請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92266完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉貴生 | zh_TW |
| dc.contributor.advisor | Guey-Sheng Liou | en |
| dc.contributor.author | 李後霖 | zh_TW |
| dc.contributor.author | Hou-Lin Li | en |
| dc.date.accessioned | 2024-03-21T16:20:40Z | - |
| dc.date.available | 2024-03-22 | - |
| dc.date.copyright | 2024-03-21 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2024-02-15 | - |
| dc.identifier.citation | Reference
(1) Platt, J. R. Electrochromism, a possible change of color producible in dyes by an electric field. The Journal of Chemical Physics 1961, 34 (3), 862-863. (2) Shao, M.; Dong, J.; Lv, X.; Cui, J.; Zhou, C.; Wright, D. S.; Ouyang, M.; Zhang, C. Multicolor electrochromic polymers based on butterfly-shaped monomers for the visualization of energy storage. Electrochimica Acta 2023, 466, 143071. (3) Weil, M.; Schubert, W.-D. The beautiful colours of tungsten oxides. International tungsten Industry Association 2013, 4, 1-12. (4) Deb, S. A novel electrophotographic system. Applied Optics 1969, 8 (101), 192-195. (5) Faughnan, B. W.; Crandall, R. S.; Lampert, M. A. Model for the bleaching of WO3 electrochromic films by an electric field. Applied Physics Letters 1975, 27 (5), 275-277. (6) Schirmer, O.; Wittwer, V.; Baur, G.; Brandt, G. Dependence of WO 3 electrochromic absorption on crystallinity. Journal of the Electrochemical Society 1977, 124 (5), 749. (7) Shay, J.; Beni, G.; Schiavone, L. Electrochromism of anodic iridium oxide films on transparent substrates. Applied Physics Letters 1978, 33 (11), 942-944. (8) Beni, G.; Rice, C.; Shay, J. Electrochromism of anodic iridium oxide films: III. Anion mechanism. Journal of the Electrochemical Society 1980, 127 (6), 1342. (9) Kline, W. M.; Lorenzini, R. G.; Sotzing, G. A. A review of organic electrochromic fabric devices. Coloration Technology 2014, 130 (2), 73-80. (10) Byker, H. J. Electrochromics and polymers. Electrochimica acta 2001, 46 (13-14), 2015-2022. (11) Zuber, K.; Firth, S.; Murphy, P.; Wheaton, V. Active multispectral camouflage panels. In International Conference on Science and Innovation for Land Power, 2018. (12) Zheng, L.; Xu, Y.; Jin, D.; Xie, Y. Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties. Chemistry of Materials 2009, 21 (23), 5681-5690. (13) Girotto, C.; Voroshazi, E.; Cheyns, D.; Heremans, P.; Rand, B. P. Solution-processed MoO3 thin films as a hole-injection layer for organic solar cells. ACS applied materials & interfaces 2011, 3 (9), 3244-3247. (14) Cheng, K.-C.; Chen, F.-R.; Kai, J.-J. V2O5 nanowires as a functional material for electrochromic device. Solar Energy Materials and Solar Cells 2006, 90 (7-8), 1156-1165. (15) Scherer, M. R.; Li, L.; Cunha, P. M.; Scherman, O. A.; Steiner, U. Enhanced electrochromism in gyroid‐structured vanadium pentoxide. Advanced Materials 2012, 24 (9), 1217-1221. (16) Atak, G.; Ghorai, S.; Granqvist, C. G.; Niklasson, G. A.; Pehlivan, İ. B. Cycling durability and potentiostatic rejuvenation of electrochromic tungsten oxide thin films: Effect of silica nanoparticles in LiClO4–Propylene carbonate electrolytes. Solar Energy Materials and Solar Cells 2023, 250, 112070. (17) Zhang, S.; Peng, Y.; Zhao, J.; Fan, Z.; Ding, B.; Lee, J. Y.; Zhang, X.; Xuan, Y. Amorphous