific Reports 6, 33003 (2016). 123. A. B. Loveland, E. Svidritskiy, D. Susorov, S. Lee, A. Park, S. Zvornicanin, G. Demo, F.-B. Gao, A. A. Korostelev, Ribosome inhibition by C9ORF72-ALS/FTD-associated poly-PR and poly-GR proteins revealed by cryo-EM. Nature Communications 13, 2776 (2022). 124. K. Kanekura, T. Yagi, A. J. Cammack, J. Mahadevan, M. Kuroda, M. B. Harms, T. M. Miller, F. Urano, Poly-dipeptides encoded by the C9ORF72 repeats block global protein translation. Hum Mol Genet 25, 1803-1813 (2016). 125. R. J. Hagerman, M. Leehey, W. Heinrichs, F. Tassone, R. Wilson, J. Hills, J. Grigsby, B. Gage, P. J. Hagerman, Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 57, 127-130 (2001). 126. M. D. Koob, M. L. Moseley, L. J. Schut, K. A. Benzow, T. D. Bird, J. W. Day, L. P. W. Ranum, An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nature Genetics 21, 379-384 (1999). 127. S. E. Andrew, Y. P. Goldberg, B. Kremer, H. Telenius, J. Theilmann, S. Adam, E. Starr, F. Squitieri, B. Lin, M. A. Kalchman, et al., The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington''s disease. Nat Genet 4, 398-403 (1993). 128. A. Ratti, L. Corrado, B. Castellotti, R. Del Bo, I. Fogh, C. Cereda, C. Tiloca, C. D''Ascenzo, A. Bagarotti, V. Pensato, M. Ranieri, S. Gagliardi, D. Calini, L. Mazzini, F. Taroni, S. Corti, M. Ceroni, G. D. Oggioni, K. Lin, J. F. Powell, G. Sorarù, N. Ticozzi, G. P. Comi, S. D''Alfonso, C. Gellera, V. Silani, C9ORF72 repeat expansion in a large Italian ALS cohort: evidence of a founder effect. Neurobiol Aging 33, 2528.e2527-2514 (2012). 129. J. Simón-Sánchez, E. G. Dopper, P. E. Cohn-Hokke, R. K. Hukema, N. Nicolaou, H. Seelaar, J. R. de Graaf, I. de Koning, N. M. van Schoor, D. J. Deeg, M. Smits, J. Raaphorst, L. H. van den Berg, H. J. Schelhaas, C. E. De Die-Smulders, D. Majoor-Krakauer, A. J. Rozemuller, R. Willemsen, Y. A. Pijnenburg, P. Heutink, J. C. van Swieten, The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. Brain 135, 723-735 (2012). 130. A. Iacoangeli, A. Al Khleifat, A. R. Jones, W. Sproviero, A. Shatunov, S. Opie-Martin, K. E. Morrison, P. J. Shaw, C. E. Shaw, I. Fogh, R. J. Dobson, S. J. Newhouse, A. Al-Chalabi, C9orf72 intermediate expansions of 24-30 repeats are associated with ALS. Acta Neuropathol Commun 7, 115 (2019). 131. E. Gómez-Tortosa, J. Gallego, R. Guerrero-López, A. Marcos, E. Gil-Neciga, M. J. Sainz, A. Díaz, E. Franco-Macías, M. J. Trujillo-Tiebas, C. Ayuso, J. Pérez-Pérez, C9ORF72 hexanucleotide expansions of 20-22 repeats are associated with frontotemporal deterioration. Neurology 80, 366-370 (2013). 