請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92245完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐昱辰 | zh_TW |
| dc.contributor.advisor | Yu-Chen Ou | en |
| dc.contributor.author | 張穩二 | zh_TW |
| dc.contributor.author | Dwi Prasetya | en |
| dc.date.accessioned | 2024-03-21T16:14:27Z | - |
| dc.date.available | 2024-03-22 | - |
| dc.date.copyright | 2024-03-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-01 | - |
| dc.identifier.citation | 1. ACI Committee 363, Report on High-Strength Concrete. ACI 363R-10. 2010, Farmington Hills, MI: American Concrete Institute.
2. NEHRP Consultants Joint Venture, Use of high-strength reinforcement inearthquake-resistant concrete structures. 2014: US Department of Commerce,National Institute of Standards and Technology. 3. Zia, P., M.L. Leming, and S.H.A. Ahmad, High performance concretes: a stateof-the-art report. 1991, Strategic Highway Research Program, National ResearchCouncil: Washington, D.C. 4. Russell, H.G., ACI defines high-performance concrete. Concrete international,1999. 21(2): p. 56-57. 5. ACI Committee 237, Self-Consolidating Concrete. ACI 237R-07. 2007,Farmington Hills, MI: American Concrete Institute. 6. Hassan, A.A.A., K.M.A. Hossain, and M. Lachemi, Strength, cracking anddeflection performance of large-scale self-consolidating concrete beamssubjected to shear failure. Engineering Structures, 2010. 32: p. 1262-1271. 7. Lin, C.H. and J.H. Chen, Shear behavior of self-consolidating concrete beams.ACI Structural Journal, 2012. 109(3): p. 307-315. 8. Hassan, A.A.A., M.K. Ismail, and J. Mayo, Shear behavior of SCC beams withdifferent coarse-to-fine aggregate ratios and coarse aggregate types. Journal ofMaterials in Civil Engineering, 2015. 27(11): p. 04015022. 9. Choulli, Y., A.R. Marí, and A. Cladera, Shear behaviour of full-scale prestressedi-beams made with self compacting concrete. Materials and Structures, 2008. 41:p. 131-141. 10. Baali, L., Self-consolidating concrete for precast, prestressed concrete bridgeelements, in Department of Civil Engineering and Applied Mechanics. 2009,McGill University: Montreal, Quebec, Canada. 11. Khayat, K.H. and D. Mitchell, Self-consolidating concrete for precast, prestressedconcrete bridge elements, in NCHRP Report 628. 2009, Transportation ResearchBoard: Washington, D.C. 12. Taiwan New RC Guidelines, Design Guidelines for Building of High-Strength Reinforced Concrete Structures (Draft) (NCREE-19-001). 2019, National Centerfor Research on Earthquake Engineering, Taiwan. 13. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI318-19) and Commentary (ACI 318R-19). 2019, American Concrete Institute:Farmington Hills, MI. 14. AASHTO (American Association of State Highway and Transportation Officials),AASHTO LRFD, Bridge design specifications. 2020, AASHTO: Washington, DC. 15. ACI 439.6R-19, Guide for the use of ASTM A1035 Type CS Grade 100 (690) SteelBars for Structural Concrete. 2019, American Concrete Institute: FarmingtonHills, MI. 16. Shahrooz, B.M., Design of concrete structures using high-strength steelreinforcement. Vol. 679. 2011: Transportation Research Board. 17. Shahrooz, B.M., et al., Basis of AASHTO specifications for high-strength shearreinforcement. Journal of Bridge Engineering, 2017. 22(11): p. 04017090. 18. Saputra, M.D., Shear and Flexural Strengths of Prestressed High-PerformanceConcrete Bridge Girders. 2015, National Taiwan University of Science andTechnology. 19. 張艮瑋, 預力高性能混凝土梁撓曲與剪力行為. 2015, National TaiwanUniversity of Science and Technology. 20. Ou, Y.-C., et al., Effect of concrete mixture on shear behavior of prestressedconcrete girders. Engineering Structures, 2023. 282: p. 115804. 21. Ou, Y.-C.P., Dwi; Wu, Jhen-Wei, Shear behavior of prestressed concrete girderswith high strength transverse reinforcement. Chinese Society of StructuralEngineering, 2023. 