and Porous Tungsten Oxide Films for Fast‐Switching Dual‐Band Electrochromic Smart Windows. Advanced Optical Materials 2023, 11 (1), 2202115. (18) Ghicov, A.; Yamamoto, M.; Schmuki, P. Lattice widening in Niobium‐doped TiO2 nanotubes: efficient ion intercalation and swift electrochromic contrast. Angewandte Chemie International Edition 2008, 47 (41), 7934-7937. (19) Mujawar, S.; Inamdar, A.; Betty, C.; Ganesan, V.; Patil, P. Effect of post annealing treatment on electrochromic properties of spray deposited niobium oxide thin films. Electrochimica acta 2007, 52 (15), 4899-4906. (20) Nam, Y. S.; Park, H.; Magyar, A. P.; Yun, D. S.; Pollom, T. S.; Belcher, A. M. Virus-templated iridium oxide–gold hybrid nanowires for electrochromic application. Nanoscale 2012, 4 (11), 3405-3409. (21) Tan, M.-Y.; Chan, K.-Y.; Eldjilali, C. Z.; Abdelhamed, A. H. E.; Thien, G. S. H.; Au, B. W.-C.; Goh, B. T.; Murthy, H. A. Rapid post-annealing effect on the TiO2-based electrochromic films. Optical Materials 2023, 145, 114455. (22) Somani, P. R.; Radhakrishnan, S. Electrochromic materials and devices: present and future. Materials chemistry and physics 2003, 77 (1), 117-133. (23) Li, C.-P.; Engtrakul, C.; Tenent, R. C.; Wolden, C. A. Scalable synthesis of improved nanocrystalline, mesoporous tungsten oxide films with exceptional electrochromic performance. Solar Energy Materials and Solar Cells 2015, 132, 6-14. (24) Morankar, P. J.; Amate, R. U.; Chavan, G. T.; Teli, A. M.; Dalavi, D. S.; Jeon, C.-W. Improved electrochromic performance of potentiostatically electrodeposited nanogranular WO3 thin films. Journal of Alloys and Compounds 2023, 945, 169363. (25) Zhou, Z.; Chen, Z.; Ma, D.; Wang, J. Porous WO3· 2H2O film with large optical modulation and high coloration efficiency for electrochromic smart window. Solar Energy Materials and Solar Cells 2023, 253, 112226. (26) Kandpal, S.; Ghosh, T.; Rani, C.; Bansal, L.; Tanwar, M.; Kumar, R. Tungsten-oxide/polypyrrole film for hybrid solid-state electrochromic smart window. Journal of Applied Physics 2023, 133, 023101. (27) Granqvist, C. G. Handbook of inorganic electrochromic materials; Elsevier, 1995. (28) Beni, G.; Shay, J. Electrochromism of heat‐treated anodic iridium oxide films in acidic, neutral, and alkaline solutions. Applied Physics Letters 1978, 33 (7), 567-568. (29) Gottesfeld, S.; McIntyre, J.; Beni, G.; Shay, J. Electrochromism in anodic iridium oxide films. Applied Physics Letters 1978, 33, 208-210. (30) Yamanaka, K. Y. K. The electrochemical behavior of anodically electrodeposited iridium oxide films and the reliability of transmittance variable cells. Japanese journal of applied physics 1991, 30, 1285. (31) Sato, Y.; Ono, K.; Kobayashi, T.; Wakabayashi, H.; Yamanaka, H. Electrochromism in iridium oxide films prepared by thermal oxidation of iridium‐carbon composite films. Journal of The Electrochemical Society 1987, 134 (3), 570. (32) Takasu, Y.; Onoue, S.; Kameyama, K.; Murakami, Y.; Yahikozawa, K. Preparation of ultrafine RuO2 IrO2 TiO2 oxide particles by a sol—gel process. Electrochimica Acta 1994, 39 (13), 1993-1997. (33) Yamanaka, K. Anodically electrodeposited iridium oxide films (AEIROF) from alkaline solutions for electrochromic display devices. Japanese journal of applied physics 1989, 28, 632. (34) Hackwood, S.; Dayem, A.; Beni, G. Amorphous-nonmetal—to—crystalline-metal transition in electrochromic iridium oxide films. Physical Review B 1982, 26 (2), 471. (35) Neff, V. D. Electrochemical oxidation and reduction of thin films of Prussian blue. Journal of the Electrochemical Society 1978, 125 (6), 886. (36) Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism: fundamentals and applications; John Wiley & Sons, 2008. (37) Mortimer, R. J. Electrochromic materials. Chemical Society Reviews 1997, 26 (3), 147-156. (38) Braun, A.; Tcherniac, J. The products of the action of acet-anhydride on phthalamide. Ber. Dtsch. Chem. Ges 1907, 40 (2), 2709-2714. (39) De Diesbach, H.; Von der Weid, E. Quelques sels complexes des o‐dinitriles avec le cuivre et la pyridine. Helvetica Chimica Acta 1927, 10 (1), 886-888. (40) Dent, C.; Linstead, R.; Lowe, 217. Phthalocyanines. Part VI. The structure of the phthalocyanines. Journal of the Chemical Society (Resumed) 1934, 1033-1039. (41) Robertson, J. M. 136. An X-ray study of the structure of the phthalocyanines. Part I. The metal-free, nickel, copper, and platinum compounds. Journal of the Chemical Society (Resumed) 1935, 615-621. (42) Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism: Fundamentals and Applications 1995, 312-321. (43) Collins, G.; Schiffrin, D. The properties of electrochromic film electrodes of lanthanide diphthalocyanines in ethylene glycol. Journal of The Electrochemical Society 1985, 132 (8), 1835. (44) Bill, N. L.; Trukhina, O.; Sessler, J. L.; Torres, T. Supramolecular electron transfer-based switching involving pyrrolic macrocycles. A new approach to sensor development? Chemical Communications 2015, 51 (37), 7781-7794. (45) Guerrero, D. J.; Ren, X.; Ferraris, J. Preparation and characterization of poly (3-arylthiophene)s. Chemistry of materials 1994, 6 (8), 1437-1443. (46) Scrosati, B. Applications of electroactive polymers; Springer, 1993. (47) Garnier, F.; Tourillon, G.; Gazard, M.; Dubois, J. Organic conducting polymers derived from substituted thiophenes as electrochromic material. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1983, 148 (2), 299-303. (48) Feng, F.; Guo, S.; Ma, D.; Wang, J. An overview of electrochromic devices with electrolytes containing viologens. Solar Energy Materials and Solar Cells 2023, 254, 112270. (49) Yen, H.-J.; Liou, G.-S. Recent advances in triphenylamine-based electrochromic derivatives and polymers. Polymer Chemistry 2018, 9 (22), 3001-3018. (50) Lin, L.-C.; Yen, H.-J.; Kung, Y.-R.; Leu, C.-M.; Lee, T.-M.; Liou, G.-S. Novel near-infrared and multi-colored electrochromic polybenzoxazines with electroactive triarylamine moieties. Journal of Materials Chemistry C 2014, 2 (37), 7796-7803. (51) Zhang, C.; Zhai, M.; Xia, S.; Fu, X.; Hong, T.; Zhang, B.; Liu, H.; Cai, W.; Niu, H.; Wang, W. Boosting electrochromic properties of polyamides through altering the structure bonded to triarylamine groups by xanthene. Solar Energy Materials and Solar Cells 2023, 260, 112497. (52) Liang, Z.; Nakamura, K.; Kobayashi, N. A multicolor electrochromic device having hybrid capacitor architecture with a porous carbon electrode. Solar Energy Materials and Solar Cells 2019, 200, 109914. (53) Cheng, S.-H.; Hsiao, S.-H.; Su, T.-H.; Liou, G.-S. Novel aromatic poly (amine-imide)s bearing a pendent triphenylamine group: synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules 2005, 38 (2), 307-316. (54) Chang, C.-W.; Liou, G.-S. Novel anodic electrochromic aromatic polyamides with multi-stage oxidative coloring based on N, N, N', N'-tetraphenyl-p-phenylenediamine derivatives. Journal of Materials Chemistry 2008, 18 (46), 5638-5646. (55) Nelson, R.; Adams, R. Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation. Journal of the American Chemical Society 1968, 90 (15), 3925-3930. (56) Chang, C.-W.; Chung, C.-H.; Liou, G.-S. Novel anodic polyelectrochromic aromatic polyamides containing pendent dimethyltriphenylamine moieties. Macromolecules 2008, 41 (22), 8441-8451. (57) Chuang, Y.-W.; Yen, H.-J.; Wu, J.-H.; Liou, G.-S. Colorless triphenylamine-based aliphatic thermoset epoxy for multicolored and near-infrared electrochromic applications. ACS Applied Materials & Interfaces 2014, 6 (5), 3594-3599. (58) Wagner‐Jauregg, T. Über addierende Hetero‐polymerisation. Berichte der deutschen chemischen Gesellschaft (A and B Series) 1930, 63 (11), 3213-3224. (59) Ball, L. E.; Pfukwa, R.; Siqueira, R. P.; Mosqueira, V. C.; Klumperman, B. PLA‐b‐SMA as an Amphiphilic Diblock Copolymer for Encapsulation of Lipophilic Cargo. Macromolecular Chemistry and Physics 2023, 224 (1), 2200212. (60) Almehizia, A. A.; Alkahtani, H. M.; Al-Omar, M. A.; Obaidullah, A. J.; Bhat, M. A.; Alrasheed, L. S.; Naglah, A. M.; Younes, A. A.; Alsuhaibani, A. M.; Refat, M. S. Synthesis, Spectroscopic Characterization and Thermal Studies of Polymer-Metal Complexes Derived from Modified Poly Styrene-Alt-(Maleic Anhydride) as a Prospects for Biomedical Applications. Crystals 2023, 13 (5), 728. (61) Luo, Q.; Shao, H.; Chang, J.; Diao, Y.; Zhang, F.; Qin, S. One-step fabrication of robust polyvinyl chloride loose nanofiltration membranes by synthesizing a novel polyether amine grafted styrene-maleic anhydride copolymer. Separation and Purification Technology 2023, 309, 123033. (62) Hasanzadeh, R.; Najafi Moghadam, P.; Samadi, N. Synthesis and application of modified poly (styrene‐alt‐maleic anhydride) networks as a nano chelating resin for uptake of heavy metal ions. Polymers for Advanced Technologies 2013, 24 (1), 34-41. (63) Yang, Y.; Wang, S.; Zhang, J.; He, B.; Li, J.; Qin, S.; Yang, J.; Zhang, J.; Cui, Z. Fabrication of hollow fiber nanofiltration separation layer with highly positively charged surface for heavy metal ion removal. Journal of Membrane Science 2022, 653, 120534. (64) Chang, C.-W.; Liou, G.-S.; Hsiao, S.-H. Highly stable anodic green electrochromic aromatic polyamides: synthesis and electrochromic properties. Journal of Materials Chemistry 2007, 17 (10), 1007-1015. (65) Yen, H.-J.; Liou, G.-S. Solution-processable novel near-infrared electrochromic aromatic polyamides based on electroactive tetraphenyl-p-phenylenediamine moieties. Chemistry of Materials 2009, 21 (17), 4062-4070. (66) Liou, G.-S.; Lin, H.-Y. Synthesis and electrochemical properties of novel aromatic poly (amine−amide)s with anodically highly stable yellow and blue electrochromic behaviors. Macromolecules 2009, 42 (1), 125-134. (67) Lu, H.-C.; Kao, S.-Y.; Yu, H.-F.; Chang, T.-H.; Kung, C.-W.; Ho, K.-C. Achieving low-energy driven viologens-based electrochromic devices utilizing polymeric ionic liquids. ACS Applied Materials & Interfaces 2016, 8 (44), 30351-30361. (68) Jiao, L.; Luo, F.; Du, Z.; Dai, X.; Mu, J.; Wang, H.; Dong, Z.; Qiu, X. Ultra-high Tg and ultra-low CTE polyimide films based on tunable interchain crosslinking. Reactive and Functional Polymers 2022, 181, 105449. (69) Zhuang, Y.; Seong, J. G.; Do, Y. S.; Jo, H. J.; Cui, Z.; Lee, J.; Lee, Y. M.; Guiver, M. D. Intrinsically microporous soluble polyimides incorporating Tröger’s base for membrane gas separation. Macromolecules 2014, 47 (10), 3254-3262. (70) Chodankar, N. R.; Pham, H. D.; Nanjundan, A. K.; Fernando, J. F.; Jayaramulu, K.; Golberg, D.; Han, Y. K.; Dubal, D. P. True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small 2020, 16 (37), 2002806. (71) Lv, X.; Yan, S.; Dai, Y.; Ouyang, M.; Yang, Y.; Yu, P.; Zhang, C. Ion diffusion and electrochromic performance of poly (4, 4', 4 ''-tris [4-(2-bithienyl) phenyl] amine) based on ionic liquid as electrolyte. Electrochimica Acta 2015, 186, 85-94. (72) Chiu, Y. W.; Tan, W. S.; Yang, J. S.; Pai, M. H.; Liou, G. S. Electrochromic Response Capability Enhancement with Pentiptycene‐Incorporated Intrinsic Porous Polyamide Films. Macromolecular Rapid Communications 2020, 41 (12), 2000186. (73) Ngai, K. S.; Ramesh, S.; Ramesh, K.; Juan, J. C. A review of polymer electrolytes: fundamental, approaches and applications. Ionics 2016, 22, 1259-1279. (74) Kim, Y. M.; Choi, W. Y.; Kwon, J. H.; Lee, J. K.; Moon, H. C. Functional ion gels: versatile electrolyte platforms for electrochemical applications. Chemistry of Materials 2021, 33 (8), 2683-2705. (75) Yu, K. S.; Kim, S. Y.; Moon, H. C. High-Voltage Pulse-Assisted Operation of Single-Layer Electrochromic Systems for High Performance and Reliability. ACS Applied Materials & Interfaces 2023, 15 (38), 45315-45321. (76) Liu, H.-S.; Pan, B.-C.; Liou, G.-S. Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale 2017, 9 (7), 2633-2639. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92266 | - |
| dc.description.abstract | 本研究使用簡單的方法來合成熱固性材料,採用的材料是苯乙烯-馬來酐酸酐(SMA)共聚物,其中含有不同的三芳胺基團以調整熱固性材料中鏈與鏈之距離。本研究旨在全面探討這些材料的性質,並且我們還使用了離子交換修飾來研究其在電化學反應過程中對陰離子擴散動力學的影響。本研究採用了商用的SMA與三種芳胺基雙胺單體進行反應,分別為4,4'-二胺基-4''-甲氧基三苯胺(3Ph)、N,N'-雙(4-氨基苯基)-N,N'-雙(4-甲氧基苯基)-1,4-苯二胺(5Ph)和4,4'-雙[4-氨基苯基(4-甲氧基苯基)氨基)]-4''-甲氧基三苯胺(7Ph),形成無色的熱固性聚合物薄膜,具有不同的分子鏈間距。此外,還使用三乙胺(Et3N)在形成聚醯胺酸(PAA)後進行離子交換方法,以改善抗衡離子的遷移。研究發現,增大分子鏈間距和在聚合物基質中進行離子交換導致抗衡離子擴散動力學和電致變色性質的協同增強,包括更快的響應時間,提高的響應速度和更高的著色效率(ηCE),高達540 cm2/C。 | zh_TW |
| dc.description.abstract | A facile approach was employed to produce thermosets of styrene-maleic anhydride copolymers (SMA) containing three kinds of triarylamine moieties to elucidate electrochromic (EC) behaviors comprehensively, and an additional ionization modification was also applied to explore the effect on counter-ion diffusion kinetics during the electrochemical process. The commercially available SMA was chosen as the starting material to coupling with three triarylamine-based diamine monomers, 4,4'-diamino-4''-methoxytriphenylamine (3Ph), N,N'-bis(4-aminophenyl)-N,N'-di(4-methoxylphenyl)-1,4-phenylenediamine (5Ph), and 4,4'-bis[4-aminophenyl(4-methoxyphenyl)amino)]-4''-methoxytriphenylamine (7Ph), respectively, resulting in colorless and transparent thermoset polymer films with different interchain distance. Furthermore, the precursors of these polyamic acids (PAAs) could be reacted with triethylamine (Et3N) to form the related triethylammonium-containing PAA complexes, which could facilitate the migration of counter-ion during redox procedures. After evaluating the electrochemical and EC behaviors, we demonstrate that the merge of enlarging interchain distance and ionization modifications in the triarylamine-coupling SMA copolymer matrixes leads to synergistic effects in the diffusion dynamics of the electrolyte counter-ion and could effectively enhance higher diffusion rates (D) of the counter-ion in the polymer matrix with more than 2,400 times larger (iS5Ph: 96.73 cm2 s-110-18) than the triphenylamine-based linear type polyimide, L3Ph (0.04 cm2 s-110-18), and the prepared electrochromic device (ECD) properties revealed faster coloration response speed (υc) 43.7 % s-1 and outstanding coloration efficiency (ηCE) up to 540 cm2/C. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:20:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-21T16:20:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | CHAPTER 1 ................. 1
1.1 High-Performance Polymers........... 2 1.2 Electrochromism ................. 4 1.3 Styrene-Maleic Anhydride Copolymers (SMA) .............. 29 1.4 Research Motivation ................................ 30 CHAPTER 2 .................................... 32 2.1 Materials......................... 33 2.2 Fabrication of the gel-type Electrochromic Devices (ECDs) ... 37 2.3 Measurements ............................... 38 CHAPTER 3 ............................... 40 3.1 Characterization and Basic Properties of the Triarylaminecontaining SMA Polymers ............ 41 3.2 Electrochemical Properties of the Polymer Films ................ 51 3.3 Electrochromic Properties of the Polymer Films ..... 61 3.4 Electrochromic Properties of ECDs ...... 72 CHAPTER 4 ............ 85 Reference ................. 88 | - |
| dc.language.iso | en | - |
| dc.subject | 三芳基胺 | zh_TW |
| dc.subject | 苯乙烯-馬來酸酐 | zh_TW |
| dc.subject | 離子化 | zh_TW |
| dc.subject | 交聯 | zh_TW |
| dc.subject | 電致變色 | zh_TW |
| dc.subject | polystyrene-maleic anhydride | en |
| dc.subject | ionization | en |
| dc.subject | crosslink | en |
| dc.subject | electrochromism | en |
| dc.subject | triarylamine | en |
| dc.title | 設計與合成基於芳香胺的苯乙烯-馬來酸酐(SMA)共聚物用於電致變色裝置應用 | zh_TW |
| dc.title | Design and Synthesis of Arylamine-based Styrene- Maleic Anhydride (SMA) Copolymers for Electrochromic Device Application | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蕭勝輝;龔宇睿;張嘉文 | zh_TW |
| dc.contributor.oralexamcommittee | Sheng-Huei Hsiao;Yu-Ruei Kung;Cha-Wen Chang | en |
| dc.subject.keyword | 苯乙烯-馬來酸酐,三芳基胺,電致變色,交聯,離子化, | zh_TW |
| dc.subject.keyword | polystyrene-maleic anhydride,triarylamine,electrochromism,crosslink,ionization, | en |
| dc.relation.page | 95 | - |
| dc.identifier.doi | 10.6342/NTU202400453 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-02-16 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| dc.date.embargo-lift | 2029-02-01 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 2.77 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