132. B. Swinnen, A. Bento-Abreu, T. F. Gendron, S. Boeynaems, E. Bogaert, R. Nuyts, M. Timmers, W. Scheveneels, N. Hersmus, J. Wang, S. Mizielinska, A. M. Isaacs, L. Petrucelli, R. Lemmens, P. Van Damme, L. Van Den Bosch, W. Robberecht, A zebrafish model for C9orf72 ALS reveals RNA toxicity as a pathogenic mechanism. Acta Neuropathologica 135, 427-443 (2018). 133. M. P. Shaw, A. Higginbottom, A. McGown, L. M. Castelli, E. James, G. M. Hautbergue, P. J. Shaw, T. M. Ramesh, Stable transgenic C9orf72 zebrafish model key aspects of the ALS/FTD phenotype and reveal novel pathological features. Acta Neuropathologica Communications 6, 125 (2018). 134. A. Pattamatta, L. Nguyen, H. R. Olafson, M. M. Scotti, L. A. Laboissonniere, J. Richardson, J. A. Berglund, T. Zu, E. T. Wang, L. P. W. Ranum, Repeat length increases disease penetrance and severity in C9orf72 ALS/FTD BAC transgenic mice. Hum Mol Genet 29, 3900-3918 (2021). 135. S. Asamitsu, Y. Yabuki, S. Ikenoshita, K. Kawakubo, M. Kawasaki, S. Usuki, Y. Nakayama, K. Adachi, H. Kugoh, K. Ishii, T. Matsuura, E. Nanba, H. Sugiyama, K. Fukunaga, N. Shioda, CGG repeat RNA G-quadruplexes interact with FMRpolyG to cause neuronal dysfunction in fragile X-related tremor/ataxia syndrome. 7, eabd9440 (2021). 136. B. Zamiri, K. Reddy, R. B. Macgregor, Jr., C. E. Pearson, TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins. J Biol Chem 289, 4653-4659 (2014). 137. R. Simone, R. Balendra, T. G. Moens, E. Preza, K. M. Wilson, A. Heslegrave, N. S. Woodling, T. Niccoli, J. Gilbert-Jaramillo, S. Abdelkarim, E. L. Clayton, M. Clarke, M. T. Konrad, A. J. Nicoll, J. S. Mitchell, A. Calvo, A. Chio, H. Houlden, J. M. Polke, M. A. Ismail, C. E. Stephens, T. Vo, A. A. Farahat, W. D. Wilson, D. W. Boykin, H. Zetterberg, L. Partridge, S. Wray, G. Parkinson, S. Neidle, R. Patani, P. Fratta, A. M. Isaacs, G-quadruplex-binding small molecules ameliorate C9orf72 FTD/ALS pathology in vitro and in vivo. EMBO molecular medicine 10, 22-31 (2018). 138. Z. F. Wang, A. Ursu, J. L. Childs-Disney, R. Guertler, W. Y. Yang, V. Bernat, S. G. Rzuczek, R. Fuerst, Y. J. Zhang, T. F. Gendron, I. Yildirim, B. G. Dwyer, J. E. Rice, L. Petrucelli, M. D. Disney, The Hairpin Form of r(G(4)C(2))(exp) in c9ALS/FTD Is Repeat-Associated Non-ATG Translated and a Target for Bioactive Small Molecules. Cell chemical biology 26, 179-190.e112 (2019). 139. I. Kwon, S. Xiang, M. Kato, L. Wu, P. Theodoropoulos, T. Wang, J. Kim, J. Yun, Y. Xie, S. L. McKnight, Poly-dipeptides encoded by the <em>C9orf72</em> repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345, 1139 (2014). 140. S. Yin, R. Lopez-Gonzalez, R. C. Kunz, J. Gangopadhyay, C. Borufka, S. P. Gygi, F. B. Gao, R. Reed, Evidence that C9ORF72 Dipeptide Repeat Proteins Associate with U2 snRNP to Cause Mis-splicing in ALS/FTD Patients. Cell reports 19, 2244-2256 (2017). 141. K. Kanekura, Y. Harada, M. Fujimoto, T. Yagi, Y. Hayamizu, K. Nagaoka, M. Kuroda, Characterization of membrane penetration and cytotoxicity of C9orf72-encoding arginine-rich dipeptides. Scientific Reports 8, 12740 (2018). 142. R. Wang, X. Xu, Z. Hao, S. Zhang, D. Wu, H. Sun, C. Mu, H. Ren, G. Wang, Poly-PR in C9ORF72-Related Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Causes Neurotoxicity by Clathrin-Dependent Endocytosis. Neurosci Bull 35, 889-900 (2019). 143. L. Fumagalli, F. L. Young, S. Boeynaems, M. De Decker, A. R. Mehta, A. Swijsen, R. Fazal, W. Guo, M. Moisse, J. Beckers, L. Dedeene, B. T. Selvaraj, T. Vandoorne, V. Madan, M. van Blitterswijk, D. Raitcheva, A. McCampbell, K. Poesen, A. D. Gitler, P. Koch, P. V. Berghe, D. R. Thal, C. Verfaillie, S. Chandran, L. Van Den Bosch, S. L. Bullock, P. Van Damme, <em>C9orf72</em>-derived arginine-containing dipeptide repeats associate with axonal transport machinery and impede microtubule-based motility. 7, eabg3013 (2021). 144. A. L. Gill, M. Z. Wang, B. Levine, A. Premasiri, F. G. Vieira, Primary Neurons and Differentiated NSC-34 Cells Are More Susceptible to Arginine-Rich ALS Dipeptide Repeat Protein-Associated Toxicity than Non-Differentiated NSC-34 and CHO Cells. International journal of molecular sciences 20, (2019). 145. H. Jafarinia, E. van der Giessen, P. R. Onck, Phase Separation of Toxic Dipeptide Repeat Proteins Related to C9orf72 ALS/FTD. Biophysical Journal 119, 843-851 (2020). 146. S. Zheng, A. Sahimi, K. S. Shing, M. Sahimi, Molecular Dynamics Study of Structure, Folding, and Aggregation of Poly-PR and Poly-GR Proteins. Biophys J 120, 64-72 (2021). 147. S. T. Henriques, M. N. Melo, M. A. R. B. Castanho, Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J 399, 1-7 (2006). 148. K. Splith, I. Neundorf, Antimicrobial peptides with cell-penetrating peptide properties and vice versa. European biophysics journal : EBJ 40, 387-397 (2011). 149. J. G. Rodriguez Plaza, R. Morales-Nava, C. Diener, G. Schreiber, Z. D. Gonzalez, M. T. Lara Ortiz, I. Ortega Blake, O. Pantoja, R. Volkmer, E. Klipp, A. Herrmann, G. Del Rio, Cell Penetrating Peptides and Cationic Antibacterial Peptides: TWO SIDES OF THE SAME COIN *<sup> </sup>. Journal of Biological Chemistry 289, 14448-14457 (2014). 150. S. G. Patel, E. J. Sayers, L. He, R. Narayan, T. L. Williams, E. M. Mills, R. K. Allemann, L. Y. P. Luk, A. T. Jones, Y.-H. Tsai, Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Scientific Reports 9, 6298 (2019). 151. J. Temsamani, P. Vidal, The use of cell-penetrating peptides for drug delivery. Drug Discovery Today 9, 1012-1019 (2004). 152. E. Koren, A. Apte, R. R. Sawant, J. Grunwald, V. P. Torchilin, Cell-penetrating TAT peptide in drug delivery systems: proteolytic stability requirements. Drug Deliv 18, 377-384 (2011). 153. M. R. White, D. M. Mitrea, P. Zhang, C. B. Stanley, D. E. Cassidy, A. Nourse, A. H. Phillips, M. Tolbert, J. P. Taylor, R. W. Kriwacki, C9orf72 Poly(PR) Dipeptide Repeats Disturb Biomolecular Phase Separation and Disrupt Nucleolar Function. Mol Cell 74, 713-728.e716 (2019). 154. B. D. Freibaum, Y. Lu, R. Lopez-Gonzalez, N. C. Kim, S. Almeida, K.-H. Lee, N. Badders, M. Valentine, B. L. Miller, P. C. Wong, L. Petrucelli, H. J. Kim, F.-B. Gao, J. P. Taylor, GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525, 129-133 (2015). 155. K. Zhang, C. J. Donnelly, A. R. Haeusler, J. C. Grima, J. B. Machamer, P. Steinwald, E. L. Daley, S. J. Miller, K. M. Cunningham, S. Vidensky, S. Gupta, M. A. Thomas, I. Hong, S.-L. Chiu, R. L. Huganir, L. W. Ostrow, M. J. Matunis, J. Wang, R. Sattler, T. E. Lloyd, J. D. Rothstein, The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525, 56-61 (2015). 156. J. Vanneste, T. Vercruysse, S. Boeynaems, A. Sicart, P. Van Damme, D. Daelemans, L. Van Den Bosch, C9orf72-generated poly-GR and poly-PR do not directly interfere with nucleocytoplasmic transport. Scientific Reports 9, 15728 (2019). 157. R. Dafinca, J. Scaber, N. Ababneh, T. Lalic, G. Weir, H. Christian, J. Vowles, A. G. Douglas, A. Fletcher-Jones, C. Browne, M. Nakanishi, M. R. Turner, R. Wade-Martins, S. A. Cowley, K. Talbot, C9orf72 Hexanucleotide Expansions Are Associated with Altered Endoplasmic Reticulum Calcium Homeostasis and Stress Granule Formation in Induced Pluripotent Stem Cell-Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Stem cells (Dayton, Ohio) 34, 2063-2078 (2016). 158. J. H. Park, C. G. Chung, J. Seo, B. H. Lee, Y. S. Lee, J. H. Kweon, S. B. Lee, C9orf72-Associated Arginine-Rich Dipeptide Repeat Proteins Reduce the Number of Golgi Outposts and Dendritic Branches in Drosophila Neurons. Molecules and cells 43, 821-830 (2020). 159. S. Boeynaems, E. Bogaert, D. Kovacs, A. Konijnenberg, E. Timmerman, A. Volkov, M. Guharoy, M. De Decker, T. Jaspers, V. H. Ryan, A. M. Janke, P. Baatsen, T. Vercruysse, R. M. Kolaitis, D. Daelemans, J. P. Taylor, N. Kedersha, P. Anderson, F. Impens, F. Sobott, J. Schymkowitz, F. Rousseau, N. L. Fawzi, W. Robberecht, P. Van Damme, P. Tompa, L. Van Den Bosch, Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics. Mol Cell 65, 1044-1055.e1045 (2017). 160. Y.-J. Zhang, L. Guo, P. K. Gonzales, T. F. Gendron, Y. Wu, K. Jansen-West, A. D. O’Raw, S. R. Pickles, M. Prudencio, Y. Carlomagno, M. A. Gachechiladze, C. Ludwig, R. Tian, J. Chew, M. DeTure, W.-L. Lin, J. Tong, L. M. Daughrity, M. Yue, Y. Song, J. W. Andersen, M. Castanedes-Casey, A. Kurti, A. Datta, G. Antognetti, A. McCampbell, R. Rademakers, B. Oskarsson, D. W. Dickson, M. Kampmann, M. E. Ward, J. D. Fryer, C. D. Link, J. Shorter, L. Petrucelli, Heterochromatin anomalies and double-stranded RNA accumulation underlie <em>C9orf72</em> poly(PR) toxicity. 363, eaav2606 (2019). 161. H. Suzuki, Y. Shibagaki, S. Hattori, M. Matsuoka, The proline-arginine repeat protein linked to C9-ALS/FTD causes neuronal toxicity by inhibiting the DEAD-box RNA helicase-mediated ribosome biogenesis. Cell death & disease 9, 975 (2018). 162. C. Walker, S. Herranz-Martin, E. Karyka, C. Liao, K. Lewis, W. Elsayed, V. Lukashchuk, S.-C. Chiang, S. Ray, P. J. Mulcahy, M. Jurga, I. Tsagakis, T. Iannitti, J. Chandran, I. Coldicott, K. J. De Vos, M. K. Hassan, A. Higginbottom, P. J. Shaw, G. M. Hautbergue, M. Azzouz, S. F. El-Khamisy, C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nat Neurosci 20, 1225-1235 (2017). 163. K. Mori, Y. Nihei, T. Arzberger, Q. Zhou, I. R. Mackenzie, A. Hermann, F. Hanisch, F. Kamp, B. Nuscher, D. Orozco, D. Edbauer, C. Haass, Reduced hnRNPA3 increases C9orf72 repeat RNA levels and dipeptide-repeat protein deposition. EMBO reports 17, 1314-1325 (2016). 164. A. Jovičić, J. Mertens, S. Boeynaems, E. Bogaert, N. Chai, S. B. Yamada, J. W. Paul, 3rd, S. Sun, J. R. Herdy, G. Bieri, N. J. Kramer, F. H. Gage, L. Van Den Bosch, W. Robberecht, A. D. Gitler, Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci 18, 1226-1229 (2015). 165. N. Chai, A. D. Gitler, Yeast screen for modifiers of C9orf72 poly(glycine-arginine) dipeptide repeat toxicity. FEMS yeast research 18, (2018). 166. Y. Yuva-Aydemir, S. Almeida, G. Krishnan, T. F. Gendron, F. B. Gao, Transcription elongation factor AFF2/FMR2 regulates expression of expanded GGGGCC repeat-containing C9ORF72 allele in ALS/FTD. Nat Commun 10, 5466 (2019). 167. W. Cheng, S. Wang, Z. Zhang, D. W. Morgens, L. R. Hayes, S. Lee, B. Portz, Y. Xie, B. V. Nguyen, M. S. Haney, S. Yan, D. Dong, A. N. Coyne, J. Yang, F. Xian, D. W. Cleveland, Z. Qiu, J. D. Rothstein, J. Shorter, F. B. Gao, M. C. Bassik, S. Sun, CRISPR-Cas9 Screens Identify the RNA Helicase DDX3X as a Repressor of C9ORF72 (GGGGCC)n Repeat-Associated Non-AUG Translation. Neuron 104, 885-898.e888 (2019). 168. A. Corman, B. Jung, M. Häggblad, L. Bräutigam, V. Lafarga, L. Lidemalm, D. Hühn, J. Carreras-Puigvert, O. Fernandez-Capetillo, A Chemical Screen Identifies Compounds Limiting the Toxicity of C9ORF72 Dipeptide Repeats. Cell chemical biology 26, 235-243.e235 (2019). 169. B. Leveugle, W. Ding, F. Laurence, M. P. Dehouck, A. Scanameo, R. Cecchelli, H. Fillit, Heparin oligosaccharides that pass the blood-brain barrier inhibit beta-amyloid precursor protein secretion and heparin binding to beta-amyloid peptide. J Neurochem 70, 736-744 (1998). 170. Q. Ma, B. Dudas, M. Hejna, U. Cornelli, J. M. Lee, S. Lorens, R. Mervis, I. Hanin, J. Fareed, The blood-brain barrier accessibility of a heparin-derived oligosaccharides C3. Thrombosis research 105, 447-453 (2002). 171. M. Rose, B. Dudas, U. Cornelli, I. Hanin, Glycosaminoglycan C3 protects against AF64A-induced cholinotoxicity in a dose-dependent and time-dependent manner. Brain research 1015, 96-102 (2004). 172. L. Bergamaschini, E. Rossi, C. Storini, S. Pizzimenti, M. Distaso, C. Perego, A. De Luigi, C. Vergani, M. G. De Simoni, Peripheral treatment with enoxaparin, a low molecular weight heparin, reduces plaques and beta-amyloid accumulation in a mouse model of Alzheimer''s disease. The Journal of neuroscience : the official journal of the Society for Neuroscience 24, 4181-4186 (2004). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92322 | - |
| dc.description.abstract | 額顳葉失智症(frontotemporal lobar dementia, FTLD)和肌萎縮側索硬化症(amyotrophic lateral sclerosis, ALS)中最常見的突變是C9ORF72基因非編碼區域中的六核苷酸GGGGCC (簡稱G4C2)的重複擴增。FTLD是一種具有額顳葉型神經退化、行為能力缺陷和逐漸產生失語症為特徵的神經退化性疾病。而ALS則是一種上下運動神經元兩者皆受影響的運動神經元疾病,ALS惡化極為快速,確診後病人平均剩下二至五年的壽命。而這兩種看似差異極大的疾病卻擁有相當多共同的病理特徵和基因突變。
與C9ORF72突變相關的病理機制包括C9ORF72蛋白質功能的喪失和涉及RNA和蛋白質增益毒性。由於核苷酸重複所導致非ATG啟動的蛋白質轉譯機制(RAN)作用,在C9ORF72的六核苷酸重複擴增可以產生五種雙胜肽重複,包括了聚甘胺酸-丙胺酸、聚甘胺酸-精胺酸、聚甘胺酸-脯胺酸、聚脯胺酸-精胺酸和聚脯胺酸-丙胺酸。這些雙胜肽重複序列可源自於正義和反義RNA,而在FTLD或ALS患者的海馬迴、額葉和運動皮質層、脊髓和小腦中,都可鑑定出這些雙胜肽重複序列。 在這些雙胜肽重複序列中,聚甘胺酸-精胺酸和聚脯胺酸-精胺酸,這兩種富含精胺酸的雙胜肽重複序列,被認為是最具毒性的兩種。關於聚甘胺酸-精胺酸和聚脯胺酸-精胺酸的毒性機制目前仍在積極研究中。提出的機制包括引起核仁壓力、阻塞核仁孔的運輸、破壞核糖體與RNA的合成、降低粒線體功能和抑制蛋白質轉譯。雖然所有雙胜肽重複序列都可在細胞質包含體中觀察到,但聚甘胺酸-丙胺酸含量是最豐富的,並且可以錯誤堆積成具神經毒性的類澱粉沉積物。此外,聚甘胺酸-丙胺酸被認為會影響蛋白酶體的功能並誘導另一病理蛋白TDP-43的錯誤定位和聚集。另一方面,目前沒有文獻指出聚甘胺酸-脯胺酸和聚脯胺酸-丙胺酸具有毒性。 在正常人基因中的G4C2重複次數從2到24次皆有可能,而在ALS患者中,它的範圍則從30擴增至數百甚至上千次不等。關於精確會造成病理現象以及產生雙胜肽重複胜肽鏈的G4C2重複次數仍不清楚。在以下這個對聚甘胺酸-精胺酸和聚脯胺酸-精胺酸病理機制進行的研究中,我們使用化學合成的聚甘胺酸-精胺酸和聚脯胺酸-精胺酸來檢驗要產生細胞毒性所需的最小長度。並且利用圓二色譜光譜和小角度X射線散射結合分子模擬,我們提供了聚甘胺酸-精胺酸/聚脯胺酸-精胺酸的可能結構。並且利用脂質體泄漏和鈣流入實驗我們測試了聚甘胺酸-精胺酸和聚脯胺酸-精胺酸對於生物膜的破壞。並且在聚甘胺酸-精胺酸肽鏈中置換多個脯胺酸來進一步檢驗與螺旋構型相關的細胞毒性。我們還使用了等溫量熱法來評估聚甘胺酸-精胺酸/聚脯胺酸-精胺酸與核苷酸的結合與交互作用。此外,我們也進一步研究了聚甘胺酸-精胺酸/聚脯胺酸-精胺酸對DNA複製、RNA轉錄或蛋白質轉譯的抑制以及在細胞中核質運輸的破壞。最後,利用糖分子庫我們篩選出了一種具硫酸化的雙糖可以逆轉上述提到的毒性。利用ALS病人身上取得的多功能幹細胞分化而成的運動神經元,我們發現這個雙糖分子還可以增加此類神經元存活率,並且在聚甘胺酸-精胺酸/聚脯胺酸-精胺酸基因轉殖的果蠅模型上,我們發現這個雙糖分子可以延長其壽命和改善其運動功能。最後,若我們在小鼠腦部運動皮層注射聚甘胺酸-精胺酸會看到其運動功能的退化,利用這個雙糖分子我們亦可以反轉這個現象,為日後藥物的發展找尋契機。 | zh_TW |
| dc.description.abstract | The most prevalent mutation in frontotemporal lobar dementia (FTLD) and amyotrophic lateral sclerosis (ALS) is the expansion of the hexanucleotide GGGGCC, G4C2, repeat in the non-coding region of the C9ORF72 gene. FTLD is a neurodegenerative disease characterized by frontotemporal dementia, behavioral deficits, and progressive aphasia. ALS, on the other hand, is a motor neuron disease affecting both upper and lower motor neurons, leading to paralysis with an average survival time of two to five years. These two disorders share common pathologies and gene mutations.