22. Lin, C.H., S.T. Chen, and W.C. Lin, Shear behaviour of prestressed beams withhigh-workability concrete. Magazine of concrete research, 2012. 64(5): p. 419-432. 23. Griffin, A.M., Shear behavior of high strength self-consolidating concrete in NUbridge girders. 2014. 24. Griffin, A. and J.J. Myers, Shear behavior of high-strength self-consolidatingconcrete in Nebraska University bridge girders. 2016. 25. Lyngberg, B.S. Ultimate shear resistance of partially prestressed reinforcedconcrete I-beams. in Journal Proceedings. 1976. 26. AASHTO, AASHTO LRFD, Bridge design specifications. 8th ed. 2017: AmericanAssociation of State Highway and Transportation Officials. 27. Lee, J.-Y., H.-S. Lim, and C. Kim, Structural behaviour of prestressed concretebeams with high-strength stirrups. European Journal of Environmental and CivilEngineering, 2020: p. 1-16. 28. Laskar, A., T.T. Hsu, and Y. Mo, Shear Strengths of Prestressed Concrete BeamsPart 1: Experiments and Shear Design Equations. ACI Structural Journal, 2010.107(3). 29. Witchukreangkrai, E., et al., Evaluation of shear crack width in partiallyprestressed concrete members. Proceedings of JCI, 2006. 28(2): p. 823-828. 30. De Silva, S., H. Mutsuyoshi, and E. Witchukreangkrai, Evaluation of shear crackwidth in I-shaped prestressed reinforced concrete beams. Journal of AdvancedConcrete Technology, 2008. 6(3): p. 443-458. 31. ASTM A416/A416M, Standard specification for steel strand, uncoated sevenwirefor prestressed concrete. 2018, West Conshohocken, PA: American Societyfor Testing and Materials. 32. Walraven, J., B. Belletti, and R. Esposito, Shear capacity of normal, lightweight,and high-strength concrete beams according to Model Code 2010. I:Experimental results versus analytical model results. Journal of structuralengineering, 2013. 139(9): p. 1593-1599. 33. Xuan, X.Y., Effectiveness of welded wire fabric as shear reinforcement inpretensioned prestressed concrete T-beams. 1986, University of Manitoba: Winnipeg, Manitoba. 34. Xuan, X., S. Rizkalla, and K. Maruyama, Effectiveness of Welded Wire Fabric asShear Reinforcement in Pretensioned Prestressed Concrete T-Beams. ACIStructural Journal, 1988. 85: p. 429-436. 35. Hartman, D.L., J.E. Breen, and M.E. Kreger, Shear capacity of high strengthprestressed concrete girders. 1988, The University of Texas at Austin: Austin,Texas. 36. Cumming, D.A., C.E. French, and C.K. Shield, Shear capacity of high-strengthconcrete prestressed girders. 1998, University of Minnesota: Minneapolis. 37. Bruce, B., H. Russell, and J. Roller, Fatigue and shear behavior of HPC bulb-teegirders: interim report. 2003, Tulane University: New Orleans. 38. Bruce, B., H. Russell, and J. Roller, Fatigue and shear behavior of HPC bulb-teegirders. 2005, Tulane University.: New Orleans. 39. Oh, B.H. and K.S. Kim, Shear behavior of full-scale post-tensioned prestressedconcrete bridge girders. ACI Structural Journal, 2004. 101(2): p. 176-182. 40. Labonte, T., Construction and Testing of Type II AASHTO Girders Using Self-Consolidating Concrete. 2004, University of Florida. 41. Hamilton III, H.R., T. Labonte, and M.H. Ansley, Behavior of pretensioned TypeII AASHTO girders constructed with self-consolidating concrete. SpecialPublication, 2005b. 231: p. 253-270. 42. Hamilton III, H.R., T. Labonte, and M. Ansley, Self-consolidating concrete (SCC)structural investigation. 2005a, University of Florida: Gainesville, FL. 43. Haines, R.A., Shear testing of prestressed high performance concrete bridgegirders. 2005, Georgia Institute of Technology. 44. Naito, C., et al., Comparative Performance of High Early Strength and SelfConsolidating Concrete for Use in Precast Bridge Beam Construction. 2005,Advanced Technology for Large Structural Systems. 45. Naito, C.J., G. Parent, and G. Brunn, Performance of bulb-tee girders made withself-consolidating concrete. PCI journal, 2006. 51(6): p. 72-85. 46. Avendaño, A. and O. Bayrak, Shear strength and behavior of prestressed concretebeams, in Technical Rep. IAC-88-5DD1A003-3, Center for TransportationResearch, . 2008, Univ. of Texas: Austin, TX. 47. Heckmann, C. and O. Bayrak, Effects of increasing the allowable compressivestress at release on the shear strength of prestressed concrete girders. 2008, TheUniversity of Texas at Austin: Austin, TX. 48. Myers, J.J. and J.E. Brewe, High-strength self-consolidating concrete girderssubjected to elevated compressive fiber stresses. 2009, Missouri University ofScience and Technology: Rolla, MO. 49. Saqan, E.I. and R.J. Frosch, Influence of flexural reinforcement on shear strengthof prestressed concrete beams. ACI Structural Journal, 2009. 106(1): p. 60. 50. Lee, S.C., J.Y. Cho, and B.H. Oh, Shear Behavior of Large-Scale Post-Tensioned Girders with Small Shear Span-Depth Ratio. ACI Structural Journal, 2010.107(2): p. 137-145. 51. Li, A.Y., Effect of Coarse Aggregate Content on Shear Behavior of Prestressed Concrete Beams. 2012, National Chung Hsing University. 52. Cuenca, E. and P. Serna, Shear behavior of prestressed precast beams made ofself-compacting fiber reinforced concrete. Construction and Building Materials,2013. 45: p. 145-156. 53. Shen, J., et al., Experimental investigation on the shear performance of prestressed self-compacting concrete beams without stirrups. Materials andStructures, 2015. 48: p. 1291-1302. 54. De Wilder, K., et al., Experimental investigation on the shear capacity of prestressed concrete beams using digital image correlation. EngineeringStructures, 2015. 82: p. 82-92. 55. Garber, D., et al., Nontraditional shear failures in bulb-t prestressed concretebridge girders. Journal of Bridge Engineering, 2016. 21(7): p. 04016030. 56. Griffin, A.M., Shear behavior of high strength self-consolidating concrete in NUbridge girders. 2014, Missouri University of Science And Technology. 57. Griffin, A. and J.J. Myers, Shear behavior of high-strength self-consolidatingconcrete in Nebraska University bridge girders. PCI Journal, 2016(3): p. 31-46. 58. Villamizar, S., J.A. Ramirez, and G. Aguilar, Shear Strength and Behavior ofHigh-Strength Concrete Prestressed Beams. ACI Structural Journal, 2017. 114(1). 59. Moore, A.M., et al., Shear Behavior of Post-Tensioned Girders. ACI Structural Journal, 2017. 114(6): p. 1615-1625. 60. Ou, Y.-C. and N.V.B. Nguyen, Stress Limit for Shear Reinforcement of High-Strength Columns. ACI Structural Journal, 2022. 119(1). 61. Lee, J.-Y., et al., Shear and torsional design of reinforced concrete members with high-strength reinforcement. Journal of Structural Engineering, 2021. 147(2): p.04020327. 62. Muttoni, A., O. Burdet, and E. Hars, Effect of duct type on the shear strength ofthin webs. ACI Structural Journal, 2006. 63. CEB-FIP, FIB model code for concrete structures. 2010. 64. Normalisation, C.E.d., EN 1992-1-1: 2004: Eurocode 2: design of concrete structures-Part 1-1: general rules and rules for buildings. 2004, CEN Brussels. 65. Zakaria, M., T. Ueda, and Z. Wu, Evaluating and Proposing Prediction Models ofShear Crack Width in Concrete Beams. Journal of Japan Society of CivilEngineers, Ser. E2 (Materials and Concrete Structures), 2011. 67(2): p. 245-263. 66. Chiu, C.-K., K.-N. Chi, and F.-C. Lin, Experimental Investigation on the ShearCrack Development of Shear-Critical High-Strength Reinforced Concrete Beams.Journal of Advanced Concrete Technology, 2014. 12(7): p. 223-238. 67. De Silva, S., et al., Shear cracking behavior of ultra-high-strength prestressedreinforced concrete beams. コンクリート工学年次論文集, 2008. 30(3): p. 823-828. 68. Hawkins, N.M., Simplified shear design of structural concrete members. Vol. 549.2005: Transportation Research Board. 69. ACI 224, Control of Cracking in Concrete Structures-ACI 224R-01. 2001,American Concrete Institute. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92245 | - |
| dc.description.abstract | 本研究透過一系列 12 項實驗測試結果,對預力混凝土 (PC) 工字樑的剪切行為進行了全面研究。 前六次試驗結果主要關注混凝土混合物對PC 梁剪切性能的影響。 研究的三種類型的混凝土配合比設計是高性能混凝土(HPC)和自密實混凝土(SCC),以及作為對照樣本的傳統混凝土(CC)。 使用指定的兩個混凝土抗壓強度等級:fc MPa 為普通強度,fc MPa 為高強度。 測試結果表明,無論混凝土強
度如何,HPC 和 CC 樑都表現出相似的剪切行為。 由於 SCC-N 混合物的填充能力更好,SCC-N 比 CC-N 顯示出更高的 ult n V V 比和更高的極限位移。 SCC-H 樑的 ult n V V 低於 CC-H 梁,可能是由於 SCC-H 的粗骨材量比 CC-H 梁低 19%。 此外,也建立了PC 梁剪切試驗資料庫,進一步研究粗骨材用量對梁抗剪強度的影響。 經分析,粗骨材用量對Vu 的影響具有統計顯著性,粗骨材用量每減少100kg/m3, ult n V V 平均下降18.5%。最後六個 PC I 梁使用兩種類型的鋼筋作為抗剪鋼筋建造:高強度鋼 (SD790) 和普通強度鋼 (SD420W)。 試驗結果表明,直接用高強度鋼取代鋼筋可提高PC 樑的抗剪承載力。 指定屈服強度 790 MPa 的等效剪切強度替換顯示極限剪切強度下降;因此,不建議在剪切設計計算中使用fy =790 MPa。 此外,以假定屈服強度 fy = 600 MPa 進行等效剪切強度替換可得到與普通強度抗剪鋼筋 (fy = 420 MPa) 類似的極限剪切強度。 此外,根據ACI 318-19 和AASHTO LRFD 2020 對實驗結果進行了評估。研究結果表明,ACI 中的屈服強度限制可以提高至600 MPa,同時保持 合理的保守水平。 然而,AASHTO 使用 690 MPa 作為屈服強度極限仍然具有高度保守性。 此外,仔細測量並評估了實驗過程中腹板剪切裂縫寬度的發展。 提出了一種預測模型,透過考慮抗剪鋼筋中的應變發展來估計傾斜剪切裂縫寬度。 此外,所提出的傾斜剪切裂縫寬度估計建議包含在設計過程中以控制剪切裂縫。 這項研究獲得的結果對增強現有的 PC 梁設計規範做出了重大貢獻。 | zh_TW |
| dc.description.abstract | This research presents a comprehensive investigation into the shear behavior ofprestressed concrete (PC) I-girder through a series of 12 experimental test results. Thefirst six test results were focused on the influence of concrete mixture on the shear
behavior of PC girder. Three types of concrete mix design investigated are highperformanceconcrete (HPC) and self-consolidating concrete (SCC), along withconventional concrete (CC) as a control specimen. Two grades of concrete compressivestrength specified were used: 41.4 c f MPa as normal-strength and 68.9 c f MPa as high-strength. Test results showed that the HPC and CC girders exhibited a similar shear behavior regardless of the concrete strength. SCC-N showed a higher ult n V V ratio and a higher ultimate displacement than CC-N due to the better filling ability of the SCC-N mixture. The SCC-H girder showed a lower ult n V V than the CC-H girder, which may beattributed to the SCC-H having a 19% lower coarse aggregate amount than the CC-Hgirder. Furthermore, a shear test database of PC girders was established to investigate further the effect of coarse aggregate amount on the girder shear strength. Based on the analysis, the coarse aggregate amount is statistically significant affecting the ult n V Vwhich decreasing on average by 18.5% for 100 kg/m3 reduction of coarse aggregate amount. The last six PC I-girders were constructed using two types of rebar as shearreinforcement: high-strength steel (SD790) and normal-strength steel (SD420W). The testresults indicate that a direct rebar replacement with high-strength steel increases the shearcapacity of the PC girder. The equivalent shear strength replacement with specified yield strength 790 MPa shows a decrease in ultimate shear strength; thus, the use of y f = 790 MPa in shear design calculation is not recommended. In addition, the equivalent shear strength replacement with an assumed yield strength of y f = 600 MPa gives a similar ultimate shear strength as normal-strength shear reinforcement ( y f = 420 MPa). Furthermore, the experimental results were evaluated based on ACI 318-19 and AASHTO LRFD 2020. The findings show that the yield strength limitation in ACI can be increased up to 600 MPa while maintaining a reasonable level of conservatism. However, using 690 MPa as the yield strength limit in AASHTO still provides a high degree of conservatism. Furthermore, web-shear crack width development during experiments was measured carefully and evaluated. A prediction model is proposed to estimate inclined shear crackwidth by considering strain development in shear reinforcement. Moreover, the proposed inclined shear crack width estimation suggests to be included in the design process to control the shear crack. The findings obtained through this study have significantly contributed to enhancing the existing design codes for PC girders. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:14:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-21T16:14:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | ACKNOWLEDGMENT ii
ABSTRACT iii ABSTRACT iv TABLE OF CONTENT vi LIST OF FIGURES ix LIST OF TABLES xiv Chapter 1. Introduction 1 1.1 Background 1 1.2 Research significance 3 Chapter 2. Literature review 4 2.1 Previous studies on the shear behavior of prestressed concrete beams in difference concrete mix design 4 2.1.1 Choulli et. al. (2008) [9] 4 2.1.2 Baali (2009) [10], Khayat and Mitchell (2009) [11] 6 2.1.3 Lin et. al. (2012) [22] 8 2.1.4 Griffin & Myers (2014, 2016) [23, 24] 9 2.2 Previous studies on the shear behavior of prestressed concrete beams using high-strength steel transverse reinforcement 12 2.2.1 Bent S. Lyngberg (1976) [25] 12 2.2.2 Shahrooz et. al. [16, 17]14 2.2.3 Lee et al. (2020) [27] 17 2.3 Shear strength equation of prestressed concrete 19 2.3.1 ACI 318-19 [13] 19 2.3.2 AASHTO 2017 [14] 22 2.3.3 University of Huston (Laskar et. al., 2010) [28] ........................................ 25 2.4 Shear crack width equation of prestressed concrete ............................................ 27 2.4.1 Witchukreangkrai et. al. (2006) [29] .......................................................... 27 2.4.2 De Silva et. al. (2008) [30] ......................................................................... 28 Chapter 3. Effect of concrete mixture on shear behavior of prestressed concrete girders .. 31 3.1 Specimen Design ................................................................................................. 31 3.2 Test Setup and Instrumentation............................................................................ 35 3.3 Test Results .......................................................................................................... 36 3.4 Shear Strength ...................................................................................................... 42 3.5 Shear Database and Discussion ........................................................................... 45 Chapter 4. Shear strength and serviceability of prestressed girders with high-strength shear reinforcement ......... 51 4.1 Design of girder ................................................................................................... 51 4.2 Fabrication of girder ............................................................................................ 54 4.3 Materials .............................................................................................................. 56 4.4 Test setup ............................................................................................................. 59 4.5 General behavior .................................................................................................. 62 4.5.1 PCH-A ........................................................................................................ 63 4.5.2 PCH-B ........................................................................................................ 66 4.5.3 PCM-A ........................................................................................................ 69 4.5.4 PCM-B ........................................................................................................ 72 4.5.5 PCL-A ......................................................................................................... 74 4.5.6 PCL-B ......................................................................................................... 77 4.6 Result comparison ............................................................................................... 80 4.7 Initial web-shear crack ......................................................................................... 85 4.8 Shear strength evaluation ..................................................................................... 89 4.9 Evaluation of yield strength limitation ................................................................ 91 4.10 Crack width measurement result ......................................................................... 93 4.11 Strain estimation of shear reinforcement ............................................................. 95 4.12 Crack width prediction ........................................................................................ 98 4.13 Shear design with limited shear crack width ..................................................... 102 Chapter 5. Conclusion .................................................................................................. 104 5.1 The conclusion from the effect of concrete mixture on the shear behavior of prestressed concrete girders .................. 104 5.2 Conclusion from shear strength and serviceability of prestressed girders with high-strength shear reinforcement. .................................................................... 106 5.3 Future Work ....................................................................................................... 108 Reference .................................................................................................................... 109 Appendix .................................................................................................................... 113 Cylinder Concrete Compression Test ....................................................................... 113 Reinforcement Tensile Test ....................................................................................... 122 Crack Pattern during testing ...................................................................................... 125 Contribution of transverse reinforcement at ultimate shear strength ........................ 172 | - |
| dc.language.iso | en | - |
| dc.subject | 預力混凝土 | zh_TW |
| dc.subject | 梁 | zh_TW |
| dc.subject | 抗剪強度 | zh_TW |
| dc.subject | 粗骨材用量 | zh_TW |
| dc.subject | 高性能混凝土 | zh_TW |
| dc.subject | 自密實混凝 土 | zh_TW |
| dc.subject | 橋樑結構 | zh_TW |
| dc.subject | 高強度鋼筋 | zh_TW |
| dc.subject | 裂縫寬度 | zh_TW |
| dc.subject | 使用性能 | zh_TW |
| dc.subject | girder | en |
| dc.subject | serviceability | en |
| dc.subject | crack width | en |
| dc.subject | high-strength steel reinforcement | en |
| dc.subject | bridge structure | en |
| dc.subject | self-consolidating concrete | en |
| dc.subject | highperformance concrete | en |
| dc.subject | coarse aggregate amount | en |
| dc.subject | prestressed concrete | en |
| dc.subject | shear strength | en |
| dc.title | 預力混凝土樑的剪力性能採用高強度材料 | zh_TW |
| dc.title | Shear Behavior of Prestressed Concrete Girder With High-Strength Materials | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 廖文正;宋欣泰;李翼安;劉光晏 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Cheng Liao;Shin-Tai Song;Yi-An Li;Kuang-Yen Liu | en |
| dc.subject.keyword | 預力混凝土,梁,抗剪強度,粗骨材用量,高性能混凝土,自密實混凝 土,橋樑結構,高強度鋼筋,裂縫寬度,使用性能, | zh_TW |
| dc.subject.keyword | prestressed concrete,girder,shear strength,coarse aggregate amount,highperformance concrete,self-consolidating concrete,bridge structure,high-strength steel reinforcement,crack width,serviceability, | en |
| dc.relation.page | 182 | - |
| dc.identifier.doi | 10.6342/NTU202400293 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-02-04 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2029-01-26 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 33.15 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
