Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92279
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳達仁zh_TW
dc.contributor.advisorDar-Zen Chenen
dc.contributor.author洪量zh_TW
dc.contributor.authorLiang Hungen
dc.date.accessioned2024-03-21T16:24:31Z-
dc.date.available2024-03-22-
dc.date.copyright2024-03-21-
dc.date.issued2024-
dc.date.submitted2024-02-05-
dc.identifier.citation[1] T. Dewi, S. Nurmaini, P. Risma, Y. Oktarina and M. Roriz “Inverse kinematic analysis of 4 DOF pick and place arm robot manipulator using fuzzy logic controller,” Int. J. Electr. Comput. Eng, vol. 10, no.2, pp.1376-1386, Apr.2020, doi: 10.11591/ijece.v10i2.pp1376-1386.
[2] M. Stenmark and J. Malec, “Knowledge-based instruction of manipulation tasks for industrial robotics,” Robot. and Comput.-Integr. Manuf., vol. 33, pp.56-67, Jun 2015, doi: 10.1016/j.rcim.2014.07.004.
[3] N. G. Hockstein, J. P. Nolan, B. W. O’Malley and Y. J. Woo, “Robotic microlaryngeal surgery: a technical feasibility study using the daVinci surgical robot and an airway mannequin.” The Laryngoscope, vol. 115, no.5, pp. 780-785, May 2005, doi: 10.1097/01.MLG.0000159202.04941.67
[4] J. Woo, J. T. Seo and B. J. Yi, "A static balancing method for variable payloads by combination of a counterweight and spring and its application as a surgical platform." Appl. Sci. vol. 9, no. 19, Sep. 2019 Art no. 3955 doi: 10.3390/app9193955
[5] K. Anam, A. A. Al-Jumaily, “Active Exoskeleton Control Systems: State of the Art,” Procedia Eng., vol. 41, pp. 988-994, July 2012, doi: 10.1016/j.proeng.2012.07.273
[6] L. Zhou, W. Chen, W. Chen, S. Bai, J. Zhang, J. Wang, "Design of a passive lower limb exoskeleton for walking assistance with gravity compensation," Mecha. Mach. Theory, vol. 150, 103840, Aug. 2020, doi: 10.1016/j.mechmachtheory.2020.103840
[7] KUKA Industrial robot KR 22 R1610-2. Available online: https://www.kuka.com/en-de (accessed on 11 July 2023)
[8] Robotis OpenManipulator-X Available online: https://www.robotis.us/ (accessed on 5 January 2024)
[9] D. Streit and E. Shin, “Equilibrators for Planar Linkages,” ASME J. Mech. Des., vol. 115, no.3, pp. 604-611, Sep, 1993, doi: 10.1115/1.2919233
[10] C. M. Gosselin, “Adaptive robotic mechanical systems: A design paradigm,” ASME J. Mech. Des., vol. 128, no. 1, pp. 192-198, Jan. 2006, doi: 10.1115/1.2120781
[11] V. Van der Wijk, “Design and Analysis of Closed-Chain Principal Vector Linkages for Dynamic Balance with a New Method for Mass Equivalent Modeling,” Mech. Mach. Theory, vol. 107, pp. 283–304. Jan. 2017, Doi: 10.1016/j.mechmachtheory.2016.09.010
[12] P.-Y. Lin, W.-B. Shieh, D.-Z. Chen, “Design of perfectly statically balanced one-DOF planar linkages with revolute joints only,” ASME J. Mech. Des., vol. 131, 051004, May, 2009, doi: 10.1115/1.3087548
[13] C. Baradat, V. Arakelian, S. Briot and S. Guegan, “Design and prototyping of a new balancing mechanism for spatial parallel manipulators,” ASME J. Mech. Des., vol. 130, no. 7, Jul. 2008, Art no. 072305, doi: 10.1115/1.2901057.
[14] C. H. Cho and W. Lee, “Design of a static balancer with equivalent mapping,” Mech. Mach. Theory, vol. 101, pp.36-49, Jul. 2016, doi: 10.1016/j.mechmachtheory.2016.02.017.
[15] Y.-C. Hung and C.-H. Kuo, "A novel one-DoF gravity balancer based on cardan gear mechanism," in New Trends in Mechanism and Machine Science: Theory and Industrial Applications, Springer International Publishing, 2017, pp. 261-268, doi: 10.1007/978-3-319-44156-6_27
[16] V. L. Nguyen, C.-Y. Lin, and C.-H. Kuo, “Gravity compensation design of planar articulated robotic arms using the gear-spring modules,” ASME J. Mech. Des., vol. 12, June, 2020, doi: 10.1115/1.4045650.
[17] K. Koser, “A cam mechanism for gravity-balancing,” Mechanics Res. Commun., vol. 36, Issue 4, pp. 523-530, June 2009, doi: 10.1016/j.mechrescom.2008.12.005
[18] S. R. Deepak and G. Ananthasuresh, "Perfect Static Balance of Linkages by Addition of Springs but Not Auxiliary Bodies," ASME J. Mech. Robot., vol. 4, no. 2, May 2012, Art. no. 021014, doi: 10.1115/1.4006521.
[19] D. Franchetti, G. Boschetti and B. Lenzo, "Passive Gravity Balancing with a Self-Regulating Mechanism for Variable Payload," Machines, vol. 9, no. 8, Jul. 2021, Art no. 145, doi: 10.3390/machines9080145.
[20] V. L. Nguyen, C.-Y. Lin and C.-H. Kuo, "Gravity Compensation Design of Delta Parallel Robots Using Gear-Spring Modules," Mech. Mach. Theory, vol. 154, no. 1, Dec. 2020, Art no. 104046, doi: 10.1016/j.mechmachtheory.2020.104046.
[21] C. Gosselin, "Gravity Compensation, Static Balancing and Dynamic Balancing of Parallel Mechanisms," in Smart Devices and Machines for Advanced Manufacturing, L. Wang and J. Xi, Eds., London, U.K.: Springer-Verlag Limited, 2008, pp. 27-48, doi: 10.1007/978-1-84800-147-3_2
[22] P.-Y. Lin and D.-Z. Chen, “A Stiffness Matrix Approach for the Design of Statically Balanced Planar Articulated Manipulators,” Mech. Mach. Theory, Vol. 45, pp.1877-1891, Dec. 2010, doi: 10.1016/j.mechmachtheory.2010.08.003
[23] P. -Y. Lin, W. -B. Shieh and D. -Z. Chen, "Design of Statically Balanced Planar Articulated Manipulators With Spring Suspension," IEEE Trans. Rob., vol. 28, no. 1, pp. 12-21, Feb. 2012, doi: 10.1109/TRO.2011.2169633.
[24] Y.-Y. Lee, and D.-Z. Chen, “Determination of Spring Installation Configuration on Statically Balanced Planar Articulated Manipulators,” Mech. Mach. Theory, vol. 74, pp. 319–336, Apr. 2014, doi: 10.1016/j.mechmachtheory.2013.12.019.
[25] C. Juang, and D. Chen, "Spring Configurations and Attachment Angles Determination for Statically Balanced Planar Articulated Manipulators." ASME. J. Mech. Rob., vol. 14, 054502, Oct. 2022, doi: 10.1115/1.4053733.
[26] C.-W. Juang, C.-S. Jhuang, and D.-Z. Chen, “Spring efficiency assessment and efficient use of spring methods of statically balanced planar serial manipulators with revolute joints only” Mech. Sci., vol. 13, pp. 817–830, Oct. 2022, doi: 10.5194/ms-13-817-2022.
[27] C.-S. Jhuang, C.-W. Juang, C.-H. Shih, and D.-Z. Chen, "On the Internal Counter-Torque between Springs in Serially Connected Statically Balanced Manipulators," Machines, vol. 11, no. 2, 200, 2023, doi: 10.3390/machines11020200.
[28] Kawasaki RS007N Industrial robot Available online: https://kawasakirobotics.com/ (accessed on 7 Jan. 2024)
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92279-
dc.description.abstract靜平衡對於串聯式機械臂維持其靜態姿態至關重要。當前大多數機械臂使用馬達達成靜態平衡,由於機械臂關節累積了其所有後接桿件的重力影響,此方法需要使用具有高峰值扭矩的馬達。根據先前研究,接地彈簧也可以實現靜態平衡。然而,此方法中必要的高跨接的接地彈簧除了平衡重力扭矩之外,還會產生不匹配重力扭矩的扭矩,需要額外的彈簧來抵消。
為了減少對高跨接彈簧的需求,我們引入馬達平衡需要高跨接彈簧的重力扭矩。配置參數被定義為最高跨接彈簧的限制,該參數確定了馬達扭矩需求,進一步決定了複合式重力平衡的配置。
我們用兩個指標來評估複合式重力平衡的配置的優劣。第一個是與彈簧扭矩不相容的重力扭矩,也就是配置中的所需馬達扭矩;第二個是與重力扭矩不相容的彈簧非重力平衡扭矩。我們將這兩個指標的加權總和定義為不相容扭矩的總和,並尋求具有最小不相容扭矩總和的複合式重力平衡的配置。通過利用與重力扭矩相比較小的補充馬達扭矩,整體彈簧配置可以具有更高比例的重力平衡扭矩,因此複合式重力平衡方法更加有效率。
本文以三自由度的複合式重力平衡串聯型機械臂作為說明範例。與僅使用彈簧相比,複合式重力平衡方法可以將非重力平衡扭矩貢獻降低27.11%。與僅使用馬達相比,能夠將馬達峰值扭矩降低91.01%。
zh_TW
dc.description.abstractStatic balancing is essential for a serial-connected manipulator to maintain its static posture. Most manipulators nowadays use motors for static balancing, necessitating motors with high peak torque as the joint further away from the end link cumulates more gravitational torque contribution from all of its succeeding links.
