Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92315
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳景然zh_TW
dc.contributor.advisorChing-Jan Chenen
dc.contributor.author郭昱辰zh_TW
dc.contributor.authorYu-Chen Kuoen
dc.date.accessioned2024-03-21T16:34:53Z-
dc.date.available2024-03-22-
dc.date.copyright2024-03-21-
dc.date.issued2024-
dc.date.submitted2024-01-30-
dc.identifier.citation[1] S. Yu, R. Chen, and A. Viswanathan, "Survey of Resonant Converter Topologies," Texas Instruments Power Supply Design Seminar, 2018.
[2] S. W. Kang, H. J. Kim, and B. H. Cho, "Adaptive Voltage-Controlled Oscillator for Improved Dynamic Performance in LLC Resonant Converter," IEEE Transactions on Industry Applications, vol. 52, no. 2, pp. 1652-1659.
[3] J. Jiao, X. Guo, C. Wang, and X. You, "Time-Domain Analysis and Optimal Design of LLC-DC Transformers (LLC-DCXs) Considering Discontinuous Conduction Modes," IEEE Transactions on Transportation Electrification, vol. 9, no. 2, pp. 2308-2323, 2023.
[4] R. L. Lin and L. H. Huang, "Efficiency Improvement on LLC Resonant Converter Using Integrated LCLC Resonant Transformer," IEEE Transactions on Industry Applications, vol. 54, no. 2, pp. 1756-1764, 2018.
[5] C. W. Tsang, M. P. Foster, D. A. Stone, and D. T. Gladwin, "Analysis and Design of LLC Resonant Converters With Capacitor–Diode Clamp Current Limiting," IEEE Transactions on Power Electronics, vol. 30, no. 3, pp. 1345-1355, 2015.
[6] OnSemiconductor, "Current Mode Resonant Controller, with Integrated High-Voltage Drivers, High Performance," 2019.
[7] T. Instruments, "UCC25640x LLC Resonant Controller with Ultra-Low Audible Noise and Standby Power," 2021.
[8] I. T. AG, "ICE2HS01G High Performance Resonant Mode Controller," Power Management & Supply, 2011.
[9] N. Semiconductors, "TEA19161T/2 Digital controller for high-efficiency resonant power supply," 2021.
[10] S. Tian, F. C. Lee, and Q. Li, "Equivalent circuit modeling of LLC resonant converter," in 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1608-1615, 2016.
[11] J. Jang, M. Joung, B. Choi, and H. g. Kim, "Dynamic analysis and control design of optocoupler-isolated LLC series resonant converters with wide input and load variations," in 2009 IEEE Energy Conversion Congress and Exposition, pp. 758-765, 2009.
[12] J. Jang, M. Joung, S. Choi, Y. Choi, and B. Choi, "Current mode control for LLC series resonant dc-to-dc converters," in 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 21-27, 2011.
[13] H. Choi, "Charge current control for LLC resonant converter," in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1448-1452, 2015.
[14] Z. Hu, Y. F. Liu, and P. C. Sen, "Bang-Bang Charge Control for LLC Resonant Converters," IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 1093-1108, 2015.
[15] W. Feng, F. C. Lee, and P. Mattavelli, "Simplified Optimal Trajectory Control (SOTC) for LLC Resonant Converters," IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2415-2426, 2013.
[16] W. Feng and F. C. Lee, "Optimal trajectory control of LLC resonant converters for soft start-up," in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1445-1451, 2013.
[17] B. Yang, F. C. Lee, and M. Concannon, "Over current protection methods for LLC resonant converter," in Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2003. APEC ''03., vol. 2, pp. 605-609 vol.2, 2003.
[18] Y. Ling, Z. Guo, and X. Liu, "The Soft-Start Analysis of a Full-Bridge LLC Converter with Hybrid Control Strategy," in 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1-4, 2016.
[19] X. Xie, J. Zhang, C. Zhao, Z. Zhao, and Z. Qian, "Analysis and Optimization of LLC Resonant Converter With a Novel Over-Current Protection Circuit," IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 435-443, 2007.
[20] D. Huang, P. Kong, F. C. Lee, and D. Fu, "A novel integrated multi-elements resonant converter," in 2011 IEEE Energy Conversion Congress and Exposition, pp. 3808-3815 2011.
[21] X. Yao, X. Han, J. Wang, G. Xu, Y. Liao, and M. Su, "A Soft Start-up Strategy of LLC Resonant Converter Based on Event Trigger Control," in 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), pp. 1702-1705, 2020.
[22] C. Fei, F. C. Lee, and Q. Li, "Digital Implementation of Soft Start-Up and Short-Circuit Protection for High-Frequency LLC Converters With Optimal Trajectory Control (OTC)," IEEE Transactions on Power Electronics, vol. 32, no. 10, pp. 8008-8017, 2017.
[23] B. Wang, X. Xin, S. Wu, H. Wu, and J. Ying, "Analysis and Implementation of LLC Burst Mode for Light Load Efficiency Improvement," in 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, pp. 58-64, 2009.
[24] L. Shi, B. Liu, and S. Duan, "Burst-Mode and Phase-Shift Hybrid Control Method of LLC Converters for Wide Output Range Applications," IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 1013-1023, 2020.
[25] W. Feng, F. C. Lee, P. Mattavelli, D. Huang, and C. Prasantanakorn, "LLC resonant converter burst mode control with constant burst time and optimal switching pattern," in 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 6-12, 2011.
[26] W. Feng, F. C. Lee, and P. Mattavelli, "Optimal Trajectory Control of Burst Mode for LLC Resonant Converter," IEEE Transactions on Power Electronics, vol. 28, no. 1, pp. 457-466, 2013.
[27] Alinx, "Two Channels High-Speed AD Module AN9238 User Guide," 2020.
[28] Alinx, "Dual-Channel 14-bit DA Output Module AN767 User Guide," 2017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92315-
dc.description.abstractLLC諧振轉換器因其高效率、高功率密度以及軟切換之特性,被廣泛應用於現代商業電子產品中。數位控制晶片不僅能整合多個功能至單一晶片,透過FPGA驗證功能性亦可有較彈性的優化過程。本文所提出之數位多功能LLC諧振轉換器內迴路電荷控制,透過Xilinx FPGA晶片數位控制,實現頻率限制之數位載波控制、多階段緩啟動功能、以及突衝模式的整合功能。內迴路電荷控制模式可以把系統的複數極點解耦合為兩個極點,使系統設計更加簡易。同時採用單邊諧振電容電壓命令與雙邊諧振電容電壓命令控制架構使系統在穩態操作時不會有電流不平衡之現象,而在突衝模式時可以透過控制雙開關來達到減少切換耗損。接續以現有架構與所採用之控制模式進行時域分析、穩態操作分析、電壓增益分析、推導小信號模型。所有數位設計功能皆透過三方整合模擬平台(PSIM、ModelSim、Maltlab Simulink)模擬,並驗證所提之架構與功能的可行性與正確性。最終完成一輸入直流電壓400 V、輸出電壓20 V、滿載操作條件200 W、最高效率達98.25%、以FPGA實現數位控制之多功能LLC諧振轉換器內迴路電荷控制。以實驗量測結果證實架構之可行性。zh_TW
dc.description.abstractLLC resonant LLC resonant converters have been widely utilized in various modern commercial electronic products due to their high efficiency, high power density, and soft-switching characteristics. Digital controller chips allow the integration of multiple functions into a single chip. It provides a more flexible optimizing process through FPGA implementation and verification. This thesis proposes a digital LLC resonant converter with inner-loop charge control and multi-functions. The digital controller integrates frequency limitation of switching frequency, digital pulse-width modulator, multi-step soft start function, and burst mode function based on Xilinx FPGA. The inner-loop charge control decouples the system’s complex pole into two single poles for a more accessible design. Using single-side and double-side control structures prevents current imbalance during steady-state operation and reduces switching losses during burst mode function by controlling both switches simultaneously. The thesis conducts time-domain analysis, steady-state operation analysis, voltage gain analysis, and derivation of small-signal models for the adopted architecture and control methods. All digital design functions are verified through a co-simulation platform (PSIM, ModelSim, Matlab Simulink) to confirm the feasibility and correctness of the proposed architecture and functions. Ultimately, a digital control multi-functions LLC resonant converter with inner-loop charge control based on FPGA is proposed, operating under an input DC voltage of 400 V, output voltage of 20 V, and a full-load operation of 200 W with a maximum efficiency of 98.25%. Experimental measurements validate the feasibility of the architecture.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:34:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-21T16:34:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
TABLE OF CONTENT v
LIST OF FIGURES viii
LIST OF TABLES xv
Chapter 1. Introduction 1
1.1 Research Background and Motivation 1
1.2 Research Motivation and Objectives 4
1.3 Thesis Organization 9
1.4 Thesis Contribution 10
Chapter 2. Analysis of Inner Loop Charge Control LLC Resonant Converter 11
2.1 Prior Research Survey 11
2.2 Time-Domain Analysis 20
2.3 Control and Operation Condition 31
2.3.1 Operating Load Comparison 31
2.3.2 Single-Side and Double-Side Comparison 33
2.4 Small Signal Control Analysis 36
2.4.1 Analysis of the Net Charge of Resonant Capacitor Voltage 36
2.4.2 Transfer Function of Resonant Capacitor Reference Voltage to Output Voltage 38
2.4.3 Design of the Compensator 44
2.5 TL431 DC Steady-State Operation Points Analysis 48
Chapter 3. Digital Pulse Width Modulator Implementation with FPGA 54
3.1 Digital Pulse-Width Modulator with Frequency Limitation 54
3.2 Deadtime Implementation 59
3.3 Digital Pulse Width Modulator Implementation 61
Chapter 4. Multi-Step Soft Start Digital Implementation with FPGA 63
4.1 Prior Research and Survey 63
4.2 Design of Multi-Step Soft Start Function 67
4.2.1 Zero Voltage Switching During PWM Startup 68
4.2.2 Selecting Ramp up Voltage or Feedback Voltage as Reference Voltage 75
4.3 Implementation of Multi-Step Soft Start 78
Chapter 5. Burst Mode Digital Implementation with FPGA 84
5.1 Prior Research and Survey 84
5.2 Design of Digital Burst Mode Function 89
5.2.1 Operating Principle of Digital Burst Mode Function 90
5.2.2 Threshold Range of Burst Mode Function 101
5.3 Implementation of Burst Mode Digital Function 104
Chapter 6. FPGA Co-simulation Platform 107
6.1 Co-simulation Environment 107
6.1.1 PSIM Circuit Topology 108
6.1.2 ModelSim Verilog Code Verification 110
6.1.3 Matlab Simulink Communication Platform 110
6.2 FPGA Board and ADC/DAC Module 113
6.2.1 FPGA Board AC616 and ADC/DAC Module 113
6.2.2 ADC/DAC Digital Function Implementation 120
Chapter 7. Simulation Waveforms and Experiment Results Verification 126
7.1 Experiment Setup 126
7.2 FPGA Synthesis Result 130
7.3 Experiment Results Verification 133
7.3.1 Gate Signal with Deadtime 133
7.3.2 Steady-state Operation 136
7.3.3 Multi-Step Soft Start Function 145
7.3.4 Burst Mode Function 147
Chapter 8. Conclusion and Future Works 151
8.1 Conclusions 151
8.2 Future Works 152
Reference 153
-
dc.language.isoen-
dc.subject突衝模式zh_TW
dc.subjectFPGA驗證zh_TW
dc.subject多階段緩啟動zh_TW
dc.subject數位多功能LLC控制晶片zh_TW
dc.subject內迴路電荷控制zh_TW
dc.subjectLLC諧振轉換器zh_TW
dc.subject數位控制zh_TW
dc.subjectFPGA verificationen
dc.subjectLLC resonant converteren
dc.subjectinner-loop charge controlen
dc.subjectdigital multi-functions LLC controller chipen
dc.subjectdigital controlen
dc.subjectmulti-step soft starten
dc.subjectburst modeen
dc.title具內迴路電荷控制與突衝模式LLC諧振轉換器之FPGA實現zh_TW
dc.titleFPGA Implementation of LLC Resonant Converter with Inner Loop Charge Control and Burst Modeen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳耀銘;劉宇晨zh_TW
dc.contributor.oralexamcommitteeYaow-Ming Chen;Yu-Chen Liuen
dc.subject.keywordLLC諧振轉換器,內迴路電荷控制,數位多功能LLC控制晶片,數位控制,FPGA驗證,多階段緩啟動,突衝模式,zh_TW
dc.subject.keywordLLC resonant converter,inner-loop charge control,digital multi-functions LLC controller chip,digital control,FPGA verification,multi-step soft start,burst mode,en
dc.relation.page155-
dc.identifier.doi10.6342/NTU202400350-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-02-01-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-lift2027-01-16-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
6.22 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved