請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92320完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江宏仁 | zh_TW |
| dc.contributor.advisor | Hong-Ren Jiang | en |
| dc.contributor.author | 江元宏 | zh_TW |
| dc.contributor.author | Yuan-Hong Jiang | en |
| dc.date.accessioned | 2024-03-21T16:36:17Z | - |
| dc.date.available | 2024-03-22 | - |
| dc.date.copyright | 2024-03-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-18 | - |
| dc.identifier.citation | [1] Luo, J., et al. (2021). "The triboelectric nanogenerator as an innovative technology toward intelligent sports." Advanced Materials 33(17): 2004178.
[2] Dodbiba, G., et al. (2005). "The use of air tabling and triboelectric separation for separating a mixture of three plastics." Minerals Engineering 18(15): 1350-1360. [3] Liu, C.-y. and A. J. Bard (2009). "Electrons on dielectrics and contact electrification." Chemical physics letters 480(4-6): 145-156. [4] McCarty, L. S. and G. M. Whitesides (2008). "Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets." Angewandte Chemie International Edition 47(12): 2188-2207. [5] Nie, J., et al. (2020). "Probing contact‐electrification‐induced electron and ion transfers at a liquid–solid interface." Advanced Materials 32(2): 1905696. [6] Su, Y., et al. (2017). "Novel high-performance self-powered humidity detection enabled by triboelectric effect." Sensors and Actuators B: Chemical 251: 144-152. [7] J. Sun et al., "Scalable and sustainable wood for efficient mechanical energy conversion in buildings via triboelectric effects," Nano Energy, vol. 102, p. 107670, 2022. [8] Wang, Z. L. (2021). "From contact electrification to triboelectric nanogenerators." Reports on Progress in Physics 84(9): 096502. [9] Wang, Z. L. and A. C. Wang (2019). "On the origin of contact-electrification." Materials Today 30: 34-51. [10] Zhong Lin Wang, Y. Y., Junyi Zhai, Jie Wang (2023). Choice of Materials for Triboelectric Nanogenerators. [11] Gillispie, C. C. (1976). Dictionary of Scientific Biography. [12] Zou, H., et al. (2019). "Quantifying the triboelectric series." Nature communications 10(1): 1427. [13] Ahn, J. H., et al. (2020). "Unsteady streaming flow based TENG using hydrophobic film tube with different charge affinity." Nano Energy 67: 104269. [14] Zhang, Q., et al. (2018). "An amphiphobic hydraulic triboelectric nanogenerator for a self‐cleaning and self‐charging power system." Advanced Functional Materials 28(35): 1803117. [15] Zhang, X., et al. (2017). "Solid-liquid triboelectrification in smart U-tube for multifunctional sensors." Nano Energy 40: 95-106. [16] Zhao, X. J., et al. (2015). "Triboelectric charging at the nanostructured solid/liquid interface for area-scalable wave energy conversion and its use in corrosion protection." ACS nano 9(7): 7671-7677. [17] Zhu, G., et al. (2014). "Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface." ACS nano 8(6): 6031-6037. [18] Li, X., et al. (2019). "Solid–liquid triboelectrification control and antistatic materials design based on interface wettability control." Advanced Functional Materials 29(35): 1903587. [19] Choi, D., et al. (2017). "Spontaneous occurrence of liquid-solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leaf." Nano Energy 36: 250-259. [20] Li, X., et al. (2018). "Networks of high performance triboelectric nanogenerators based on liquid–solid interface contact electrification for harvesting low‐frequency blue energy." Advanced Energy Materials 8(21): 1800705. [21] Liu, Y., et al. (2018). "Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops." ACS nano 12(3): 2893-2899. [22] Gao, C., et al. (2021). "Comprehensive comparison of multiple renewable power generation methods: A combination analysis of life cycle assessment and ecological footprint." Renewable and Sustainable Energy Reviews 147: 111255. [23] Wu, X., et al. (2021). "Recent advances in water-driven triboelectric nanogenerators based on hydrophobic interfaces." Nano Energy 90: 106592. [24] Zhao, L., et al. (2020). "Cumulative charging behavior of water droplet driven freestanding triboelectric nanogenerators toward hydrodynamic energy harvesting." Journal of materials chemistry A 8(16): 7880-7888. [25] Zou, Y., et al. (2019). "A bionic stretchable nanogenerator for underwater sensing and energy harvesting." Nature communications 10(1): 2695. [26] Li, X., et al. (2019). "Solid–liquid triboelectrification control and antistatic materials design based on interface wettability control." Advanced Functional Materials 29(35): 1903587. [27] Qian, Y., et al. (2019). "Octopus tentacles inspired triboelectric nanogenerators for harvesting mechanical energy from highly wetted surface." Nano Energy 60: 493-502. [28] Seol, M. L., et al. (2014). "Nature‐replicated nano‐in‐micro structures for triboelectric energy harvesting." Small 10(19): 3887-3894. [29] Zheng, Y., et al. (2014). "An electrospun nanowire-based triboelectric nanogenerator and its application in a fully self-powered UV detector." Nanoscale 6(14): 7842-7846. [30] Cheng, G.-G., et al. (2017). "Effect of argon plasma treatment on the output performance of triboelectric nanogenerator." Applied Surface Science 412: 350-356. [31] Chen, H., et al. (2018). "Wearable and robust triboelectric nanogenerator based on crumpled gold films." Nano Energy 46: 73-80. [32] Chen, H., et al. (2017). "Crumpled graphene triboelectric nanogenerators: smaller devices with higher output performance." Advanced Materials Technologies 2(6): 1700044. [33] Lin, Z. H., et al. (2013). "Water–solid surface contact electrification and its use for harvesting liquid‐wave energy." Angewandte Chemie International Edition 52(48): 12545-12549. [34] Wei, X., et al. (2021). "All-weather droplet-based triboelectric nanogenerator for wave energy harvesting." ACS nano 15(8): 13200-13208. [35] Kim, D., et al. (2015). "High-performance nanopattern triboelectric generator by block copolymer lithography." Nano Energy 12: 331-338. [36] Kim, W.-G., et al. (2021). "Triboelectric nanogenerator: Structure, mechanism, and applications." ACS nano 15(1): 258-287. [37] Shin, S.-H., et al. (2017). "Formation of triboelectric series via atomic-level surface functionalization for triboelectric energy harvesting." ACS nano 11(6): 6131-6138. [38] Kim, D., et al. (2019). "A study of the charge distribution and output characteristics of an ultra-thin tribo-dielectric layer." Nano Energy 62: 458-464. [39] Tang, Z., et al. (2022). "Effects of gravity and surface morphology on droplet contact angles and wetting State." Microgravity Science and Technology 34(4): 53. [40] Y. Yu and X. Wang, "Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development," Extreme Mechanics Letters, vol. 9, pp. 514-530, 2016. [41] Q. Shi, H. Wang, H. Wu, and C. Lee, "Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm," Nano Energy, vol. 40, pp. 203-213, 2017. [42] X. Liu et al., "Hybrid energy harvester with bi-functional nano-wrinkled anti-reflective PDMS film for enhancing energies conversion from sunlight and raindrops," Nano Energy, vol. 66, p. 104188, 2019. [43] Nie, J., et al. (2020). "Probing contact‐electrification‐induced electron and ion transfers at a liquid–solid interface." Advanced Materials 32(2): 1905696. [44] Wang, J., et al. (2019). "Direct-current rotary-tubular triboelectric nanogenerators based on liquid-dielectrics contact for sustainable energy harvesting and chemical composition analysis." ACS nano 13(2): 2587-2598. [45] Lee, J.-W. and W. Hwang (2018). "Theoretical study of micro/nano roughness effect on water-solid triboelectrification with experimental approach." Nano Energy 52: 315-322. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92320 | - |
| dc.description.abstract | 摩擦起電是一種常見的環境現象,當許多材料在不經意的接觸或摩擦時,會發生電荷分離,從而產生靜電。在過去,人們通常會將這種現象視為負面影響。在2013年Zong Hong ,Lin 等人提出固液摩擦奈米發電機(solid-liquid triboelectric nanogenerator,SLTENG),開啟了摩擦起電一大發展領域。這個裝置是通過材料之間的摩擦,在固體與液體接觸界面處產生電荷分離和聚集,最後產生電流與電壓。在先前的文獻中,發現增加表面結構會改變表面潤濕性和水滴滑動速度,最後進而影響到輸出電壓。但較少研究探討表面結構、表面潤濕性以水滴滑動速度分別會對輸出電壓影響,在本研究中,設計一個新的裝置能夠獨立探討這些因素對輸出電壓所造成的影響。
本研究採用旋轉塗佈的方法製備摩擦介電層,並以ITO玻璃作為電極、PTFE作為摩擦介電層。為實現摩擦層的連續性親疏水變化,我們在PTFE中添加二氧化矽顆粒,形成複合介電層,使表面呈現連續性的親疏水變化。我們研究了表面潤濕性、水滴滑動速度與輸出電壓之間的相互關係。發現當水滴自由滑動時,輸出電壓很容易受到滑動速度的影響,而在等速度滑動時,當表面變得親水,使得接觸角減小,最終導致輸出電壓下降。接著,我們加入不同顆粒大小的微米玻璃珠,使表面產生均勻和非均勻的微米結構。我們觀察到在均勻情況下,由於表面結構增加導致表面接觸角上升,最終使輸出電壓提高。而在非均勻情況下,表面結構增加並未改變表面接觸角,卻因表面摩擦面積的增加而使輸出電壓上升。之 後我們有添加混合顆粒於表面,並且發現表面會因為結構增加,使得接觸角變大、摩擦面積增加,最終導致輸出電壓上升。最後,我們改變了液滴的性質,通過在液滴中添加介面活性劑,發現隨著添加濃度的增加,由於液滴表面接觸角下降,導致水滴滑動速度變緩慢,產生拖曳現象,進而降低輸出電壓。 | zh_TW |
| dc.description.abstract | Frictional electrification is a common environmental phenomenon where contact or friction between various materials leads to charge separation, resulting in static electricity. In the past, this phenomenon was often considered a negative effect. However, in 2013, Zong Hong Lin and others proposed the solid-liquid triboelectric nanogenerator (SLTENG), opening up a significant development area in the field of frictional electrification. This device operates by generating charge separation and accumulation at the solid-liquid contact interface through friction between materials, ultimately producing electric current and voltage.
Previous research has shown that increasing surface structures can alter surface wetting properties and water droplet sliding speed, consequently affecting the output voltage. However, there has been limited exploration of how surface structures, surface wetting properties, and water droplet sliding speed individually influence output voltage. In this study, a new device was designed to independently investigate the impact of these factors on output voltage. The study employed a spin-coating method to prepare the frictional dielectric layer, using ITO glass as the electrode and PTFE as the frictional dielectric layer. To achieve continuous hydrophobic-hydrophilic variations in the frictional layer, silica particles were added to PTFE to form a composite dielectric layer, creating a surface with continuous hydrophobic-hydrophilic changes. The research investigated the interrelationships between surface wetting properties, water droplet sliding speed, and output voltage. The findings revealed that during free droplet sliding, output voltage was significantly influenced by sliding speed. Under constant sliding speed conditions, when the surface became more hydrophilic, resulting in a decrease in contact angle, it ultimately led to a decrease in output voltage. Subsequently, micron-sized glass beads of different sizes were introduced to create uniform and non-uniform microstructures on the surface. In uniform cases, the increase in surface structure resulted in an increase in contact angle, ultimately raising the output voltage. In non-uniform cases, although surface structure increased without changing the contact angle, the increase in frictional surface area led to an increase in output voltage. Furthermore, the addition of mixed particles on the surface was observed to increase surface structure, leading to a larger contact angle and increased frictional surface area, ultimately resulting in an increase in output voltage. Finally, the study altered the properties of the droplets by adding surfactants, finding that with an increase in concentration, the contact angle decreased, causing a slowdown in water droplet sliding speed, generating a dragging effect, and consequently reducing output voltage. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:36:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-21T16:36:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT III 目次 V 圖次 VIII 表次 XIII 第一章 緒論 1 1.1 前言............................................. 1 1.2 研究背景 2 1.3 研究動機 5 1.4 內容簡介 6 第二章 文獻回顧與理論基礎 7 2.1 摩擦起電 7 2.1.1 摩擦起電簡介 7 2.1.2 接觸起電的機制;電子轉移與離子轉移 7 2.1.3 基本原理 11 2.2 接觸模式和工作機制 12 2.3 影響SLTENG的主要因素 15 2.3.1 液體特性對輸出性能的影響 15 2.3.2 表面特性對輸出性能的影響 16 第三章 實驗方法與量測系統 19 3.1 實驗材料 19 3.1.1 電極材料 19 3.1.2 聚四氟乙烯(PTFE) 19 3.1.3 二氧化矽(SiO2) 20 3.1.4 微米玻璃珠 21 3.2 實驗設備 21 3.2.1 雷射打標機 21 3.2.2 數位萬用電表 21 3.3 介電層的製備 22 3.3.1 製備指叉狀電極 22 3.3.2 具親疏水變化介電層之製備 23 3.3.3 具表面結構介電層之製備 24 3.4 量測方法與架設 26 3.4.1 接觸角與遲滯角分析 28 3.4.2 TENG輸出訊號之量測 29 第四章 固液摩擦奈米發電機之輸出特性之研究 31 4.1 液滴在橫向滑動下的實驗裝置 31 4.2 橫向滑動SLTENG下的摩擦電輸出及討論 36 4.2.1 不同摩擦速度下之輸出電壓 36 4.2.2 不同電位水滴之輸出電壓 37 4.2.3 不同水滴與表面接觸面積對輸出電壓的影響 39 4.3 探討水滴自由滑動在親疏水表面下之輸出電壓 41 4.3.1 自由滑動SiO2/PTFE摩擦層之摩擦電輸出 42 4.3.2 探討滑動速度對親疏水摩擦層的輸出電壓 45 4.4 探討水滴自由滑動在具表面起伏摩擦層之輸出電壓 49 4.4.1 表面結構摩擦層對輸出電壓的影響 49 4.5 異質表面結構摩擦層對輸出電壓的影響 56 4.5.1 非均勻表面結構對輸出電壓的影響 56 4.5.2 探討混合顆粒表面之輸出電壓 65 4.6 液滴性質與輸出電壓之關係 72 第五章 結論 78 參考文獻 80 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 接觸角 | zh_TW |
| dc.subject | 親疏水性 | zh_TW |
| dc.subject | 固液摩擦柰米發電機 | zh_TW |
| dc.subject | 表面結構化介電層 | zh_TW |
| dc.subject | 遲滯角 | zh_TW |
| dc.subject | solid-liquid triboelectric generator | en |
| dc.subject | hydrophobicity | en |
| dc.subject | contact angle | en |
| dc.subject | hysteresis angle | en |
| dc.subject | surface structured dielectric layer | en |
| dc.title | 非均勻表面和液滴特性在固液摩擦奈米發電機下之研究 | zh_TW |
| dc.title | Study of inhomogeneous surface and droplet properties in solid-liquid triboelectric nanogenerator | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王安邦;陳志鴻;江佩勳 | zh_TW |
| dc.contributor.oralexamcommittee | An-Bang Wang;Chih-Hung Chen;Pei-Hsun Jiang | en |
| dc.subject.keyword | 固液摩擦柰米發電機,親疏水性,接觸角,遲滯角,表面結構化介電層, | zh_TW |
| dc.subject.keyword | solid-liquid triboelectric generator,hydrophobicity,contact angle,hysteresis angle,surface structured dielectric layer, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202400700 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-02-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2026-02-16 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 4.94 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