Previous studies showed that ground-attached high-spanning springs can also achieve static balancing. However, besides gravity-balancing torque, these springs also bring torque contributions that do not match the gravitational torque, requiring extra springs to counter.
To reduce the requirement of high-spanning springs, motor torque is introduced only to balance the gravitational torque that requires high-spanning springs. The arrangement parameter is defined as the boundary for the highest spanning spring which determines the motor torque requirement and further determines the hybrid configuration.
Two indicators are chosen to evaluate the quality of a hybrid configuration. The first is the gravitational torque which is incompatible with the spring torque, i.e., the required motor torque. The second is the spring torque which is incompatible with the gravitational torque, i.e., the non-gravity-balancing torque of the springs.
We define the weighted sum of these two indicators as the sum of incompatible torque and seek the hybrid configuration with a minimum sum of incompatible torque. we can use complementary motor torque and spring configuration with a lower ratio of non-gravity-balancing torque contribution to obtain hybrid gravity balancing which is considered more efficient.
An illustrative example of a 3-DOF manipulator that employs the hybrid balancing technique is presented. It is shown that the hybrid balancing method can decrease the non-gravity-balancing torque contribution by 27.11% compared to using only springs and reduces motor peak torque by 91.01% compared to using only motors.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:24:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-21T16:24:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iv
TABLE OF CONTENTS vi
LIST OF TABLES viii
LIST OF FIGURES ix
LIST OF SYMBOLS x
Chapter 1 Introduction 1
1.1 Gravity compensation for serial connected manipulator 1
1.2 Aim of work 4
Chapter 2 Torque required to maintain static balance at a typical joint 6
2.1 Torque contribution of gravity at a typical joint 6
2.2 Cumulative characteristic of the gravitational torque 9
Chapter 3 Providing the required torque by spring 11
3.1 Torque contribution of a spring at a typical joint u 11
3.2 Ground-attached spring with torque contribution compatible with the gravitational torque 17
Chapter 4 Determination of hybrid gravity-balancing configuration 22
4.1 Balancing gravity by ground-attached springs 22
4.2 Hybrid gravity balancing configuration from a joint perspective 27
4.3 Strategy for selecting hybrid gravity balancing configuration 33
Chapter 5 Illustrative example of hybrid balancing strategy on a 3 DOF serial-connected manipulator 36
5.1 Hybrid balancing strategy apply on a 3 DOF serial-connected manipulator 36
5.2 Performance evaluation of the chosen hybrid configuration 43
Chapter 6 Conclusion 47
References 50
-
dc.language.isoen-
dc.subject複合式重力平衡zh_TW
dc.subject機械手臂zh_TW
dc.subject平面機構zh_TW
dc.subject串聯型機械臂zh_TW
dc.subject靜平衡zh_TW
dc.subjectrobot armen
dc.subjectHybrid gravity balanceen
dc.subjectStatic balanceen
dc.subjectSerial-connected manipulatoren
dc.subjectplaner mechanismen
dc.title由不相容力矩評估建立之具有彈簧與馬達的複合式重力平衡方法zh_TW
dc.titleHybrid gravity-balancing strategy with springs and complementary motors base on incompatible torque assessmenten
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林鎮洲;徐冠倫zh_TW
dc.contributor.oralexamcommitteeChen-Chou Lin;Kuan-Lun Hsuen
dc.subject.keyword複合式重力平衡,靜平衡,串聯型機械臂,平面機構,機械手臂,zh_TW
dc.subject.keywordHybrid gravity balance,Static balance,Serial-connected manipulator,planer mechanism,robot arm,en
dc.relation.page52-
dc.identifier.doi10.6342/NTU202400338-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-02-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2029-01-29-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
2.13 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved