Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92308
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐丞志zh_TW
dc.contributor.advisorCheng-Chih Hsuen
dc.contributor.author鄭凱文zh_TW
dc.contributor.authorKai-Wen Chengen
dc.date.accessioned2024-03-21T16:32:51Z-
dc.date.available2024-03-22-
dc.date.copyright2024-03-21-
dc.date.issued2024-
dc.date.submitted2024-02-02-
dc.identifier.citationChapter 1.Introductory Chapter
(1) Patti, G. J.; Yanes, O.; Siuzdak, G. Innovation: Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012, 13 (4), 263-269. DOI: 10.1038/nrm3314.
(2) Nicholson, J. K.; Lindon, J. C. Metabonomics. Nature 2008, 455, 1054–1056. DOI: 10.1038/4551054a.
(3) Johnson, C. H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17 (7), 451-459. DOI: 10.1038/nrm.2016.25.
(4) Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D''Auria, J.; Ewald, J.; J, C. E.; Fraser, P. D.; Giavalisco, P.; Hall, R. D.; et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat. Methods 2021, 18 (7), 747-756. DOI: 10.1038/s41592-021-01197-1.
(5) Cheng, K. W.; Hsieh, C. M.; Chen, H. W.; Chi, P. C.; Yang, D. P.; Chan, S. H.; Chen, J. Y.; Hwa, H. L.; Fang, C. C.; Weng, T. I.; et al. Determination of synthetic cathinone alpha-pyrrolidinovalero-phenone and its metabolite in urine using solid-phase extraction and gas chromatography-mass spectrometry. Rapid Commun. Mass Spectrom. 2020, 34 Suppl 1, e8579. DOI: 10.1002/rcm.8579.
(6) Becker, S.; Kortz, L.; Helmschrodt, C.; Thiery, J.; Ceglarek, U. LC-MS-based metabolomics in the clinical laboratory. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2012, 883-884, 68-75. DOI: 10.1016/j.jchromb.2011.10.018.
(7) Hsieh, C. C.; Yu, S. H.; Cheng, K. W.; Liou, Y. W.; Hsu, C. C.; Hsieh, C. W.; Kuo, C. H.; Cheng, K. C. Production and analysis of metabolites from solid-state fermentation of Chenopodium formosanum (Djulis) sprouts in a bioreactor. Food Res. Int. 2023, 168, 112707. DOI: 10.1016/j.foodres.2023.112707.
(8) Danzi, F.; Pacchiana, R.; Mafficini, A.; Scupoli, M. T.; Scarpa, A.; Donadelli, M.; Fiore, A. To metabolomics and beyond: a technological portfolio to investigate cancer metabolism. Signal Transduct. Target. Ther. 2023, 8 (1), 137. DOI: 10.1038/s41392-023-01380-0.
(9) Hsieh, C. C.; Yu, S. H.; Kuo, H. C.; Cheng, K. W.; Hsu, C. C.; Lin, Y. P.; Khumsupan, D.; Lin, S. P.; Angkawijaya, A. E.; Cheng, K. C. Alleviation of PM2.5-induced alveolar macrophage inflammation using extract of fermented Chenopodium formosanum Koidz sprouts via regulation of NF-kappaB pathway. J. Ethnopharmacol. 2024, 318 (Pt B), 116980. DOI: 10.1016/j.jep.2023.116980.
(10) Schrimpe-Rutledge, A. C.; Codreanu, S. G.; Sherrod, S. D.; McLean, J. A. Untargeted Metabolomics Strategies-Challenges and Emerging Directions. J. Am. Soc. Mass Spectrom. 2016, 27 (12), 1897-1905. DOI: 10.1007/s13361-016-1469-y.
(11) Lynch, S. V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016, 375 (24), 2369-2379. DOI: 10.1056/NEJMra1600266.
(12) Hou, K.; Wu, Z. X.; Chen, X. Y.; Wang, J. Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J. B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7 (1), 135. DOI: 10.1038/s41392-022-00974-4.
(13) Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19 (1), 55-71. DOI: 10.1038/s41579-020-0433-9.
(14) Zhu, W.; Gregory, J. C.; Org, E.; Buffa, J. A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016, 165 (1), 111-124. DOI: 10.1016/j.cell.2016.02.011.
(15) Wang, Z.; Klipfell, E.; Bennett, B. J.; Koeth, R.; Levison, B. S.; Dugar, B.; Feldstein, A. E.; Britt, E. B.; Fu, X.; Chung, Y. M.; et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472 (7341), 57-63. DOI: 10.1038/nature09922.
(16) Mozaffarian, D.; Benjamin, E. J.; Go, A. S.; Arnett, D. K.; Blaha, M. J.; Cushman, M.; Das, S. R.; Ferranti, S. d.; Després, J.-P.; Fullerton, H. J.; et al. Heart Disease and Stroke Statistics—2016 Update. Circulation 2016, 133 (4), e38-e360. DOI: doi:10.1161/CIR.0000000000000350.
(17) Puig-Castellví, F.; Pacheco-Tapia, R.; Deslande, M.; Jia, M.; Andrikopoulos, P.; Chechi, K.; Bonnefond, A.; Froguel, P.; Dumas, M.-E. Advances in the integration of metabolomics and metagenomics for human gut microbiome and their clinical applications. TrAC, Trends Anal. Chem. 2023, 167. DOI: 10.1016/j.trac.2023.117248.
(18) Tajik, M.; Baharfar, M.; Donald, W. A. Single-cell mass spectrometry. Trends Biotechnol. 2022, 40 (11), 1374-1392. DOI: 10.1016/j.tibtech.2022.04.004.
(19) Zhang, L.; Vertes, A. Single-Cell Mass Spectrometry Approaches to Explore Cellular Heterogeneity. Angew. Chem., Int. Ed. Engl. 2018, 57 (17), 4466-4477. DOI: 10.1002/anie.201709719.
(20) Zhao, S.; Li, L. Chemical derivatization in LC-MS-based metabolomics study. TrAC, Trends Anal. Chem. 2020, 131. DOI: 10.1016/j.trac.2020.115988.
(21) Collins, S. L.; Koo, I.; Peters, J. M.; Smith, P. B.; Patterson, A. D. Current Challenges and Recent Developments in Mass Spectrometry-Based Metabolomics. Annu. Rev. Anal. Chem. 2021, 14 (1), 467-487. DOI: 10.1146/annurev-anchem-091620-015205.
(22) Cui, L.; Lu, H.; Lee, Y. H. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. Mass Spectrom. Rev. 2018, 37 (6), 772-792. DOI: 10.1002/mas.21562.
(23) Chaleckis, R.; Meister, I.; Zhang, P.; Wheelock, C. E. Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics. Curr. Opin. Biotechnol. 2019, 55, 44-50. DOI: 10.1016/j.copbio.2018.07.010.
(24) Roberg-Larsen, H.; Lundanes, E.; Nyman, T. A.; Berven, F. S.; Wilson, S. R. Liquid chromatography, a key tool for the advancement of single-cell omics analysis. Anal. Chim. Acta. 2021, 1178, 338551. DOI: 10.1016/j.aca.2021.338551.
(25) Melby, J. A.; Brown, K. A.; Gregorich, Z. R.; Roberts, D. S.; Chapman, E. A.; Ehlers, L. E.; Gao, Z.; Larson, E. J.; Jin, Y.; Lopez, J. R.; et al. High sensitivity top-down proteomics captures single muscle cell heterogeneity in large proteoforms. Proc. Natl. Acad. Sci. U. S. A. 2023, 120 (19), e2222081120. DOI: 10.1073/pnas.2222081120.
(26) Chetwynd, A. J.; David, A. A review of nanoscale LC-ESI for metabolomics and its potential to enhance the metabolome coverage. Talanta 2018, 182, 380-390. DOI: 10.1016/j.talanta.2018.01.084.
(27) Higashi, T.; Ogawa, S. Isotope-coded ESI-enhancing derivatization reagents for differential analysis, quantification and profiling of metabolites in biological samples by LC/MS: A review. J. Pharm. Biomed. Anal. 2016, 130, 181-193. DOI: 10.1016/j.jpba.2016.04.033.
(28) Zhang, T.-Y.; Li, S.; Zhu, Q.-F.; Wang, Q.; Hussain, D.; Feng, Y.-Q. Derivatization for liquid chromatography-electrospray ionization-mass spectrometry analysis of small-molecular weight compounds. TrAC, Trends Anal. Chem. 2019, 119. DOI: 10.1016/j.trac.2019.07.019.

Chapter 2. Investigating the Metabolic Heterogeneity of Cancer Cells Using Functional Single-Cell Selection and nLC Combined with Multinozzle Emitter Mass Spectrometry
(1) Sun, X. X.; Yu, Q. Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment. Acta Pharmacol. Sin. 2015, 36 (10), 1219-1227. DOI: 10.1038/aps.2015.92.
(2) Desai, A.; Yan, Y.; Gerson, S. L. Concise Reviews: Cancer Stem Cell Targeted Therapies: Toward Clinical Success. Stem Cells Transl. Med. 2019, 8 (1), 75-81. DOI: 10.1002/sctm.18-0123.
(3) Goldstein, M.; Kastan, M. B. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu. Rev. Med. 2015, 66, 129-143. DOI: 10.1146/annurev-med-081313-121208.
(4) Azzam, E. I.; Jay-Gerin, J. P.; Pain, D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012, 327 (1-2), 48-60. DOI: 10.1016/j.canlet.2011.12.012.
(5) Cannan, W. J.; Pederson, D. S. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin. J. Cell. Physiol. 2016, 231 (1), 3-14. DOI: 10.1002/jcp.25048.
(6) Moretton, A.; Loizou, J. I. Interplay between Cellular Metabolism and the DNA Damage Response in Cancer. Cancers (Basel) 2020, 12 (8). DOI: 10.3390/cancers12082051.
(7) Hakem, R. DNA-damage repair; the good, the bad, and the ugly. EMBO J. 2008, 27 (4), 589-605. DOI: 10.1038/emboj.2008.15.
(8) Srivastava, M.; Raghavan, S. C. DNA double-strand break repair inhibitors as cancer therapeutics. Chem Biol. 2015, 22 (1), 17-29. DOI: 10.1016/j.chembiol.2014.11.013.
(9) Su, P. R.; You, L.; Beerens, C.; Bezstarosti, K.; Demmers, J.; Pabst, M.; Kanaar, R.; Hsu, C. C.; Chien, M. P. Microscopy-based single-cell proteomic profiling reveals heterogeneity in DNA damage response dynamics. Cell Rep. Methods 2022, 2 (6), 100237. DOI: 10.1016/j.crmeth.2022.100237.
(10) Friedl, P.; Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 2009, 10 (7), 445-457. DOI: 10.1038/nrm2720.
(11) Friedl, P.; Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 2003, 3 (5), 362-374. DOI: 10.1038/nrc1075.
(12) Yin, L.; Zhang, Z.; Liu, Y.; Gao, Y.; Gu, J. Recent advances in single-cell analysis by mass spectrometry. Analyst 2019, 144 (3), 824-845. DOI: 10.1039/c8an01190g.
(13) Zenobi, R. Single-cell metabolomics: analytical and biological perspectives. Science 2013, 342 (6163), 1243259. DOI: 10.1126/science.1243259.
(14) Fang, Z.; Wang, R.; Zhao, H.; Yao, H.; Ouyang, J.; Zhang, X. Mannose Promotes Metabolic Discrimination of Osteosarcoma Cells at Single-Cell Level by Mass Spectrometry. Anal. Chem. 2020, 92 (3), 2690-2696. DOI: 10.1021/acs.analchem.9b04773.
(15) Phelps, M. S.; Verbeck, G. F. A lipidomics demonstration of the importance of single cell analysis. Anal. Methods 2015, 7 (9), 3668-3670. DOI: 10.1039/c5ay00379b.
(16) Abouleila, Y.; Onidani, K.; Ali, A.; Shoji, H.; Kawai, T.; Lim, C. T.; Kumar, V.; Okaya, S.; Kato, K.; Hiyama, E.; et al. Live single cell mass spectrometry reveals cancer-specific metabolic profiles of circulating tumor cells. Cancer Sci. 2019, 110 (2), 697-706. DOI: 10.1111/cas.13915.
(17) Sun, M.; Yang, Z. Metabolomic Studies of Live Single Cancer Stem Cells Using Mass Spectrometry. Anal. Chem. 2019, 91 (3), 2384-2391. DOI: 10.1021/acs.analchem.8b05166.
(18) Neumann, E. K.; Comi, T. J.; Rubakhin, S. S.; Sweedler, J. V. Lipid Heterogeneity between Astrocytes and Neurons Revealed by Single-Cell MALDI-MS Combined with Immunocytochemical Classification. Angew. Chem., Int. Ed. Engl. 2019, 58 (18), 5910-5914. DOI: 10.1002/anie.201812892.
(19) Yang, K.; Han, X. Lipidomics: Techniques, Applications, and Outcomes Related to Biomedical Sciences. Trends Biochem. Sci 2016, 41 (11), 954-969. DOI: 10.1016/j.tibs.2016.08.010.
(20) Stromberg, L. R.; Lilley, L. M.; Mukundan, H. Advances in lipidomics for cancer biomarker discovery. In Proteomic and Metabolomic Approaches to Biomarker Discovery, 2020; pp 421-436.
(21) Zullig, T.; Trotzmuller, M.; Kofeler, H. C. Lipidomics from sample preparation to data analysis: a primer. Anal. Bioanal. Chem. 2020, 412 (10), 2191-2209. DOI: 10.1007/s00216-019-02241-y.
(22) Hu, C.; Duan, Q.; Han, X. Strategies to Improve/Eliminate the Limitations in Shotgun Lipidomics. Proteomics 2020, 20 (11), e1900070. DOI: 10.1002/pmic.201900070.
(23) Chien, M. P.; Werley, C. A.; Farhi, S. L.; Cohen, A. E. Photostick: a method for selective isolation of target cells from culture. Chem. Sci. 2015, 6 (3), 1701-1705. DOI: 10.1039/C4SC03676J.
(24) You, L.; Su, P.-R.; Betjes, M.; Rad, R. G.; Beerens, C.; van Oosten, E.; Leufkens, F.; Gasecka, P.; Muraro, M.; van Tol, R.; et al. Functional single cell selection and annotated profiling of dynamically changing cancer cells. bioRxiv: 2021.
(25) Wenk, M. R. Lipidomics: new tools and applications. Cell 2010, 143 (6), 888-895. DOI: 10.1016/j.cell.2010.11.033.
(26) Evers, T. M. J.; Hochane, M.; Tans, S. J.; Heeren, R. M. A.; Semrau, S.; Nemes, P.; Mashaghi, A. Deciphering Metabolic Heterogeneity by Single-Cell Analysis. Anal. Chem. 2019, 91 (21), 13314-13323. DOI: 10.1021/acs.analchem.9b02410.
(27) De La Mora, J. F.; Loscertales, I. G. The current emitted by highly conducting Taylor cones. J. Fluid Mech. 1994, 260, 155-184. DOI: 10.1017/S0022112094003472.
(28) Wilm, M. S.; Mann, M. Electrospray and Taylor-Cone theory, Dole''s beam of macromolecules at last? Int. J. Mass Spectrom. Ion Process. 1994, 136 (2), 167-180. DOI: 10.1016/0168-1176(94)04024-9.
(29) Chetwynd, A. J.; David, A. A review of nanoscale LC-ESI for metabolomics and its potential to enhance the metabolome coverage. Talanta 2018, 182, 380-390. DOI: 10.1016/j.talanta.2018.01.084.
(30) Karas, M.; Bahr, U.; Dülcks, T. Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine. Fresenius'' J. Anal. Chem. 2000, 366 (6), 669-676. DOI: 10.1007/s002160051561.
(31) Liu, A.; Zhang, H.; Ding, J.; Kou, W.; Yan, F.; Huang, K.; Chen, H. Enrichment of phospholipids using magnetic Fe3O4/TiO2 nanoparticles for quantitative detection at single cell levels by electrospray ionization mass spectrometry. Talanta 2020, 212, 120769. DOI: 10.1016/j.talanta.2020.120769.
(32) Beck, M.; Schmidt, A.; Malmstroem, J.; Claassen, M.; Ori, A.; Szymborska, A.; Herzog, F.; Rinner, O.; Ellenberg, J.; Aebersold, R. The quantitative proteome of a human cell line. Mol. Syst. Biol. 2011, 7, 549. DOI: 10.1038/msb.2011.82.
(33) van der Veen, J. N.; Kennelly, J. P.; Wan, S.; Vance, J. E.; Vance, D. E.; Jacobs, R. L. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta - Biomembr. 2017, 1859 (9 Pt B), 1558-1572. DOI: 10.1016/j.bbamem.2017.04.006.
(34) Wang, D.; Dubois, R. N. Eicosanoids and cancer. Nat. Rev. Cancer 2010, 10 (3), 181-193. DOI: 10.1038/nrc2809.
(35) Yuan, Z. H.; Liu, T.; Wang, H.; Xue, L. X.; Wang, J. J. Fatty Acids Metabolism: The Bridge Between Ferroptosis and Ionizing Radiation. Front. Cell Dev. Biol. 2021, 9, 675617. DOI: 10.3389/fcell.2021.675617.
(36) Li, J.; Cao, F.; Yin, H. L.; Huang, Z. J.; Lin, Z. T.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: past, present and future. Cell Death Dis. 2020, 11 (2), 88. DOI: 10.1038/s41419-020-2298-2.
(37) SenGupta, S.; Parent, C. A.; Bear, J. E. The principles of directed cell migration. Nat. Rev. Mol. Cell Biol. 2021, 22 (8), 529-547. DOI: 10.1038/s41580-021-00366-6.
(38) Saddoughi, S. A.; Ogretmen, B. Diverse functions of ceramide in cancer cell death and proliferation. Adv. Cancer Res. 2013, 117, 37-58. DOI: 10.1016/B978-0-12-394274-6.00002-9.
(39) Tea, M. N.; Poonnoose, S. I.; Pitson, S. M. Targeting the Sphingolipid System as a Therapeutic Direction for Glioblastoma. Cancers (Basel) 2020, 12 (1). DOI: 10.3390/cancers12010111.
(40) Riboni, L.; Campanella, R.; Bassi, R.; Villani, R.; Gaini, S. M.; Martinelli-Boneschi, F.; Viani, P.; Tettamanti, G. Ceramide levels are inversely associated with malignant progression of human glial tumors. Glia 2002, 39 (2), 105-113. DOI: 10.1002/glia.10087.
(41) Shakya, S.; Gromovsky, A. D.; Hale, J. S.; Knudsen, A. M.; Prager, B.; Wallace, L. C.; Penalva, L. O. F.; Brown, H. A.; Kristensen, B. W.; Rich, J. N.; et al. Altered lipid metabolism marks glioblastoma stem and non-stem cells in separate tumor niches. Acta Neuropathol. Commun. 2021, 9 (1), 101. DOI: 10.1186/s40478-021-01205-7.
(42) Taib, B.; Aboussalah, A. M.; Moniruzzaman, M.; Chen, S.; Haughey, N. J.; Kim, S. F.; Ahima, R. S. Lipid accumulation and oxidation in glioblastoma multiforme. Sci. Rep. 2019, 9 (1), 19593. DOI: 10.1038/s41598-019-55985-z.
(43) Beloribi-Djefaflia, S.; Vasseur, S.; Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis 2016, 5, e189. DOI: 10.1038/oncsis.2015.49.
(44) Saunders, K. D. G.; von Gerichten, J.; Lewis, H. M.; Gupta, P.; Spick, M.; Costa, C.; Velliou, E.; Bailey, M. J. Single-Cell Lipidomics Using Analytical Flow LC-MS Characterizes the Response to Chemotherapy in Cultured Pancreatic Cancer Cells. Anal. Chem. 2023, 95 (39), 14727-14735. DOI: 10.1021/acs.analchem.3c02854.
(45) Lewis, H. M.; Gupta, P.; Saunders, K. D. G.; Briones, S.; von Gerichten, J.; Townsend, P. A.; Velliou, E.; Beste, D. J. V.; Cexus, O.; Webb, R.; et al. Nanocapillary sampling coupled to liquid chromatography mass spectrometry delivers single cell drug measurement and lipid fingerprints. Analyst 2023, 148 (5), 1041-1049. DOI: 10.1039/d2an01732f.
(46) Balvers, R. K.; Kleijn, A.; Kloezeman, J. J.; French, P. J.; Kremer, A.; van den Bent, M. J.; Dirven, C. M.; Leenstra, S.; Lamfers, M. L. Serum-free culture success of glial tumors is related to specific molecular profiles and expression of extracellular matrix-associated gene modules. Neuro-Oncol. 2013, 15 (12), 1684-1695. DOI: 10.1093/neuonc/not116.
(47) Berghauser Pont, L. M.; Balvers, R. K.; Kloezeman, J. J.; Nowicki, M. O.; van den Bossche, W.; Kremer, A.; Wakimoto, H.; van den Hoogen, B. G.; Leenstra, S.; Dirven, C. M.; et al. In vitro screening of clinical drugs identifies sensitizers of oncolytic viral therapy in glioblastoma stem-like cells. Gene Ther. 2015, 22 (12), 947-959. DOI: 10.1038/gt.2015.72.
(48) You, L.; Su, P. R.; Betjes, M.; Rad, R. G.; Chou, T. C.; Beerens, C.; van Oosten, E.; Leufkens, F.; Gasecka, P.; Muraro, M.; et al. Linking the genotypes and phenotypes of cancer cells in heterogenous populations via real-time optical tagging and image analysis. Nat. Biomed. Eng. 2022, 6 (5), 667-675. DOI: 10.1038/s41551-022-00853-x.
(49) Zhang, H.; Gao, Y.; Sun, J.; Fan, S.; Yao, X.; Ran, X.; Zheng, C.; Huang, M.; Bi, H. Optimization of lipid extraction and analytical protocols for UHPLC-ESI-HRMS-based lipidomic analysis of adherent mammalian cancer cells. Anal. Bioanal. Chem. 2017, 409 (22), 5349-5358. DOI: 10.1007/s00216-017-0483-7.
(50) Danne-Rasche, N.; Coman, C.; Ahrends, R. Nano-LC/NSI MS Refines Lipidomics by Enhancing Lipid Coverage, Measurement Sensitivity, and Linear Dynamic Range. Anal. Chem. 2018, 90 (13), 8093-8101. DOI: 10.1021/acs.analchem.8b01275.
(51) Mao, P.; Gomez-Sjoberg, R.; Wang, D. Multinozzle emitter array chips for small-volume proteomics. Anal. Chem. 2013, 85 (2), 816-819. DOI: 10.1021/ac3032965.
(52) Chen, Y.; Mao, P.; Wang, D. Quantitation of Intact Proteins in Human Plasma Using Top-Down Parallel Reaction Monitoring-MS. Anal. Chem. 2018, 90 (18), 10650-10653. DOI: 10.1021/acs.analchem.8b02699.
(53) Ruttkies, C.; Schymanski, E. L.; Wolf, S.; Hollender, J.; Neumann, S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J. Cheminf. 2016, 8, 3. DOI: 10.1186/s13321-016-0115-9.
(54) Vinaixa, M.; Schymanski, E. L.; Neumann, S.; Navarro, M.; Salek, R. M.; Yanes, O. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and future prospects. TrAC, Trends Anal. Chem. 2016, 78, 23-35. DOI: 10.1016/j.trac.2015.09.005.

Chapter 3. Investigate Metabolic Pathways and Potential Biomarkers of Non-Alcoholic Fatty Liver Disease via Metabolomics and Metagenomics
(1) Hsu, C. S.; Kao, J. H. An update on non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in Asia. Expert Rev. Gastroenterol. Hepatol. 2017, 11 (8), 759-772. DOI: 10.1080/17474124.2017.1342535.
(2) Farrell, G. C.; Wong, V. W.; Chitturi, S. NAFLD in Asia--as common and important as in the West. Nat. Rev. Gastroenterol. Hepatol. 2013, 10 (5), 307-318. DOI: 10.1038/nrgastro.2013.34.
(3) Brunt, E. M.; Wong, V. W.; Nobili, V.; Day, C. P.; Sookoian, S.; Maher, J. J.; Bugianesi, E.; Sirlin, C. B.; Neuschwander-Tetri, B. A.; Rinella, M. E. Nonalcoholic fatty liver disease. Nat. Rev. Dis. Primers 2015, 1, 15080. DOI: 10.1038/nrdp.2015.80.
(4) Rinella, M. E.; Neuschwander-Tetri, B. A.; Siddiqui, M. S.; Abdelmalek, M. F.; Caldwell, S.; Barb, D.; Kleiner, D. E.; Loomba, R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 77 (5), 1797-1835. DOI: 10.1097/HEP.0000000000000323.
(5) European Association for the Study of the, L.; European Association for the Study of, D.; European Association for the Study of, O. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64 (6), 1388-1402. DOI: 10.1016/j.jhep.2015.11.004.
(6) Alkhouri, N.; Feldstein, A. E. Noninvasive diagnosis of nonalcoholic fatty liver disease: Are we there yet? Metabolism 2016, 65 (8), 1087-1095. DOI: 10.1016/j.metabol.2016.01.013.
(7) Gitto, S.; Schepis, F.; Andreone, P.; Villa, E. Study of the Serum Metabolomic Profile in Nonalcoholic Fatty Liver Disease: Research and Clinical Perspectives. Metabolites 2018, 8 (1). DOI: 10.3390/metabo8010017.
(8) Chen, T.; Xie, G.; Wang, X.; Fan, J.; Qiu, Y.; Zheng, X.; Qi, X.; Cao, Y.; Su, M.; Wang, X.; et al. Serum and Urine Metabolite Profiling Reveals Potential Biomarkers of Human Hepatocellular Carcinoma. Mol. Cell. Proteom. 2011, 10 (7). DOI: 10.1074/mcp.M110.004945.
(9) Perakakis, N.; Polyzos, S. A.; Yazdani, A.; Sala-Vila, A.; Kountouras, J.; Anastasilakis, A. D.; Mantzoros, C. S. Non-invasive diagnosis of non-alcoholic steatohepatitis and fibrosis with the use of omics and supervised learning: A proof of concept study. Metabolism 2019, 101, 154005. DOI: 10.1016/j.metabol.2019.154005.
(10) Zhao, S.; Li, L. Chemical derivatization in LC-MS-based metabolomics study. TrAC, Trends Anal. Chem. 2020, 131. DOI: 10.1016/j.trac.2020.115988.
(11) Contrepois, K.; Jiang, L.; Snyder, M. Optimized Analytical Procedures for the Untargeted Metabolomic Profiling of Human Urine and Plasma by Combining Hydrophilic Interaction (HILIC) and Reverse-Phase Liquid Chromatography (RPLC)-Mass Spectrometry. Mol. Cell. Proteom. 2015, 14 (6), 1684-1695. DOI: 10.1074/mcp.M114.046508.
(12) Higashi, T.; Ogawa, S. Isotope-coded ESI-enhancing derivatization reagents for differential analysis, quantification and profiling of metabolites in biological samples by LC/MS: A review. J. Pharm. Biomed. Anal. 2016, 130, 181-193. DOI: 10.1016/j.jpba.2016.04.033.
(13) Zhang, T.-Y.; Li, S.; Zhu, Q.-F.; Wang, Q.; Hussain, D.; Feng, Y.-Q. Derivatization for liquid chromatography-electrospray ionization-mass spectrometry analysis of small-molecular weight compounds. TrAC, Trends Anal. Chem. 2019, 119. DOI: 10.1016/j.trac.2019.07.019.
(14) Guo, K.; Li, L. Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome. Anal. Chem. 2009, 81 (10), 3919-3932. DOI: 10.1021/ac900166a.
(15) Han, W.; Sapkota, S.; Camicioli, R.; Dixon, R. A.; Li, L. Profiling novel metabolic biomarkers for Parkinson''s disease using in-depth metabolomic analysis. Mov. Disord. 2017, 32 (12), 1720-1728. DOI: 10.1002/mds.27173.
(16) Xu, W.; Chen, D.; Wang, N.; Zhang, T.; Zhou, R.; Huan, T.; Lu, Y.; Su, X.; Xie, Q.; Li, L.; et al. Development of high-performance chemical isotope labeling LC-MS for profiling the human fecal metabolome. Anal. Chem. 2015, 87 (2), 829-836. DOI: 10.1021/ac503619q.
(17) Masood, A.; Jacob, M.; Gu, X.; Abdel Jabar, M.; Benabdelkamel, H.; Nizami, I.; Li, L.; Dasouki, M.; Abdel Rahman, A. M. Distinctive metabolic profiles between Cystic Fibrosis mutational subclasses and lung function. Metabolomics 2021, 17 (1), 4. DOI: 10.1007/s11306-020-01760-5.
(18) Jastrząb, R.; Łomozik, L.; Tylkowski, B. Complexes of biogenic amines in their role in living systems. Phys. Sci. Rev. 2016, 1 (6). DOI: 10.1515/psr-2016-0003.
(19) Ma, Y.; Liu, X.; Wang, J. Small molecules in the big picture of gut microbiome-host cross-talk. EBioMedicine 2022, 81, 104085. DOI: 10.1016/j.ebiom.2022.104085.
(20) Flint, H. J.; Scott, K. P.; Louis, P.; Duncan, S. H. The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology & Hepatology 2012, 9 (10), 577-589. DOI: 10.1038/nrgastro.2012.156.
(21) Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19 (1), 55-71. DOI: 10.1038/s41579-020-0433-9.
(22) Hou, K.; Wu, Z. X.; Chen, X. Y.; Wang, J. Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J. B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7 (1), 135. DOI: 10.1038/s41392-022-00974-4.
(23) Gkolfakis, P.; Dimitriadis, G.; Triantafyllou, K. Gut microbiota and non-alcoholic fatty liver disease. Hepatobiliary Pancreat. Dis. Int. 2015, 14 (6), 572-581. DOI: 10.1016/s1499-3872(15)60026-1.
(24) Aron-Wisnewsky, J.; Vigliotti, C.; Witjes, J.; Le, P.; Holleboom, A. G.; Verheij, J.; Nieuwdorp, M.; Clement, K. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 2020, 17 (5), 279-297. DOI: 10.1038/s41575-020-0269-9.
(25) Tilg, H.; Adolph, T. E.; Dudek, M.; Knolle, P. Non-alcoholic fatty liver disease: the interplay between metabolism, microbes and immunity. Nat. Metab. 2021, 3 (12), 1596-1607. DOI: 10.1038/s42255-021-00501-9.
(26) Caussy, C.; Loomba, R. Gut microbiome, microbial metabolites and the development of NAFLD. Nat. Rev. Gastroenterol. Hepatol. 2018, 15 (12), 719-720. DOI: 10.1038/s41575-018-0058-x.
(27) Fouhy, F.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.; Cotter, P. D. Composition of the early intestinal microbiota. Gut Microbes 2012, 3 (3), 203-220. DOI: 10.4161/gmic.20169.
(28) Raman, M.; Ahmed, I.; Gillevet, P. M.; Probert, C. S.; Ratcliffe, N. M.; Smith, S.; Greenwood, R.; Sikaroodi, M.; Lam, V.; Crotty, P.; et al. Fecal Microbiome and Volatile Organic Compound Metabolome in Obese Humans With Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2013, 11 (7), 868-875.e863. DOI: 10.1016/j.cgh.2013.02.015.
(29) Larsen, N.; Vogensen, F. K.; van den Berg, F. W.; Nielsen, D. S.; Andreasen, A. S.; Pedersen, B. K.; Al-Soud, W. A.; Sorensen, S. J.; Hansen, L. H.; Jakobsen, M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010, 5 (2), e9085. DOI: 10.1371/journal.pone.0009085.
(30) Wang, B.; Jiang, X.; Cao, M.; Ge, J.; Bao, Q.; Tang, L.; Chen, Y.; Li, L. Altered Fecal Microbiota Correlates with Liver Biochemistry in Nonobese Patients with Non-alcoholic Fatty Liver Disease. Sci. Rep. 2016, 6, 32002. DOI: 10.1038/srep32002.
(31) Bauer, K. C.; Littlejohn, P. T.; Ayala, V.; Creus-Cuadros, A.; Finlay, B. B. Nonalcoholic Fatty Liver Disease and the Gut-Liver Axis: Exploring an Undernutrition Perspective. Gastroenterology 2022, 162 (7), 1858-1875 e1852. DOI: 10.1053/j.gastro.2022.01.058.
(32) Hoyles, L.; Fernandez-Real, J. M.; Federici, M.; Serino, M.; Abbott, J.; Charpentier, J.; Heymes, C.; Luque, J. L.; Anthony, E.; Barton, R. H.; et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat. Med. 2018, 24 (7), 1070-1080. DOI: 10.1038/s41591-018-0061-3.
(33) da Silva, R. R.; Dorrestein, P. C.; Quinn, R. A. Illuminating the dark matter in metabolomics. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (41), 12549-12550. DOI: 10.1073/pnas.1516878112.
(34) Han, W.; Li, L. Chemical Isotope Labeling LC-MS for Human Blood Metabolome Analysis. Methods Mol. Biol. 2018, 1730, 213-225. DOI: 10.1007/978-1-4939-7592-1_14.
(35) Hu, C.; Wang, T.; Zhuang, X.; Sun, Q.; Wang, X.; Lin, H.; Feng, M.; Zhang, J.; Cao, Q.; Jiang, Y. Metabolic analysis of early nonalcoholic fatty liver disease in humans using liquid chromatography-mass spectrometry. J. Transl. Med. 2021, 19 (1), 152. DOI: 10.1186/s12967-021-02820-7.
(36) Yang, L.; Dai, Y.; He, H.; Liu, Z.; Liao, S.; Zhang, Y.; Liao, G.; An, Z. Integrative analysis of gut microbiota and fecal metabolites in metabolic associated fatty liver disease patients. Front Microbiol. 2022, 13, 969757. DOI: 10.3389/fmicb.2022.969757.
(37) Soga, T.; Sugimoto, M.; Honma, M.; Mori, M.; Igarashi, K.; Kashikura, K.; Ikeda, S.; Hirayama, A.; Yamamoto, T.; Yoshida, H.; et al. Serum metabolomics reveals gamma-glutamyl dipeptides as biomarkers for discrimination among different forms of liver disease. J. Hepatol. 2011, 55 (4), 896-905. DOI: 10.1016/j.jhep.2011.01.031.
(38) Miyazaki, M.; Kato, M.; Tanaka, K.; Tanaka, M.; Kohjima, M.; Nakamura, K.; Enjoji, M.; Nakamuta, M.; Kotoh, K.; Takayanagi, R. Increased hepatic expression of dipeptidyl peptidase-4 in non-alcoholic fatty liver disease and its association with insulin resistance and glucose metabolism. Mol. Med. Rep. 2012, 5 (3), 729-733. DOI: 10.3892/mmr.2011.707.
(39) Baumeier, C.; Schluter, L.; Saussenthaler, S.; Laeger, T.; Rodiger, M.; Alaze, S. A.; Fritsche, L.; Haring, H. U.; Stefan, N.; Fritsche, A.; et al. Elevated hepatic DPP4 activity promotes insulin resistance and non-alcoholic fatty liver disease. Mol. Metab. 2017, 6 (10), 1254-1263. DOI: 10.1016/j.molmet.2017.07.016.
(40) Deacon, C. F. Physiology and Pharmacology of DPP-4 in Glucose Homeostasis and the Treatment of Type 2 Diabetes. Front. Endocrinol. 2019, 10, 80. DOI: 10.3389/fendo.2019.00080.
(41) Byrne, C. D.; Targher, G. NAFLD: a multisystem disease. J. Hepatol. 2015, 62 (1 Suppl), S47-64. DOI: 10.1016/j.jhep.2014.12.012.
(42) Maximos, M.; Bril, F.; Portillo Sanchez, P.; Lomonaco, R.; Orsak, B.; Biernacki, D.; Suman, A.; Weber, M.; Cusi, K. The role of liver fat and insulin resistance as determinants of plasma aminotransferase elevation in nonalcoholic fatty liver disease. Hepatology 2015, 61 (1), 153-160. DOI: 10.1002/hep.27395.
(43) Lee, D.-H.; Blomhoff, R.; Jacobs, D. R. Is Serum Gamma Glutamyltransferase a Marker of Oxidative Stress? Free Radic. Res. 2004, 38 (6), 535-539. DOI: 10.1080/10715760410001694026.
(44) Gaggini, M.; Carli, F.; Rosso, C.; Buzzigoli, E.; Marietti, M.; Della Latta, V.; Ciociaro, D.; Abate, M. L.; Gambino, R.; Cassader, M.; et al. Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance. Hepatology 2018, 67 (1), 145-158. DOI: 10.1002/hep.29465.
(45) Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic. Biol. Med. 2020, 152, 116-141. DOI: 10.1016/j.freeradbiomed.2020.02.025.
(46) Sookoian, S.; Pirola, C. J. Alanine and aspartate aminotransferase and glutamine-cycling pathway: their roles in pathogenesis of metabolic syndrome. World J. Gastroenterol. 2012, 18 (29), 3775-3781. DOI: 10.3748/wjg.v18.i29.3775.
(47) Rinella, M. E.; Elias, M. S.; Smolak, R. R.; Fu, T.; Borensztajn, J.; Green, R. M. Mechanisms of hepatic steatosis in mice fed a lipogenic methionine choline-deficient diet. J. Lipid Res. 2008, 49 (5), 1068-1076. DOI: 10.1194/jlr.M800042-JLR200.
(48) Ye, J. Z.; Li, Y. T.; Wu, W. R.; Shi, D.; Fang, D. Q.; Yang, L. Y.; Bian, X. Y.; Wu, J. J.; Wang, Q.; Jiang, X. W.; et al. Dynamic alterations in the gut microbiota and metabolome during the development of methionine-choline-deficient diet-induced nonalcoholic steatohepatitis. World J. Gastroenterol. 2018, 24 (23), 2468-2481. DOI: 10.3748/wjg.v24.i23.2468.
(49) Caballero, F.; Fernandez, A.; Matias, N.; Martinez, L.; Fucho, R.; Elena, M.; Caballeria, J.; Morales, A.; Fernandez-Checa, J. C.; Garcia-Ruiz, C. Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis: impact on mitochondrial S-adenosyl-L-methionine and glutathione. J. Biol. Chem. 2010, 285 (24), 18528-18536. DOI: 10.1074/jbc.M109.099333.
(50) Henao-Mejia, J.; Elinav, E.; Jin, C.; Hao, L.; Mehal, W. Z.; Strowig, T.; Thaiss, C. A.; Kau, A. L.; Eisenbarth, S. C.; Jurczak, M. J.; et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012, 482 (7384), 179-185. DOI: 10.1038/nature10809.
(51) Zhu, L.; Baker, S. S.; Gill, C.; Liu, W.; Alkhouri, R.; Baker, R. D.; Gill, S. R. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 2013, 57 (2), 601-609. DOI: 10.1002/hep.26093.
(52) Le, T. T.; Ziemba, A.; Urasaki, Y.; Hayes, E.; Brotman, S.; Pizzorno, G. Disruption of uridine homeostasis links liver pyrimidine metabolism to lipid accumulation. J. Lipid Res. 2013, 54 (4), 1044-1057. DOI: 10.1194/jlr.M034249.
(53) Zhou, J.; Zhang, Q.; Zhao, Y.; Zou, Y.; Chen, M.; Zhou, S.; Wang, Z. The relationship of Megamonas species with nonalcoholic fatty liver disease in children and adolescents revealed by metagenomics of gut microbiota. Sci. Rep. 2022, 12 (1), 22001. DOI: 10.1038/s41598-022-25140-2.
(54) Chen, X.; Sun, H.; Jiang, F.; Shen, Y.; Li, X.; Hu, X.; Shen, X.; Wei, P. Alteration of the gut microbiota associated with childhood obesity by 16S rRNA gene sequencing. PeerJ 2020, 8, e8317. DOI: 10.7717/peerj.8317.
(55) Iino, C.; Endo, T.; Mikami, K.; Hasegawa, T.; Kimura, M.; Sawada, N.; Nakaji, S.; Fukuda, S. Significant decrease in Faecalibacterium among gut microbiota in nonalcoholic fatty liver disease: a large BMI- and sex-matched population study. Hepatol. Int. 2019, 13 (6), 748-756. DOI: 10.1007/s12072-019-09987-8.
(56) Garner, M. R.; Flint, J. F.; Russell, J. B. Allisonella histaminiformans gen. nov., sp. nov. A novel bacterium that produces histamine, utilizes histidine as its sole energy source, and could play a role in bovine and equine laminitis. Syst. Appl. Microbiol. 2002, 25 (4), 498-506. DOI: 10.1078/07232020260517625.
(57) Wong, V. W.; Tse, C. H.; Lam, T. T.; Wong, G. L.; Chim, A. M.; Chu, W. C.; Yeung, D. K.; Law, P. T.; Kwan, H. S.; Yu, J.; et al. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis--a longitudinal study. PLoS One 2013, 8 (4), e62885. DOI: 10.1371/journal.pone.0062885.
(58) Magdy Wasfy, R.; Mbaye, B.; Borentain, P.; Tidjani Alou, M.; Murillo Ruiz, M. L.; Caputo, A.; Andrieu, C.; Armstrong, N.; Million, M.; Gerolami, R. Ethanol-Producing Enterocloster bolteae Is Enriched in Chronic Hepatitis B-Associated Gut Dysbiosis: A Case-Control Culturomics Study. Microorganisms 2023, 11 (10). DOI: 10.3390/microorganisms11102437.
(59) Caussy, C.; Tripathi, A.; Humphrey, G.; Bassirian, S.; Singh, S.; Faulkner, C.; Bettencourt, R.; Rizo, E.; Richards, L.; Xu, Z. Z.; et al. A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease. Nat. Commun. 2019, 10 (1), 1406. DOI: 10.1038/s41467-019-09455-9.
(60) Wortelboer, K.; de Jonge, P. A.; Scheithauer, T. P. M.; Attaye, I.; Kemper, E. M.; Nieuwdorp, M.; Herrema, H. Phage-microbe dynamics after sterile faecal filtrate transplantation in individuals with metabolic syndrome: a double-blind, randomised, placebo-controlled clinical trial assessing efficacy and safety. Nat. Commun. 2023, 14 (1), 5600. DOI: 10.1038/s41467-023-41329-z.
(61) Maya-Lucas, O.; Murugesan, S.; Nirmalkar, K.; Alcaraz, L. D.; Hoyo-Vadillo, C.; Pizano-Zarate, M. L.; Garcia-Mena, J. The gut microbiome of Mexican children affected by obesity. Anaerobe 2019, 55, 11-23. DOI: 10.1016/j.anaerobe.2018.10.009.
(62) Yuan, X.; Zhang, Y.; Lin, X.; Yang, X.; Chen, R. Association of gut microbiota and glucose metabolism in children with disparate degrees of adiposity. Pediatr. obes. 2023, 18 (4), e13009. DOI: 10.1111/ijpo.13009.
(63) Parker, B. J.; Wearsch, P. A.; Veloo, A. C. M.; Rodriguez-Palacios, A. The Genus Alistipes: Gut Bacteria With Emerging Implications to Inflammation, Cancer, and Mental Health. Front. Immunol. 2020, 11, 906. DOI: 10.3389/fimmu.2020.00906.
(64) Zhu, L.; Baker, S. S.; Gill, C.; Liu, W.; Alkhouri, R.; Baker, R. D.; Gill, S. R. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH. Hepatology 2013, 57 (2), 601-609. DOI: 10.1002/hep.26093.
(65) Wang, T.; Guo, X. K.; Xu, H. Disentangling the Progression of Non-alcoholic Fatty Liver Disease in the Human Gut Microbiota. Front Microbiol. 2021, 12, 728823. DOI: 10.3389/fmicb.2021.728823.
(66) Patterson, A. M.; Mulder, I. E.; Travis, A. J.; Lan, A.; Cerf-Bensussan, N.; Gaboriau-Routhiau, V.; Garden, K.; Logan, E.; Delday, M. I.; Coutts, A. G. P.; et al. Human Gut Symbiont Roseburia hominis Promotes and Regulates Innate Immunity. Front. Immunol. 2017, 8, 1166. DOI: 10.3389/fimmu.2017.01166.
(67) Song, L.; Sun, Q.; Zheng, H.; Zhang, Y.; Wang, Y.; Liu, S.; Duan, L. Roseburia hominis Alleviates Neuroinflammation via Short-Chain Fatty Acids through Histone Deacetylase Inhibition. Mol. Nutr. Food Res. 2022, 66 (18), 2200164. DOI: 10.1002/mnfr.202200164.
(68) Le Roy, T.; Moens de Hase, E.; Van Hul, M.; Paquot, A.; Pelicaen, R.; Regnier, M.; Depommier, C.; Druart, C.; Everard, A.; Maiter, D.; et al. Dysosmobacter welbionis is a newly isolated human commensal bacterium preventing diet-induced obesity and metabolic disorders in mice. Gut 2022, 71 (3), 534-543. DOI: 10.1136/gutjnl-2020-323778.
(69) Sun, H.; Zhao, F.; Liu, Y.; Ma, T.; Jin, H.; Quan, K.; Leng, B.; Zhao, J.; Yuan, X.; Li, Z.; et al. Probiotics synergized with conventional regimen in managing Parkinson''s disease. npj Parkinson''s Dis. 2022, 8 (1), 62. DOI: 10.1038/s41531-022-00327-6.
(70) Strandwitz, P.; Kim, K. H.; Terekhova, D.; Liu, J. K.; Sharma, A.; Levering, J.; McDonald, D.; Dietrich, D.; Ramadhar, T. R.; Lekbua, A.; et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 2019, 4 (3), 396-403. DOI: 10.1038/s41564-018-0307-3.
(71) Chapman, M. J.; Wallace, E. C.; Pollock, T. A. 29 - Organic Acid Profiling. In Textbook of Natural Medicine (Fifth Edition), Pizzorno, J. E., Murray, M. T. Eds.; Churchill Livingstone, 2020; pp 236-244.e236.
(72) Brosnan, M. E.; Brosnan, J. T. Histidine Metabolism and Function. J. Nutr. 2020, 150 (Suppl 1), 2570S-2575S. DOI: 10.1093/jn/nxaa079.
(73) Quevedo-Ocampo, J.; Escobedo-Calvario, A.; Souza-Arroyo, V.; Miranda-Labra, R. U.; Bucio-Ortiz, L.; Gutiérrez-Ruiz, M. C.; Chávez-Rodríguez, L.; Gomez-Quiroz, L. E. Folate Metabolism in Hepatocellular Carcinoma. What Do We Know So Far? Technol. Cancer Res. Treat. 2022, 21, 15330338221144446. DOI: 10.1177/15330338221144446.
(74) da Silva, R. P.; Kelly, K. B.; Al Rajabi, A.; Jacobs, R. L. Novel insights on interactions between folate and lipid metabolism. BioFactors 2014, 40 (3), 277-283. DOI: 10.1002/biof.1154. .
(75) Shao, L.; Liu, J.; Song, Y.; Yang, W.; Gong, L.; Lyu, Z.; Zhu, Q.; Fu, J.; Li, J.; Shi, J. Serum metabolomics-based heterogeneities and screening strategy for metabolic dysfunction-associated fatty liver disease (MAFLD). Clin. Chim. Acta. 2023, 538, 203-210. DOI: 10.1016/j.cca.2022.12.014.
(76) Liu, Z.; Wang, P.; Liu, Z.; Wei, C.; Li, Y.; Liu, L. Evaluation of liver tissue extraction protocol for untargeted metabolomics analysis by ultra-high-performance liquid chromatography/tandem mass spectrometry. J. Sep. Sci. 2021, 44 (18), 3450-3461. DOI: 10.1002/jssc.202100051.
(77) Wu, Y.; Li, L. Determination of total concentration of chemically labeled metabolites as a means of metabolome sample normalization and sample loading optimization in mass spectrometry-based metabolomics. Anal. Chem. 2012, 84 (24), 10723-10731. DOI: 10.1021/ac3025625.
(78) Zhao, S.; Li, H.; Han, W.; Chan, W.; Li, L. Metabolomic Coverage of Chemical-Group-Submetabolome Analysis: Group Classification and Four-Channel Chemical Isotope Labeling LC-MS. Anal. Chem. 2019, 91 (18), 12108-12115. DOI: 10.1021/acs.analchem.9b03431.
(79) Li, L.; Li, R.; Zhou, J.; Zuniga, A.; Stanislaus, A. E.; Wu, Y.; Huan, T.; Zheng, J.; Shi, Y.; Wishart, D. S.; et al. MyCompoundID: using an evidence-based metabolome library for metabolite identification. Anal. Chem. 2013, 85 (6), 3401-3408. DOI: 10.1021/ac400099b.
(80) Pang, Z.; Zhou, G.; Ewald, J.; Chang, L.; Hacariz, O.; Basu, N.; Xia, J. Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 2022, 17 (8), 1735-1761. DOI: 10.1038/s41596-022-00710-w.
(81) Bolyen, E.; Rideout, J. R.; Dillon, M. R.; Bokulich, N. A.; Abnet, C. C.; Al-Ghalith, G. A.; Alexander, H.; Alm, E. J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37 (8), 852-857. DOI: 10.1038/s41587-019-0209-9.

Chapter 4. Perspective
(1) Danzi, F.; Pacchiana, R.; Mafficini, A.; Scupoli, M. T.; Scarpa, A.; Donadelli, M.; Fiore, A. To metabolomics and beyond: a technological portfolio to investigate cancer metabolism. Signal Transduct. Target. Ther. 2023, 8 (1), 137. DOI: 10.1038/s41392-023-01380-0.
(2) Luo, X.; Li, L. Metabolomics of Small Numbers of Cells: Metabolomic Profiling of 100, 1000, and 10000 Human Breast Cancer Cells. Anal. Chem. 2017, 89 (21), 11664-11671. DOI: 10.1021/acs.analchem.7b03100.
(3) Zhang, C.; Le Devedec, S. E.; Ali, A.; Hankemeier, T. Single-cell metabolomics by mass spectrometry: ready for primetime? Curr. Opin. Biotechnol. 2023, 82, 102963. DOI: 10.1016/j.copbio.2023.102963.
(4) Rinella, M. E.; Lazarus, J. V.; Ratziu, V.; Francque, S. M.; Sanyal, A. J.; Kanwal, F.; Romero, D.; Abdelmalek, M. F.; Anstee, Q. M.; Arab, J. P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79 (6), 1542-1556. DOI: 10.1016/j.jhep.2023.06.003.
(5) Krag, A.; Rinella, M. E. Pioneering the path to NASH biomarker approval. Nat. Med. 2023, 29 (10), 2416-2417. DOI: 10.1038/s41591-023-02527-w.
(6) Sanyal, A. J.; Shankar, S. S.; Yates, K. P.; Bolognese, J.; Daly, E.; Dehn, C. A.; Neuschwander-Tetri, B.; Kowdley, K.; Vuppalanchi, R.; Behling, C.; et al. Diagnostic performance of circulating biomarkers for non-alcoholic steatohepatitis. Nat. Med. 2023, 29 (10), 2656-2664. DOI: 10.1038/s41591-023-02539-6.
(7) Lascelles, P. T.; Donaldson, D. Formiminoglutamic Acid (FIGLU) Test. In Diagnostic Function Tests in Chemical Pathology, Lascelles, P. T., Donaldson, D. Eds.; Springer Netherlands, 1989; pp 59-60.
(8) Rossi, M.; Amaretti, A.; Raimondi, S. Folate production by probiotic bacteria. Nutrients 2011, 3 (1), 118-134. DOI: 10.3390/nu3010118.
(9) Engevik, M. A.; Morra, C. N.; Roth, D.; Engevik, K.; Spinler, J. K.; Devaraj, S.; Crawford, S. E.; Estes, M. K.; Kalkum, M.; Versalovic, J. Microbial Metabolic Capacity for Intestinal Folate Production and Modulation of Host Folate Receptors. Front. Microbiol. 2019, 10, 2305. DOI: 10.3389/fmicb.2019.02305.
(10) Kok, D. E.; Steegenga, W. T.; Smid, E. J.; Zoetendal, E. G.; Ulrich, C. M.; Kampman, E. Bacterial folate biosynthesis and colorectal cancer risk: more than just a gut feeling. Crit. Rev. Food Sci. Nutr. 2020, 60 (2), 244-256. DOI: 10.1080/10408398.2018.1522499.
(11) Rosario, D.; Bidkhori, G.; Lee, S.; Bedarf, J.; Hildebrand, F.; Le Chatelier, E.; Uhlen, M.; Ehrlich, S. D.; Proctor, G.; Wullner, U.; et al. Systematic analysis of gut microbiome reveals the role of bacterial folate and homocysteine metabolism in Parkinson''s disease. Cell Rep. 2021, 34 (9), 108807. DOI: 10.1016/j.celrep.2021.108807.
(12) Wishart, D. S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 2016, 15 (7), 473-484. DOI: 10.1038/nrd.2016.32.
(13) Stine, Z. E.; Schug, Z. T.; Salvino, J. M.; Dang, C. V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 2022, 21 (2), 141-162. DOI: 10.1038/s41573-021-00339-6.
(14) Tardito, S.; MacKay, C. Rethinking our approach to cancer metabolism to deliver patient benefit. Br. J. Cancer 2023, 129 (3), 406-415. DOI: 10.1038/s41416-023-02324-9.
(15) Seger, C.; Salzmann, L. After another decade: LC-MS/MS became routine in clinical diagnostics. Clin. Biochem. 2020, 82, 2-11. DOI: 10.1016/j.clinbiochem.2020.03.004.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92308-
dc.description.abstract代謝組學是指探討生物樣本中的代謝物(如體液、細胞和組織)以發現生物標記物。其中,質譜法其具有高靈敏度、選擇性和高掃描速度等特性,得以在化學層級上作為分析代謝物中一種合適的方法。然而,基於質譜法的代謝組學正在面臨一些挑戰,如樣品某些代謝物的含量較低或同時存在著不同極性和離子化性質的代謝物以及較低含量的代謝物導致鑑定上有困難。為了解決這些挑戰,本論文提出了使用奈米級微流液相層析結合多噴嘴發射器來增強儀器靈敏度,以及使用化學衍生化的方法來提高代謝物的離子化效率以及分離效果。這些方法可以提高低含量代謝物的檢測以及優化代謝組學的分析流程。
  第一部份,本論文呈現出單細胞分析的多模式平台,此平台使用奈米級微流液相層析和多噴嘴發射器質譜儀以及單細胞選擇技術結合,以研究群體和亞群體內的代謝組學異質性。我們透過此分析平台,分別從單顆人類骨肉瘤細胞和膠質母細胞瘤細胞中鑑定出15和17種脂類。單細胞選擇技術還被用來分離具有DNA損傷反應和快速遷移的異常亞族群細胞並且透過分析平台進一步探討代謝組學差異。此多模式平台提供了一種有前途的單細胞代謝組學微量尺度之分析方法,為細胞異質性提供了有價值的洞察。
  第二部份,本論文呈現出使用高性能化學同位素標記平台對非酒精性脂肪性肝病進行全面的代謝組學分析。其中非酒精性脂肪性肝病進一步分類為非酒精性脂肪肝和非酒精性脂肪性肝炎。我們的研究包括代謝組和總體基因體學數據的相關性分析。該研究鑑定出潛在的生物標記物,可以使用非侵入性之程序在血漿中準確地診斷非酒精性脂肪性肝病之亞型與健康對照組。同時,該研究還探討了非酒精性脂肪性肝病亞型患者的肝臟和尿液樣本,進一步透過代謝通路分析發現其相關代謝物可能會被調控以緩解非酒精性脂肪性肝病進展。此外,總體基因體學分析確定了在非酒精性脂肪肝中具有上下調控的特定細菌物種,暗示了腸道菌群失調和其疾病發展之間的聯繫。這些資訊可能有助於進一步研究非酒精性脂肪肝病的疾病機制和治療方法的發展。
zh_TW
dc.description.abstractMetabolomics refers to the study of metabolites in biological samples such as biofluids, cells, and tissues to discover biomarkers. Mass spectrometry (MS) is a powerful tool for analyzing metabolites at a chemical level due to its high sensitivity, selectivity, and fast scanning speed. However, MS-based metabolomics faces challenges including lower sample abundance, coexistence of metabolites with diverse polarities and ionization properties, and difficulty identifying low-abundance compounds.
To address these challenges, the dissertation proposes using nanoflow liquid chromatography combined with multinozzle emitters to enhance the sensitivity of instrument, chemical derivatization to improve metabolite ionization and separation efficiency. These methods can improve the detection of low-abundance metabolites and overall quality of metabolomics results.
  First of all, the dissertation presents the multimodal platform for single-cell analysis that combines nanoflow liquid chromatography and multinozzle emitters MS with a functional single-cell selection (fSCS) pipeline to investigate metabolomics heterogeneity within the population and subpopulation. Using this platform, 15 and 17 lipids were identified from single human osteosarcoma and glioblastoma cells, respectively. The fSCS pipeline was also used to isolate and we analyzed the aberrant subpopulations of cells with DNA damage response and fast migration. This multimodal platform offers a promising approach for the nano-to-micro analysis of single-cell metabolomics, providing valuable insights into cell heterogeneity.
  Second, the dissertation presents the comprehensive metabolomic profile of non-alcoholic fatty liver disease (NAFLD) by analyzing four different specimens using high-performance chemical isotope labeling (CIL) platform. Our investigation includes correlation analyses between metagenomic and metabolomic data. We have identified potential biomarkers that can accurately diagnose the presence of nonalcoholic fatty liver (NAFL), nonalcoholic steatohepatitis (NASH), and healthy control status in plasma using a non-invasive procedure. Moreover, the results of the metabolomics pathway analysis may suggest that metabolites were regulated to alleviate the progression of NAFLD by inhibiting ROS and reducing lipid accumulation in the liver, as demonstrated by different specimens. Additionally, metagenomic analyses pinpoint specific bacterial species with up- or down-regulation in NAFLD, suggesting a link between gut microbiota dysbiosis and NAFLD development.
Overall, these chapters offer significant insights into metabolomics'' potential applications and advancements.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:32:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-21T16:32:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝誌 i
中文摘要 iv
Abstract v
Table of Contents vii
List of Figures x
List of Tables xiv
Chapter 1. Introductory Chapter 1
1-1 Reaserch roadmap 1
1-2 References 7
Chapter 2. Investigating the Metabolic Heterogeneity of Cancer Cells Using Functional Single-Cell Selection and nLC Combined with Multinozzle Emitter Mass Spectrometry…. 11
2-1 Abstract 11
2-2 Introduction 12
2-3 Results and discussion 15
2-3-1 An evaluation of the emitter performance between the single nozzle and the multinozzle was performed 15
2-3-2 Cell populations were differentiated using the nLC-single-cell mass spectrometer analysis platform 17
2-3-3 The metabolomic profiles of U2OS cells under DDR-induced by ionizing radiation… 23
2-3-4 Investigated the metabolomic profiles of GBM cells by analyzing the migration patterns of fast and slow cells 26
2-4 Conclusion 30
2-5 Acknowledgments 31
2-6 Materials and methods 31
2-6-1 Chemicals and reagents 31
2-6-2 Cell culture 31
2-6-3 Functional single-cell selection pipeline 32
2-6-4 Cells lipid extraction 33
2-6-5 Nanoflow liquid chromatography (nLC) Single-cell MS analysis platform… 33
2-6-6 Data analysis and metabolites identification 35
2-7 Supplementary information 36
2-8 Reference 42
Chapter 3. Investigate Metabolic Pathways and Potential Biomarkers of Non-Alcoholic Fatty Liver Disease via Metabolomics and Metagenomics 48
3-1 Abstract 48
3-2 Introduction 49
3-3 Results 53
3-3-1 Characterization of the study cohort 53
3-3-2 Metabolomics profiling for NAFLD compared to healthy controls was conducted on plasma and fecal specimens 56
3-3-3 Metabolomics pathway analysis was performed on plasma and fecal specimens between NAFLD and healthy control groups 59
3-3-4 Metabolomics profiling was performed on plasma and fecal specimens to identify potential biomarkers for distinguishing between NAFL, NASH, and healthy control groups 63
3-3-5 The metabolomics profiling comparing NASH to NAFL was performed using urine and liver specimens 72
3-3-6 Comparison of the gut microbiome taxonomy profiles of healthy control and NAFLD group 77
3-3-7 The Strategy of correlation analysis between metagenomics and metabolomics 83
3-3-8 Correlation analysis of metagenomics and metabolomics in fecal and plasma specimens. 85
3-4 Discussion 99
3-5 Conclusion 106
3-6 Material and method 108
3-6-1 Chemicals and reagents 108
3-6-2 Sample preparation 108
3-6-3 Dansylation labeling 109
3-6-4 LC-MS analysis 110
3-6-5 Data processing and metabolites identification 115
3-6-6 Sample collection, preparation and data processing of metagenomics 116
3-7 Supplementary information 118
3-8 References 119
Appendix 130
Chapter 4. Perspective 153
4-1 Ready for primetime of Single-cell metabolomics by mass spectrometry? 153
4-2 Advancements in understanding and NAFLD through biomarkers investigation and gut bacteria dysbiosis hypothesis 155
4-3 References 159
-
dc.language.isoen-
dc.subject化學衍生化zh_TW
dc.subject單細胞分析zh_TW
dc.subject脂質體學zh_TW
dc.subject代謝體學zh_TW
dc.subject非酒精性脂肪性肝病zh_TW
dc.subject質譜法zh_TW
dc.subjectchemical derivatizationen
dc.subjectmass spectrometryen
dc.subjectsingle-cell analysisen
dc.subjectlipidomicsen
dc.subjectmetabolomicsen
dc.subjectnon-alcoholic fatty liver diseaseen
dc.title基於質譜法之代謝組學整合性策略:從單細胞分析到疾病標誌物之研究zh_TW
dc.titleIntegrated Strategies in Mass Spectrometry-Based Metabolomics: From Single-Cell Analysis to Disease Biomarker Investigationen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee何佳安;陳冠元;廖曉偉;許邦弘;陳盈嵐zh_TW
dc.contributor.oralexamcommitteeJa-an Annie Ho;Guan-Yuan Chen;Hsiao-Wei Liao;Pang-Hung Hsu;Ying-Lan Chenen
dc.subject.keyword質譜法,單細胞分析,脂質體學,代謝體學,非酒精性脂肪性肝病,化學衍生化,zh_TW
dc.subject.keywordmass spectrometry,single-cell analysis,lipidomics,metabolomics,non-alcoholic fatty liver disease,,chemical derivatization,en
dc.relation.page160-
dc.identifier.doi10.6342/NTU202400517-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-02-06-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2029-02-02-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
10.77 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved