Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92318
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖憶純zh_TW
dc.contributor.advisorYi-Chun Liaoen
dc.contributor.author郭曄zh_TW
dc.contributor.authorYeh Kuoen
dc.date.accessioned2024-03-21T16:35:44Z-
dc.date.available2024-03-23-
dc.date.copyright2024-03-21-
dc.date.issued2024-
dc.date.submitted2024-02-18-
dc.identifier.citation高芸歆 (2013) 大腸癌細胞中 CTEN 蛋白質在 Beta catenin 介導訊息路徑中所扮演的角色及其進入細胞核之機制探討,碩士論文,國立臺灣大學生命科學院生化科技學系
潘妍卉 (2016) CTEN磷酸化與其於核質間穿梭之調控機制,碩士論文,國立臺灣大學生命科學院生化科技學系
林芷萱 (2017) 表皮生長因子促進 CTEN 基因表達及磷酸化之調控機制,碩士論文,國立臺灣大學生命科學院生化科技學系
蔡孟樵 (2019) 表皮生長因子受體訊息路徑調控 CTEN磷酸化之功能與機制探討,碩士論文,國立臺灣大學生命科學院生化科技學系
黃鈞暘 (2020) 結直腸癌細胞核中的 CTEN 影響腫瘤形成特性所扮演的角色與其目標基因之分析,碩士論文,國立臺灣大學生命科學院生化科技學系
邱筱茹 (2021) 分析細胞核中 CTEN 之下游目標基因與其在大腸癌轉移中所扮演的角色,碩士論文,國立臺灣大學生命科學院生化科技學系
黃政睿 (2021) CTEN 磷酸化的調控機制及功能,碩士論文,國立臺灣大學生命科學院生化科技學系
Al-Ghamdi, S., et al. (2011). Cten Is Targeted by Kras Signalling to Regulate Cell Motility in the Colon and Pancreas. PLoS One, 6(6), e20919.
Al-Ghamdi, S., et al. (2013). C-terminal tensin-like gene functions as an oncogene and promotes cell motility in pancreatic cancer. Pancreas, 42(1), 135-140.
Albasri, A., et al. (2011). Cten signals through integrin-linked kinase (ILK) and may promote metastasis in colorectal cancer. Oncogene, 30(26), 2997-3002.
Alessi, D. R., et al. (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol, 7(4), 261-269.
Boopathy, G. T. K., et al. (2018). Phosphorylation of Mig6 negatively regulates the ubiquitination and degradation of EGFR mutants in lung adenocarcinoma cell lines. Cell Signal, 43, 21-31.
Calderwood, D. A., et al. (2003). Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc Natl Acad Sci U S A, 100(5), 2272-2277.
Chang, C. C., et al. (2021). Histone acetyltransferase p300 mediates the upregulation of CTEN induced by the activation of EGFR signaling in cancer cells. Biochem Biophys Res Commun, 534, 53-58.
Chen, M., et al. (2023). NUSAP1-LDHA-Glycolysis-Lactate feedforward loop promotes Warburg effect and metastasis in pancreatic ductal adenocarcinoma. Cancer Lett, 567, 216285.
Chen, S., et al. (2022). Roles of focal adhesion proteins in skeleton and diseases. Acta Pharmaceutica Sinica B.
Cheng, L. C., et al. (2018). AXL phosphorylates and up-regulates TNS2 and its implications in IRS-1-associated metabolism in cancer cells. J Biomed Sci, 25(1), 80.
Davis, S., et al. (1991). Presence of an SH2 domain in the actin-binding protein tensin. Science, 252(5006), 712-715.
Demory, M. L., et al. (2009). Epidermal growth factor receptor translocation to the mitochondria: regulation and effect. J Biol Chem, 284(52), 36592-36604.
Ersahin, T., et al. (2015). The PI3K/AKT/mTOR interactive pathway. Mol Biosyst, 11(7), 1946-1954.
Gao, S. J., et al. (2021). Targeting EGFR sensitizes 5-Fu-resistant colon cancer cells through modification of the lncRNA-FGD5-AS1-miR-330-3p-Hexokinase 2 axis. Mol Ther Oncolytics, 23, 14-25.
Geiger, B., et al. (2001). Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature reviews Molecular cell biology, 2(11), 793-805.
Geiger, B., & Yamada, K. M. (2011). Molecular architecture and function of matrix adhesions. Cold Spring Harbor perspectives in biology, 3(5), a005033.