The pathological mechanisms associated with the C9ORF72 mutation include both loss of function and gain of function, involving reported RNA and protein toxicity. Repeat-associated non-ATG (RAN) initiated translation generates five dipeptide repeats (DPRs) from the hexanucleotide repeat expansion: poly-glycine-alanine (GA), poly-glycine-arginine (GR), poly-glycine-proline (GP), poly-proline-arginine (PR), and poly-proline-alanine (PA). These DPRs, originating from both sense and antisense RNA, are identified in the hippocampus, frontal and motor cortices, spinal cord, and cerebellum of FTLD or ALS patients. Among the DPRs, poly-GR and poly-PR, which are arginine-rich, have been observed as the most toxic species. The mechanisms of toxicity for poly-GR and poly-PR are still under intensive investigation. Proposed pathways include causing nucleolar stress, blocking nuclear pore transportation, compromising ribosomal RNA biogenesis, reducing mitochondrial function, and inhibiting protein translation. While all DPRs are observed in cytoplasmic inclusions, poly-GA is the most abundant and can fibrillize into neurotoxic amyloids. Additionally, poly-GA impairs proteasome function and induces TDP-43 mis-localization and aggregation. In contrast, the toxicities of poly-GP and poly-PA have not been reported. The G4C2 repeat number for healthy individuals ranges from 2 to 24 repeats, while in patients, it varies from over ~30 to hundreds or even thousands. The precise pathological threshold for G4C2 repeat number and the toxicity boundary regarding peptide length of DPRs remain unclear. In my study investigating the disease mechanism of poly-GR/PR, synthetic poly-GR peptides were utilized to examine the minimal length required for poly-GR toxicity. Structural information of poly-GR/PR was provided through circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS) combined with molecular simulation. Membrane integrity was assessed through liposome leakage and calcium influx assays following poly-GR/PR treatment. Helix-related cytotoxicity was further examined by introduction of proline residues into poly-GR peptides. Poly-GR/PR interaction with nucleotides was also assessed using isothermal calorimetry. In addition, interference with DNA replication, RNA transcription, or protein translation was further investigated. Besides, compromised nucleocytoplasmic transportation was examined. Finally, a sulfated disaccharide was identified through chemical library screening and reversed most of the toxicities mentioned above. It also rescued poly-GR/PR-induced cytotoxicity in C9-iPS-derived motor neurons, transgenic poly-GR/PR fly models, and a poly-GR-injected mouse model. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:36:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-21T16:36:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii ABSTRACT iv TABLE OF CONTENTS vii LIST OF FIGURES xii ABBREVIATIONS xv CHAPTER 1. INTRODUCTION 1 1.1 ALS 1 1.1.1 Introduction of ALS 1 1.1.2 TAR DNA binding protein, TDP-43 3 1.1.3 Mechanisms 4 1.1.3 Familial mutations 7 1.2 C9ORF72 and dipeptide repeats 8 1.2.1 C9ORF72 8 1.2.2 C9ORF72 in ALS 10 1.2.3 Pathological mechanisms of C9ORF72 mutation 11 1.2.4 Repeat-initiated non-ATG translation, RAN 14 1.2.5 Poly-Glycine-Alanine 15 1.2.6 Arginine-rich dipeptide repeats 16 1.3 R-loop 17 1.4 Motivation and Objectives 18 CHAPTER 2. MATERIALS AND METHODS 20 2.1 Materials 20 2.1.1 Antibodies 20 2.1.2 Buffers 20 2.1.3 Commercial reagents 21 2.2 Methods 28 2.2.1 Peptide synthesis and preparation 28 2.2.2 Cell viability and cytotoxicity assays 28 2.2.3 Plasmid construction 30 2.2.4 Cytotoxicity assessment of NSC34 cells expressing poly-GR 32 2.2.5 Far-UV CD spectroscopy 33 2.2.6 SAXS measurement 34 2.2.7 I-TASSER/Rosetta structure calculations and implementation of SAXS constraint 35 2.2.8 Liposome leakage assay 36 2.2.9 Calcium influx assay 37 2.2.10 Nucleus isolation 39 2.2.11 Cell imaging and immunocytochemistry 40 2.2.12 Immuno-TEM 41 2.2.13 Isothermal titration calorimetry (ITC) 42 2.2.14 DNA-protein complex crosslinking 43 2.2.15 PCR experiments 44 2.2.16 Replication assay 46 2.2.17 Transcription assay 46 2.2.18 RNA labeling and flowcytometry 47 2.2.19 Western blot 49 2.2.20 R-loop staining 49 2.2.21 γH2AX staining 51 2.2.22 Newly synthesized protein labeling 51 2.2.23 Nucleocytoplasmic transport assay 52 2.2.24 Drug screening for rescuing GR30 toxicity 53 2.2.25 Motor neuronal differentiation 54 2.2.26 PI staining and immunostaining of control- and C9-iPSC derived MNs 55 2.2.27 Drosophila climbing and longevity assay 56 2.2.28 Animals 57 2.2.29 Surgical procedures 57 2.2.30 Rotarod task 58 2.2.31 Brain tissue preparation 58 2.2.32 Immunohistochemistry staining 59 2.2.33 Statistics 60 CHAPTER 3. RESULTS 61 Part I. Investigating the length-dependent toxicity and structure of arginine-rich dipeptide repeats 61 3.1 Poly-GR toxicity is dose- and length-dependent 61 3.2 Loose helical conformation formed in poly-GR peptides with a length-dependent manner 67 3.3 Proline-introduction reduces helix formation of poly-GR and toxicity induced by helical conformation 72 3.4 Poly-GR/PR peptides differentially disrupt liposomes and plasma/nuclear membranes and poly-GR performed the disruption in a length-dependent manner 76 3.5 Poly-GR possesses stronger binding affinity to DNA than RNA 86 3.6 Poly-GR/PR peptides inhibit replication and transcription 92 3.7 Poly-GR/PR blocks nucleocytoplasmic transport at later stage 105 Part II. Screening potential drugs for C9-ALS 109 3.8 Negatively charged disaccharides rescue cytotoxicity of GR30 109 3.9 A fully sulfated disaccharide, sodium sucrose octasulfate, rescues membrane penetration and transcription inhibition induced by poly-GRs 118 3.10 SOS rescues neuronal toxicity in iPSC-derived MNs from a C9-ALS patient 127 3.11 SOS prolongs the lifespan of Drosophila expressing poly-GR and poly-PR with longer repeat numbers 132 3.12 SOS rescues GR30-induced toxicity in a GR30-injected mouse model 135 CHAPTER 4. DISCUSSION 139 4.1 Investigating the length-dependence of argnine-rich DPRs 139 4.2 Examining structural features and membrane penetration of arginine-rich DPRs 142 4.3 Examining nucleic acids-related toxicity of arginine-rich DPRs 145 4.4 Drug development for C9-ALS 150 REFERENCES 154 | - |
| dc.language.iso | en | - |
| dc.subject | 硫酸化雙糖 | zh_TW |
| dc.subject | 螺旋 | zh_TW |
| dc.subject | 聚脯胺酸-精胺酸 | zh_TW |
| dc.subject | 聚甘胺酸-精胺酸 | zh_TW |
| dc.subject | 膜穿透性 | zh_TW |
| dc.subject | 六核苷酸重複擴增 | zh_TW |
| dc.subject | 肌萎縮側索硬化症 | zh_TW |
| dc.subject | C9ORF72 | zh_TW |
| dc.subject | 二胜肽重複序列 | zh_TW |
| dc.subject | poly-glycine-arginine (poly-GR) | en |
| dc.subject | amyotrophic lateral sclerosis (ALS) | en |
| dc.subject | C9ORF72 | en |
| dc.subject | hexanucleotide repeat expansion | en |
| dc.subject | dipeptide repeats | en |
| dc.subject | poly-proline-arginine (poly-PR) | en |
| dc.subject | helix | en |
| dc.subject | membrane penetration | en |
| dc.subject | sulfated disaccharide | en |
| dc.title | 研究漸凍人症中富含精胺酸之二胜肽重複序列的毒理機制以及潛在的治療藥物 | zh_TW |
| dc.title | Investigating toxicity mechanisms and potential therapeutics of arginine-rich dipeptide repeats in amyotrophic lateral sclerosis (ALS) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 潘建源 | zh_TW |
| dc.contributor.coadvisor | Chien-Yuan Pan | en |
| dc.contributor.oralexamcommittee | 姚季光;鄭有舜;高承福 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Kuang Yao;U-Ser Jeng;Cheng-Fu Kao | en |
| dc.subject.keyword | 肌萎縮側索硬化症,六核苷酸重複擴增,二胜肽重複序列,聚甘胺酸-精胺酸,聚脯胺酸-精胺酸,螺旋,膜穿透性,硫酸化雙糖,C9ORF72, | zh_TW |
| dc.subject.keyword | amyotrophic lateral sclerosis (ALS),C9ORF72,hexanucleotide repeat expansion,dipeptide repeats,poly-glycine-arginine (poly-GR),poly-proline-arginine (poly-PR),helix,membrane penetration,sulfated disaccharide, | en |
| dc.relation.page | 173 | - |
| dc.identifier.doi | 10.6342/NTU202400689 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-02-18 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 跨領域神經科學國際研究生博士學位學程 | - |
| dc.date.embargo-lift | 2029-02-15 | - |
| 顯示於系所單位: | 跨領域神經科學國際研究生博士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 7.47 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
