請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92304
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鍾明宗 | zh_TW |
dc.contributor.advisor | Ming-Tsung Chung | en |
dc.contributor.author | 李沐廷 | zh_TW |
dc.contributor.author | Mu-Ting Li | en |
dc.date.accessioned | 2024-03-21T16:31:42Z | - |
dc.date.available | 2024-03-22 | - |
dc.date.copyright | 2024-03-21 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-02-17 | - |
dc.identifier.citation | Beng, K. C., & Corlett, R. T. (2020). Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodiversity and Conservation, 29, 2089-2121.
Boecklen, W. J., Yarnes, C. T., Cook, B. A., & James, A. C. (2011). On the use of stable isotopes in trophic ecology. Annual Review of Ecology, Evolution, and Systematics, 42, 411-440. Borelli, G., Mayer-Gostan, N., De Pontual, H., Boeuf, G., & Payan, P. (2001). Biochemical relationships between endolymph and otolith matrix in the trout (Oncorhynchus mykiss) and turbot (Psetta maxima). Calcified Tissue International, 69(6). Braga, R. R., Bornatowski, H., & Vitule, J. R. S. (2012). Feeding ecology of fishes: an overview of worldwide publications. Reviews in Fish Biology and Fisheries, 22, 915-929. Cabana, G., & Rasmussen, J. B. (1994). Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature, 372(6503), 255-257. Campana, S. E., & Neilson, J. D. (1985). Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 42(5), 1014-1032. Carlstrom, D. (1963). A crystallographic study of vertebrate otoliths. The Biological Bulletin, 125(3), 441-463. Carter, W. A., Bauchinger, U., & McWilliams, S. R. (2019). The importance of isotopic turnover for understanding key aspects of animal ecology and nutrition. Diversity, 11(5), 84. Caut, S., Angulo, E., & Courchamp, F. (2009). Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology, 46(2), 443-453. Cheng, L. C., Shiao, J. C., Hsiao, S. S. Y., & Wang, P. L. (2018). Fractionation of otolith nitrogen stable isotopes measured by peroxodisulfate oxidation‐bacterial conversion and isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 32(22), 1905-1910. Chung, M.-T., Peng, Y.-Y., Nazir, A., Wang, Y.-C., Wang, P.-L., & Shiao, J.-C. (2023). Species-specific trophic enrichment factor of stable nitrogen and carbon isotopes in fish otolith organic matter. Marine and Freshwater Research. Churchill, D. A., Heithaus, M. R., Vaudo, J. J., Grubbs, R. D., Gastrich, K., & Castro, J. I. (2015). Trophic interactions of common elasmobranchs in deep-sea communities of the Gulf of Mexico revealed through stable isotope and stomach content analysis. Deep Sea Research Part II: Topical Studies in Oceanography, 115, 92-102. Degens, E. T., Deuser, W. G., & Haedrich, R. L. (1969). Molecular structure and composition of fish otoliths. Marine Biology, 2, 105-113. DeNiro, M. J., & Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 42(5), 495-506. DeNiro, M. J., & Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta, 45(3), 341-351. Dunne, J. A., Brose, U., Williams, R. J., & Martinez, N. D. (2005). Modeling food-web dynamics: complexity-stability implications. Aquatic Food Webs: An Ecosystem Approach, 117-129. Edwards, M., & Richardson, A. J. (2004). Impact of climate change on marine pelagic phenology and trophic mismatch. Nature, 430(7002), 881-884. Elsdon, T. S., Ayvazian, S., McMahon, K. W., & Thorrold, S. R. (2010). Experimental evaluation of stable isotope fractionation in fish muscle and otoliths. Marine Ecology Progress Series, 408, 195-205. Estrada, J. A., Rice, A. N., Natanson, L. J., & Skomal, G. B. (2006). Use of isotopic analysis of vertebrae in reconstructing ontogenetic feeding ecology in white sharks. Ecology, 87(4), 829-834. Fischer, G., & Wiencke, C. (1992). Stable carbon isotope composition, depth distribution and fate of macroalgae from the Antarctic Peninsula region. Polar Biology, 12, 341-348. Fry, B., Joern, A., & Parker, P. (1978). Grasshopper food web analysis: use of carbon isotope ratios to examine feeding relationships among terrestrial herbivores. Ecology, 59(3), 498-506. Ghashghaie, J., Badeck, F.-W., Lanigan, G., Nogués, S., Tcherkez, G., Deléens, E., Cornic, G., & Griffiths, H. (2003). Carbon isotope fractionation during dark respiration and photorespiration in C3 plants. Phytochemistry Reviews, 2, 145-161. Godiksen, J. A., Chung, M.-T., Folkvord, A., & Grønkjær, P. (2019). Effects of temperature on tissue–diet isotopic spacing of nitrogen and carbon in otolith organic matter. Marine and Freshwater Research, 70(12), 1757-1767. Grønkjær, P., Pedersen, J. B., Ankjærø, T. T., Kjeldsen, H., Heinemeier, J., Steingrund, P., Nielsen, J. M., & Christensen, J. T. (2013). Stable N and C isotopes in the organic matrix of fish otoliths: validation of a new approach for studying spatial and temporal changes in the trophic structure of aquatic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 70(2), 143-146. Haines, E. B. (1976). Relation between the stable carbon isotope composition of fiddler crabs, plants, and soils in a salt marsh 1. Limnology and Oceanography, 21(6), 880-883. Hairston Jr, N. G., & Hairston Sr, N. G. (1993). Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. The American Naturalist, 142(3), 379-411. Heady, W. N., & Moore, J. W. (2013). Tissue turnover and stable isotope clocks to quantify resource shifts in anadromous rainbow trout. Oecologia, 172, 21-34. Hecht, T. (1977). Otoliths: what they are and their scientific importance. Eastern Cape Naturalist, 61, 18-20. Huang, S.-C., Chang, S.-K., Lai, C.-C., Yuan, T.-L., Weng, J.-S., & He, J.-S. (2022). Length–weight relationships, growth models of two croakers (Pennahia macrocephalus and Atrobucca nibe) off Taiwan and growth performance indices of related species. Fishes, 7(5), 281. Hunt, J. (1992). Morphological characteristics for otoliths of selected fish in the Northwest Atlantic. Journal of Northwest Atlantic Fishery Science, 13. Hussey, N. E., MacNeil, M. A., Olin, J. A., McMeans, B. C., Kinney, M. J., Chapman, D. D., & Fisk, A. T. (2012). Stable isotopes and elasmobranchs: tissue types, methods, applications and assumptions. Journal of Fish Biology, 80(5), 1449-1484. Hutchinson, J., & Trueman, C. (2006). Stable isotope analyses of collagen in fish scales: limitations set by scale architecture. Journal of Fish Biology, 69(6), 1874-1880. Kume, G., Yagishita, N., Furumitsu, K., Nakata, H., Suzuki, T., Handa, M., & Yamaguchi, A. (2015). The role of molecular methods to compare distribution and feeding habits in larvae and juveniles of two co-occurring sciaenid species Nibea albiflora and Pennahia argentata. Estuarine, Coastal and Shelf Science, 167, 516-525. Layman, C. A., Arrington, D. A., Montaña, C. G., & Post, D. M. (2007). Can stable isotope ratios provide for community‐wide measures of trophic structure? Ecology, 88(1), 42-48. Lee, H.-T., Huang, B.-Q., & Liao, C.-H. (2022). functional adaptation of vocalization revealed by morphological and histochemical characteristics of sonic muscles in blackmouth croaker (Atrobucca nibe). Biology, 11(3), 438. Logan, J., Haas, H., Deegan, L., & Gaines, E. (2006). Turnover rates of nitrogen stable isotopes in the salt marsh mummichog, Fundulus heteroclitus, following a laboratory diet switch. Oecologia, 147, 391-395. Lübcker, N., Whiteman, J. P., Millar, R. P., de Bruyn, P. N., & Newsome, S. D. (2020). Fasting affects amino acid nitrogen isotope values: a new tool for identifying nitrogen balance of free-ranging mammals. Oecologia, 193, 53-65. Lueders-Dumont, J. A., Wang, X. T., Jensen, O. P., Sigman, D. M., & Ward, B. B. (2018). Nitrogen isotopic analysis of carbonate-bound organic matter in modern and fossil fish otoliths. Geochimica et Cosmochimica Acta, 224, 200-222. Madigan, D. J., Brooks, E. J., Bond, M. E., Gelsleichter, J., Howey, L. A., Abercrombie, D. L., Brooks, A., & Chapman, D. D. (2015). Diet shift and site-fidelity of oceanic whitetip sharks Carcharhinus longimanus along the Great Bahama Bank. Marine Ecology Progress Series, 529, 185-197. Madigan, D. J., Litvin, S. Y., Popp, B. N., Carlisle, A. B., Farwell, C. J., & Block, B. A. (2012). Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, Pacific bluefin tuna (Thunnus orientalis). PloS one, 7(11), e49220. McMahon, K. W., Fogel, M. L., Elsdon, T. S., & Thorrold, S. R. (2010). Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein. Journal of Animal Ecology, 79(5), 1132-1141. Minagawa, M., & Wada, E. (1984). Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta, 48(5), 1135-1140. Minson, D. J., Ludlow, M. M., & Troughton, J. H. (1975). Differences in natural carbon isotope ratios of milk and hair from cattle grazing tropical and temperate pastures. Nature, 256(5518), 602-602. Morales-Nin, B. (1986). Structure and composition of otoliths of Cape hake Merluccius capensis. South African Journal of Marine Science, 4(1), 3-10. Pearson, S. F., Levey, D. J., Greenberg, C. H., & Martínez del Rio, C. (2003). Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia, 135, 516-523. Pereira, D. L. (1995). Construction of a 110-year biochronology from sagittae of freshwater drum (Aplodinotus grunniens). Recent Developments in Fish Otolith Research, 177-196. Peterson, B. J., & Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 18(1), 293-320. Phelan, M., Gribble, N., & Garrett, R. (2008). Fishery biology and management of Protonibea diacanthus (Sciaenidae) aggregations in far Northern Cape York Peninsula waters. Continental Shelf Research, 28(16), 2143-2151. Phillips, D. L., Inger, R., Bearhop, S., Jackson, A. L., Moore, J. W., Parnell, A. C., Semmens, B. X., & Ward, E. J. (2014). Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology, 92(10), 823-835. Pimm, S., & Lawton, J. H. (1978). On feeding on more than one trophic level. Nature, 275(5680), 542-544. Pinnegar, J., & Polunin, N. (1999). Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Functional Ecology, 13(2), 225-231. Popper, A. N., & Fay, R. R. (1993). Sound detection and processing by fish: critical review and major research questions (part 2 of 2). Brain, Behavior and Evolution, 41(1), 26-38. Popper, A. N., & Lu, Z. (2000). Structure–function relationships in fish otolith organs. Fisheries Research, 46(1-3), 15-25. Porter, M., Barton, D. P., Francis, N., & Shamsi, S. (2023). Description of two new species of Diplectanum Diesing, 1858 (Monogenea: Diplectanidae) collected from Protonibea diacanthus (Lacepède, 1802)(Teleostei: Sciaenidae) from waters off northern Australia. International Journal for Parasitology: Parasites and Wildlife, 21, 99-109. Post, D. M. (2002). Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83(3), 703-718. Post, D. M., Pace, M. L., & Hairston Jr, N. G. (2000). Ecosystem size determines food-chain length in lakes. Nature, 405(6790), 1047-1049. Ramana, V., & Rao Manjulatha, C. (2014). Food and feeding habits of Nibea maculata from coastal waters of visakhapatnam. European Academic Research, 2(8), 11065-11075. Ren, H., Sigman, D. M., Meckler, A., Plessen, B., Robinson, R., Rosenthal, Y., & Haug, G. (2009). Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean. Science, 323(5911), 244-248. Ren, H., Sigman, D. M., Thunell, R. C., & Prokopenko, M. G. (2012). Nitrogen isotopic composition of planktonic foraminifera from the modern ocean and recent sediments. Limnology and Oceanography, 57(4), 1011-1024. Rowell, K., Dettman, D. L., & Dietz, R. (2010). Nitrogen isotopes in otoliths reconstruct ancient trophic position. Environmental Biology of Fishes, 89, 415-425. Samelius, G., Alisauskas, R. T., Hobson, K. A., & Larivière, S. (2007). Prolonging the arctic pulse: long‐term exploitation of cached eggs by arctic foxes when lemmings are scarce. Journal of Animal Ecology, 76(5), 873-880. Sinnatamby, R. N., Dempson, J. B., & Power, M. (2008). A comparison of muscle‐and scale‐derived δ13C and δ15N across three life‐history stages of Atlantic salmon, Salmo salar. Rapid Communications in Mass Spectrometry, 22(18), 2773-2778. Sirot, C., Grønkjær, P., Pedersen, J. B., Panfili, J., Zetina-Rejon, M., Tripp-Valdez, A., Ramos-Miranda, J., Flores-Hernandez, D., Sosa-Lopez, A., & Darnaude, A. (2017). Using otolith organic matter to detect diet shifts in Bardiella chrysoura, during a period of environmental changes. Marine Ecology Progress Series, 575, 137-152. Smith, B. N., & Epstein, S. (1970). Biogeochemistry of the stable isotopes of hydrogen and carbon in salt marsh biota. Plant Physiology, 46(5), 738-742. Stephens, R. B., Ouimette, A. P., Hobbie, E. A., & Rowe, R. J. (2022). Reevaluating trophic discrimination factors (Δδ13C and Δδ15N) for diet reconstruction. Ecological Monographs, 92(3), e1525. Takita, T. (1974). Study on the early life history of Nibea albiflora (Richardson) in Ariake sound. Bull. Fac. Fish. Nagasaki Univ., 38, 1-55. Takizawa, Y., Takano, Y., Choi, B., Dharampal, P. S., Steffan, S. A., Ogawa, N. O., Ohkouchi, N., & Chikaraishi, Y. (2020). A new insight into isotopic fractionation associated with decarboxylation in organisms: Implications for amino acid isotope approaches in biogeoscience. Progress in Earth and Planetary Science, 7(1), 1-13. Teletchea, F. (2009). Molecular identification methods of fish species: reassessment and possible applications. Reviews in Fish Biology and Fisheries, 19, 265-293. Tohse, H., Takagi, Y., & Nagasawa, H. (2008). Identification of a novel matrix protein contained in a protein aggregate associated with collagen in fish otoliths. The FEBS Journal, 275(10), 2512-2523. Vander Zanden, M. J., Cabana, G., & Rasmussen, J. B. (1997). Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Canadian Journal of Fisheries and Aquatic Sciences, 54(5), 1142-1158. Vandermyde, J. M., & Whitledge, G. W. (2008). Otolith δ15N distinguishes fish from forested and agricultural streams in southern Illinois. Vane, K., Wallsgrove, N. J., Ekau, W., & Popp, B. N. (2018). Reconstructing lifetime nitrogen baselines and trophic position of Cynoscion acoupa from δ15N values of amino acids in otoliths. Marine Ecology Progress Series, 597, 1-11. Weigele, J., Franz‐Odendaal, T. A., & Hilbig, R. (2016). Not All Inner Ears are the Same: Otolith Matrix Proteins in the Inner Ear of Sub‐Adult Cichlid Fish, Oreochromis Mossambicus, Reveal Insights Into the Biomineralization Process. The Anatomical Record, 299(2), 234-245. Zanden, M. J. V., & Rasmussen, J. B. (2001). Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography, 46(8), 2061-2066. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92304 | - |
dc.description.abstract | 研究海洋生物在食物網中的營養位階可以瞭解物種和個體之間的食性關係以及生態系統中能量的流動。利用分析組織中的有機物穩定同位素值,即δ13C和δ15N值,為評估生物之間營養位階關係和潛在食物鏈關聯的常用且有效方法。然而大多數生物體組織的有機物代謝是非常活躍的,因此只記錄到約周至月的短期飲食訊息,不太可能完整揭示個體的生活史和飲食轉變。在過去的十年中已經開發出一種先進的技術來測定魚類耳石有機物中所記錄的δ13C和δ15N值,方法可以得知個體整個發育過程中的飲食訊息,因為耳石內有機物記錄了生物體終身的同位素信號,並能夠重建個體營養歷史。本研究目的為透過逐層溶解魚種左邊耳石,分析每層耳石所萃取出有機物δ13C和δ15N值,以元素分析儀連結穩定性同位素質譜儀(Elemental Analyzer-Isotope Ratio Mass Spectrometry)進行分析,重建9種石首魚科的營養位階,而石首魚科的耳石尺寸相較於其他物種來的大許多,因此使我們能夠在此物種的多個生命階段中獲得更多飲食訊息。透過逐層溶解耳石,並在逐步溶解耳石的過程中進行三維掃描耳石的型態,以評估每個溶解步驟之間耳石體積和形狀的變化,利用形態學分析,透過比較左耳石每層有機物萃取之同位素訊號與右耳石生長輪,能夠估算耳石中每一層有機物同位素訊號所相對應年齡區間。結果顯示,9種石首魚科於種間及種內皆存在著營養位階差異,本研究所使用之實驗方法強調耳石有機物之穩定同位素分析,能夠更全面了解個體飲食歷史,且具有可以更進一步擴展和應用於生物族群研究之潛力。 | zh_TW |
dc.description.abstract | Studying trophic levels in marine ecosystems is crucial for understanding food web dynamics and it can be achieved by analysing stable carbon and nitrogen isotopes (δ13C and δ15N) in animal tissues. However, isotope analyses on metabolically active tissues only provide short-term dietary information in a captured individual fish. A cutting-edge technique analysing δ13C and δ15N values in otolith organic matter has emerged, allowing the reconstruction of an individual''s trophic history. In this study, we reconstructed the trophic history of nine species of Sciaenidae fishes by sequentially dissolving otolith layer by layer and analysing the δ13C and δ15N values of extracted organic matter in each layer. Moreover, we used 3D scanning to monitor volume and shape changes after each step of otolith dissolution, and based on the morphological analysis, we estimated the corresponding age of every isotope signal by comparing the growth ring width in another paired otolith. The results showed inter- and intraspecific trophic level variations among nine Sciaenidae fish species. This study demonstrates a well-established approach using stable isotope analysis on otolith organic matter that provides a more comprehensive understanding of an individual''s dietary history, with potential applications at the population level. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:31:42Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-03-21T16:31:42Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv 目次 v 圖次 viii 表次 x 壹、前言 1 1.1穩定同位素分析 1 1.2魚類耳石簡介 3 1.3魚類耳石有機物研究 4 1.4研究動機與目的 7 貳、材料與方法 9 2.1樣本採集 9 2.2耳石樣本製備 9 2.3耳石有機物萃取 10 2.4魚種階段性年齡測算 14 2.5肌肉組織樣本製備 15 2.6元素分析儀聯結穩定同位素質譜儀(Elemental Analyzer-IRMS) 15 2.7統計分析 16 參、結果 17 3.1各魚種氮同位素值 17 3.1.1黑姑魚(Atrobucca nibe): 17 3.1.2黃金鰭 (Chrysochir aureas): 17 3.1.3大黃魚(Larimichthys crocea): 18 3.1.4鮸(Miichthys miiuy): 18 3.1.5黃姑魚(Nibea albiflora): 18 3.1.6紅牙 (Otolithes ruber): 19 3.1.7雙棘原黃姑魚(Protonibea diacanthus): 19 3.1.8大頭白姑魚(Pennahia macrocephalus): 20 3.1.9斑鰭白姑魚(Pennahia pawak): 20 3.2各魚種碳同位素值 21 3.2.1黑姑魚(Atrobucca nibe): 21 3.2.2黃金鰭 (Chrysochir aureas): 21 3.2.3大黃魚(Larimichthys crocea): 22 3.2.4鮸(Miichthys miiuy): 22 3.2.5黃姑魚(Nibea albiflora): 22 3.2.6紅牙 (Otolithes ruber): 23 3.2.7雙棘原黃姑魚(Protonibea diacanthus): 23 3.2.8大頭白姑魚(Pennahia macrocephalus): 23 3.2.9斑鰭白姑魚(Pennahia pawak): 24 3.3各物種間耳石核心、耳石最外層及肌肉之碳氮同位素關係 24 3.3.1各物種間耳石核心碳氮同位素分佈關係: 24 3.3.2各物種間耳石最外層碳氮同位素分佈關係: 24 3.3.3各物種間肌肉碳氮同位素分佈關係: 25 3.4各物種耳石溶解層數相對應年齡比較 25 3.4.1黑姑魚(Atrobucca nibe): 25 3.4.2黃金鰭 (Chrysochir aureas): 26 3.4.3鮸(Miichthys miiuy): 26 3.4.4黃姑魚(Nibea albiflora): 26 3.4.5雙棘原黃姑魚(Protonibea diacanthus): 27 3.4.6大頭白姑魚(Pennahia macrocephalus): 27 肆、討論 28 4.1各物種間耳石有機物與肌肉穩定性同位素分布探討 28 4.2各物種內耳石有機物及肌肉穩定性氮、碳同位素探討 31 4.3耳石分層溶解方法與相對應年齡計算方法之探討 36 4.3.1耳石分層溶解方法優缺點探討: 36 4.3.2耳石分層溶解相對應年齡區間計算方法探討: 36 伍、結論 39 陸、參考文獻 40 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用耳石有機物穩定碳氮同位素探討石首魚科個體發育之營養位階 | zh_TW |
dc.title | Age-dependent trophic level recorded in stable carbon and nitrogen isotope values of otolith organic matter in Sciaenidae fishes | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 蕭仁杰 | zh_TW |
dc.contributor.coadvisor | Jen-Chieh Hsiao | en |
dc.contributor.oralexamcommittee | 林千翔 | zh_TW |
dc.contributor.oralexamcommittee | Chien-Hsiang Lin | en |
dc.subject.keyword | 三維掃描,石首魚科,耳石有機物,穩定性碳氮同位素,元素分析儀連結穩定性同位素質譜儀, | zh_TW |
dc.subject.keyword | 3D scanning,Sciaenidae,Otolith,Stable isotope value,Elemental analyzer-IRMS, | en |
dc.relation.page | 80 | - |
dc.identifier.doi | 10.6342/NTU202400636 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-02-17 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
dc.date.embargo-lift | 2027-02-07 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 4.2 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。