Grandal, M. V., & Madshus, I. H. (2008). Epidermal growth factor receptor and cancer: control of oncogenic signalling by endocytosis. J Cell Mol Med, 12(5a), 1527-1534.
Greenfield, C., et al. (1989). Epidermal growth factor binding induces a conformational change in the external domain of its receptor. Embo j, 8(13), 4115-4123.
Hong, S. Y., et al. (2013). CTEN prolongs signaling by EGFR through reducing its ligand-induced degradation. Cancer Res, 73(16), 5266-5276.
Huang, C. Y., et al. (2020). Inhibition of Alternative Cancer Cell Metabolism of EGFR Mutated Non-Small Cell Lung Cancer Serves as a Potential Therapeutic Strategy. Cancers (Basel), 12(1).
Hung, S. Y., et al. (2014). Up-regulated cten by FGF2 contributes to FGF2-mediated cell migration. Mol Carcinog, 53(10), 787-792.
Iwashita, S., & Kobayashi, M. (1992). Signal transduction system for growth factor receptors associated with tyrosine kinase activity: Epidermal growth factor receptor signalling and its regulation. Cellular Signalling, 4(2), 123-132.
Katz, M., et al. (2007). A reciprocal tensin-3-cten switch mediates EGF-driven mammary cell migration. Nat Cell Biol, 9(8), 961-969.
Liao, Y. C., et al. (2009). Up-regulation of C-terminal tensin-like molecule promotes the tumorigenicity of colon cancer through beta-catenin. Cancer Res, 69(11), 4563-4566.
Liao, Y. C., & Lo, S. H. (2021). Tensins - emerging insights into their domain functions, biological roles and disease relevance. J Cell Sci, 134(4).
Lin, C. W., et al. (2022). A two-component protein condensate of the EGFR cytoplasmic tail and Grb2 regulates Ras activation by SOS at the membrane. Proc Natl Acad Sci U S A, 119(19), e2122531119.
Ling, M., et al. (2021). VEGFB Promotes Myoblasts Proliferation and Differentiation through VEGFR1-PI3K/Akt Signaling Pathway. Int J Mol Sci, 22(24).
Lo, S. H. (2014). C-terminal tensin-like (CTEN): a promising biomarker and target for cancer. Int J Biochem Cell Biol, 51, 150-154.
Lo, S. H., et al. (1994). Interactions of tensin with actin and identification of its three distinct actin-binding domains. J Cell Biol, 125(5), 1067-1075.
Lo, S. H., & Lo, T. B. (2002). Cten, a COOH-terminal tensin-like protein with prostate restricted expression, is down-regulated in prostate cancer. Cancer Res, 62(15), 4217-4221.
Loevenich, L. P., et al. (2022). SMAD4 Loss Induces c-MYC-Mediated NLE1 Upregulation to Support Protein Biosynthesis, Colorectal Cancer Growth, and Metastasis. Cancer Res, 82(24), 4604-4623.
Lu, Q., & Rounds, S. (2012). Focal adhesion kinase and endothelial cell apoptosis. Microvasc Res, 83(1), 56-63.
Luo, X., et al. (2021). The fatty acid receptor CD36 promotes HCC progression through activating Src/PI3K/AKT axis-dependent aerobic glycolysis. Cell Death Dis, 12(4), 328.
Mashouri, L., et al. (2019). Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Molecular Cancer, 18(1), 75.
McCubrey, J. A., et al. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta, 1773(8), 1263-1284.
Meng, Z., et al. (2023). UBC9 stabilizes PFKFB3 to promote aerobic glycolysis and proliferation of glioblastoma cells. Int J Biochem Cell Biol, 165, 106491.
Mishra, Y. G., & Manavathi, B. (2021). Focal adhesion dynamics in cellular function and disease. Cellular Signalling, 85, 110046.
Newman, A. C., & Maddocks, O. D. K. (2017). One-carbon metabolism in cancer. British Journal of Cancer, 116(12), 1499-1504.
Paluch, E. K., et al. (2016). Focal Adhesion-Independent Cell Migration. Annu Rev Cell Dev Biol, 32, 469-490.
Park, M. J., et al. (2016). SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins. Mol Cell, 62(1), 7-20.
Paul, S., et al. (2022). Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol, 86(Pt 3), 1216-1230.
Quinn, W. J., et al. (2020). Lactate Limits T Cell Proliferation via the NAD(H) Redox State. Cell Reports, 33(11), 108500.
Sapmaz, A., & Erson-Bensan, A. E. (2023). EGFR endocytosis: more than meets the eye. Oncotarget, 14, 297-301.
Shinde, A., et al. (2020). Transglutaminase-2 facilitates extracellular vesicle-mediated establishment of the metastatic niche. Oncogenesis, 9(2), 16.
Somasiri, A., et al. (2001). Overexpression of the integrin-linked kinase mesenchymally transforms mammary epithelial cells. J Cell Sci, 114(Pt 6), 1125-1136.
Song, J., et al. (2021). The 14-3-3σ protein promotes HCC anoikis resistance by inhibiting EGFR degradation and thereby activating the EGFR-dependent ERK1/2 signaling pathway. Theranostics, 11(3), 996-1015.
Vander Heiden, M. G., et al. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930), 1029-1033.
Walker, F., et al. (2012). Ligand binding induces a conformational change in epidermal growth factor receptor dimers. Growth Factors, 30(6), 394-409.
Wang, Y. X., et al. (2023). Nuclear-localized CTEN is a novel transcriptional regulator and promotes cancer cell migration through its downstream target CDC27. J Physiol Biochem, 79(1), 163-174.
Weng, M. L., et al. (2020). Fasting inhibits aerobic glycolysis and proliferation in colorectal cancer via the Fdft1-mediated AKT/mTOR/HIF1α pathway suppression. Nat Commun, 11(1), 1869.
Wong, C. M., et al. (2005). Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Res, 65(19), 8861-8868.
Wu, W. M., & Liao, Y. C. (2018). Downregulation of C-Terminal Tensin-Like Protein (CTEN) Suppresses Prostate Cell Proliferation and Contributes to Acinar Morphogenesis. Int J Mol Sci, 19(10).
Yam, J. W., et al. (2006). Interaction of deleted in liver cancer 1 with tensin2 in caveolae and implications in tumor suppression. Cancer Res, 66(17), 8367-8372.
Yang, K., et al. (2016). ΔNp63α Transcriptionally Regulates the Expression of CTEN That Is Associated with Prostate Cell Adhesion. PLoS One, 11(1), e0147542.
Zhao, H., et al. (2022). Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Mol Cancer, 21(1), 144.
Zhou, J., et al. (2019). The roles of nuclear focal adhesion kinase (FAK) on Cancer: a focused review. J Exp Clin Cancer Res, 38(1), 250.
Zhou, Y., et al. (2023). Epigallocatechin gallate circumvents drug-induced resistance in non-small-cell lung cancer by modulating glucose metabolism and AMPK/AKT/MAPK axis. Phytother Res, 37(12), 5837-5853.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92318-
dc.description.abstractCTEN 是 tensin 蛋白質家族中的一員,主要座落在細胞膜內側的蛋白質複合體 focal adhesion 中,CTEN 參與調控細胞的貼附、增生、遷移、侵襲與機械力感應等生理功能。CTEN 也大量表現於癌細胞的細胞核中,可以做為轉錄輔因子調控 CDC27 基因的轉錄。過去研究發現,EGFR 的活化會促進 CTEN 的表現,並透過 MEK/ ERK 與 PI3K/ AKT 路徑磷酸化 CTEN 的 T347、S350 及 S386 位點。但目前我們仍未了解 CTEN 磷酸化後的功能,在本篇論文中,我們主要藉由在細胞中表現野生型 CTEN (CTEN-WT) 或三個磷酸化位點突變的 CTEN-M3,研究磷酸化 CTEN 在細胞中參與的分子調控機制。透過監測細胞進行糖解反應時胞外環境酸化的速率,我們確認 CTEN 的磷酸化與否不影響糖解反應進行的速率,顯示 CTEN 的磷酸化不會調控細胞的糖解作用。在大腸癌細胞株 HCT116 中,CTEN-WT 會促進 CDC27 啟動子活性,而 CTEN-M3 則沒有此效果,說明磷酸化可能影響 CTEN 的轉錄調控功能。另外,我們也發現在 EGF 刺激下,相比於表現 CTEN-M3 的細胞,表現 CTEN-WT 細胞的 EGFR 蛋白質穩定性較高,且 EGFR 泛素化的程度較低,顯示磷酸化 CTEN 可能透過抑制 EGFR 的泛素化,進而抑制 EGFR 的降解。zh_TW
dc.description.abstractCTEN is a member of tensin protein family. Mostly, CTEN is located in focal adhesion, which is the protein complex associated with the cytoplasmic side of the plasma membrane. CTEN participates in various physiological processes such as cell attachment, proliferation, migration, invasion or mechanical sensing. In cancer cell, CTEN is also found abundant in the nucleus, where CTEN might act as a transcriptional coactivator to regulate CDC27 gene transcription. CTEN expression is upregulated upon EGFR activation and residues T347, S350, and S386 of CTEN are phosphorylated through MEK/ ERK and PI3K/ AKT pathways. However, the cellular functions of phosphorylated CTEN are still unknown. In this study, we investigate what molecular regulations that phosphorylated CTEN takes part in using cells expressing wild type CTEN (CTEN-WT) or CTEN with mutations on the three phosphorylation sites (CTEN-M3). Through monitoring extracellular acidification rate (ECAR) of cells under glycolysis, we found that CTEN phosphorylation does not affect glycolytic rate, suggesting that CTEN phosphorylation does not regulate glycolysis. Moreover, CTEN-WT but not CTEN-M3 promotes the activity of CDC27 promoter in HCT116 colon cancer cell line, suggesting phosphorylation might affect the transcriptional regulatory ability of CTEN. Furthermore, EGFR stability is higher and less EGFR is ubiquitinated in the cells expressing CTEN-WT than in those expressing CTEN-M3 after EGF stimulation. These data suggest that phosphorylated CTEN suppresses ubiquitination of EGFR, thus inhibits the degradation of EGFR.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:35:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-21T16:35:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次 i
Abstract iii
摘要 iv
縮寫表 v
1、 本論文之研究基礎 1
1.1 Focal adhesion 與 tensin 蛋白質 1
1.2 CTEN 的功能與其參與的調控機制 3
1.3 EGFR 與下游訊息傳導路徑的調控 4
1.4 CTEN 磷酸化的機制與功能 5
1.5 本論文研究目的 6
2、 實驗材料與方法 8
2.1 實驗材料 8
2.1.1 菌種 8
2.1.2 質體 8
2.1.3 細胞株 8
2.2 實驗方法 9
2.2.1 細胞相關實驗方法 9
1. 細胞培養 9
2. 細胞繼代 9
4. 細胞解凍 10
5. 細胞計數 10
6. 細胞轉染 10
7. 抑制劑與 EGF 刺激 10
8. 細胞裂解 11
9. Glycolytic stress assay 11
2.2.2 質體純化 11
2.2.3 蛋白質相關實驗方法 12
1. Immunoprecipitation (IP) 12
2. Western blotting 12
3. Phos-tag 膠體電泳分析 13
4. Dual-luciferase assay 13
3、 實驗結果 15
3.1 確認 T347、S350 與 S386 為 CTEN 磷酸化位點 15
3.2 CTEN 磷酸化對糖解作用的影響 16
3.3 CTEN 磷酸化對 CDC27 啟動子活性的調控 17
3.4 CTEN 磷酸化對 EGFR 穩定性的調控 18
3.5 CTEN 磷酸化對 EGFR 泛素化的調控 19
4、 討論與未來研究方向 20
5、 參考文獻 23
6、 圖 28
-
dc.language.isozh_TW-
dc.subject表皮生長因子受體zh_TW
dc.subjectCTENzh_TW
dc.subject磷酸化zh_TW
dc.subject泛素化zh_TW
dc.subject轉錄調控zh_TW
dc.subjectCTENen
dc.subjectEGFRen
dc.subjectphosphorylationen
dc.subjecttranscriptional regulationen
dc.subjectubiquitinationen
dc.titleCTEN 受 EGFR 訊息傳導活化而磷酸化的功能zh_TW
dc.titleFunctions of phosphorylated CTEN upon EGFR signaling activationen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃楓婷;賴韻如zh_TW
dc.contributor.oralexamcommitteeFeng-Ting Huang;Yun-Ju Laien
dc.subject.keywordCTEN,表皮生長因子受體,磷酸化,轉錄調控,泛素化,zh_TW
dc.subject.keywordCTEN,EGFR,phosphorylation,transcriptional regulation,ubiquitination,en
dc.relation.page34-
dc.identifier.doi10.6342/NTU202400704-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-02-18-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
dc.date.embargo-lift2029-02-16-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
1.4 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved