Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92224
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳丕燊zh_TW
dc.contributor.advisorPisin Chenen
dc.contributor.author黃建中zh_TW
dc.contributor.authorJian-Jung Huangen
dc.date.accessioned2024-03-17T16:14:03Z-
dc.date.available2024-03-18-
dc.date.copyright2024-03-16-
dc.date.issued2024-
dc.date.submitted2024-02-20-
dc.identifier.citation[1] J. Blumer, R. Engel, J. R. H ¨ orandel, Cosmic rays from the ¨ knee to the highest energies, Progress in Particle and Nuclear Physics 63 (2009) 293 – 338.
[2] V. Hess, Phys. Zeitschr. 13 (1912) 1084.
[3] T. Wulf, Phys. Zeitschr. 10 (1909) 997.
[4] W. Kolh¨orster, Phys. Zeitschr. 26 (1925) 654.
[5] W. Bothe and W. Kolh¨orster, Zeitschr. f. Phys. 56 (1929) 751.
[6] J. Clay, Amsterdam Proc. 33 (1930) 711.
[7] J. Linsley, Phys. Rev. Lett. 10 (1963) 146–148.
[8] The Pierre Auger Collaboration, “The Pierre Auger Cosmic Ray Observatory”, Nuclear Instruments and Methods in Physics Research A, 798 (2015) 172-213.
[9] Tokuno, H.qpslcm@ikd et al. (21 February 2012). "New air fluorescence detectors employed in the Telescope Array experiment". Nuclear Instruments and Methods in Physics Research A. 676: 54–65.
[10] Blasi, P. (2013). "The origin of galactic cosmic rays." The Astronomy and Astrophysics Review, 21, 70. https://doi.org/10.1007/s00159-013-0070-7
[11] Kotera, K., & Olinto, A. V. (2011). "The Astrophysics of Ultrahigh-Energy Cosmic Rays." Annual Review of Astronomy and Astrophysics, 49, 119-153. https://doi.org/10.1146/annurev-astro-081710-102620
[12] Gaisser, T. K., Engel, R., & Resconi, E. (2016). "Cosmic Rays and Particle Physics." Cambridge University Press.110
[13] Aguilar, M., et al. (2013). "First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV." Physical Review Letters, 110(14), 141102. https://doi.org/10.1103/PhysRevLett.110.141102
[14] Binns, W. R., et al. (2016). "Observation of the 60Fe nucleosynthesis-clock isotope in galactic cosmic rays." Science, 352(6286), 677-680. https://doi.org/10.1126/science.aad6004
[15] Baltrusaitis, R. M., Cady, R., Cassiday, G. L., et al. 1985, Nucl. Instr. Meth. A, 240, 410
[16] Baltrusaitis, R. M., et al. (1985). "The Utah Fly''s Eye Detector." Nuclear Instruments and Methods in Physics Research Section A, 240(1), 410-428. https://doi.org/10.1016/0168-9002(85)90653-9
[17] Schroder, Frank G.. “Radio detection of Extensive Air Showers (ECRS 2016).” (2017).
[18] Grieder, P.K.F. (2001). "Cosmic Rays at Earth: Researcher''s Reference Manual and Data Book. "Elsevier. ISBN: 9780444507105.
[19] L.A. Anchordoqui, “Ultra-high-energy cosmic rays”, Physics Reports 801 (2019) 1.
[20] Blümer, J., Engel, R., & Hörandel, J. R. (2009). Cosmic Rays from the Knee to the Highest Energies. Progress in Particle and Nuclear Physics, 63(2), 293-338. 111 https://doi.org/10.1016/j.ppnp.2009.05.002
[21] G.T. Zatsepin and V.A. Kuz’min, “Upper Limit of the Spectrum of Cosmic Rays”, Soviet Journal of Experimental and Theoretical Physics Letters 4 (1966) 78
[22] K. Greisen, “End to the Cosmic-Ray Spectrum?”, Phys. Rev. Lett. 16 (1966) 748.
[23] Kotera, K., & Olinto, A. V. (2011). "The Astrophysics of Ultrahigh Energy Cosmic Rays." Annual Review of Astronomy and Astrophysics, 49, 119-153. https://doi.org/10.1146/annurev-astro-081710-102620
[24] Letessier-Selvon, A., & Stanev, T. (2011). "Ultrahigh Energy Cosmic Rays." Reviews of Modern Physics, 83, 907-942. https://doi.org/10.1103/RevModPhys.83.907
[25] C. Anderson, Phys. Rev. 43 (1933) 491.
[26] S. Neddermeyer and C. Anderson, Phys. Rev. 51 (1937) 884.
[27] C. Lattes et al., Nature 160 (1947) 453.
[28] T. K. Gaisser and F. Halzen, Phys. Rev. D14 (1976) 3153.
[29] C. M. G. Lattes, Y. Fujimoto, and S. Hasegawa, Phys. Rept. 65 (1980) 151.
[30] S. Lafebre, R. Engel, H. Falcke, J. Hörandel, T. Huege, J. Kuijpers, R. Ulrich, Universality of electron-positron distributions in EAS, Astropart.Phys.31:243-254, 2009
[31] Falcke, H. et al. 2005, Nature, 435, 313
[32] Nishimura, J. 1965, Handbuch der Physik, 46/2, 1
[33] Ralph Engel, Dieter Heck, and Tanguy Pierog, Ann. Rev. Nucl. Part. Sci., 61, 467–489 (2011).
[34] Hillas, A. M. 1982, Journal of Physics G Nuclear Physics, 8, 1461
[35] Giller, M., Kacperczyk, A., Malinowski, J., Tkaczyk, W., & Wieczorek, G. 2005, J. Phys. G, 31, 947
[36] Giller, M., Stojek, H., & Wieczorek, G. 2005, International Journal of Modern Physics A, 20, 6821
[37] Chou, A. S. & et al. 2005, in Proc. 29th Int. Cosmic Ray Conf., Vol. 7, 319
[38] Nerling, F., Blumer, J., Engel, R., & Risse, M. 2006, Astropart. Phys., ¨ 24, 421
[39] Billoir, P., Roucelle, C., & Hamilton, J.-C. 2007, ArXiv Astrophysics e-prints, astro ph/0701583
[40] Schmidt, F., Ave, M., Cazon, L., & Chou, A. 2008, Astroparticle Physics, 29, 355
[41] Hillas, A. M. (1972). Cosmic rays. New York: Pergamon Press. ISBN 978-0-08-016724-4.
[42] Ulrich, R., Engel, R., & Unger, M. (2011). "Hadronic Multiparticle Production at Ultra-High Energies and Extensive Air Showers." Physics Reports, 509(4-5), 97-241. https://doi.org/10.1016/j.physrep.2011.05.001
[43] T. Huege, Radio detection of cosmic ray air showers in the digital era, Phys. Rep. 620 (2016) 1.
[44] G. A. Askaryan, Excess negative charge of an electron-photon shower and its coherent radio emission, Soviet Phys. JETP 14 (1962) 441.
[45] H. Schoorlemmer, Tuning in on cosmic rays, Ph.D. thesis, Radboud Universiteit Nijmegen, 2012.
[46] K. D. de Vries, O. Scholten, K. Werner, Macroscopic geomagnetic radiation modelqpslcm@ikd polarization effects and finite volume calculations, Nucl. Instr. Meth. A 662, Supplement 1 (2012) S175 – S178.
[47] O. Scholten, K. Werner, F. Rusydi, A macroscopic description of coherent geo magnetic radiation from cosmic-ray air showers, Astropart. Phys. 29 (2008) 94–103.
[48] M. Ludwig, T. Huege, O. Scholten, K. de Vries, A detailed comparison of MGMR and REAS3 simulations, in: Proceedings of the 32nd ICRC, Beijing, volume 2, pp. 23–26.
[49] R. Engel, N. N. Kalmykov, A. A. Konstantinov, Simulation of Radio Signals from 1-10 TeV Air Showers using EGSnrc, in: Int.J.Mod.Phys. Aqpslcm@ikd Proc. of the ARENA2005 conference, DESY Zeuthen, Germany, 21S1, World Scientific, 2006, pp. 65–69.
[50] N. N. Kalmykov, A. A. Konstantinov, R. Engel, Radio emission from extensive air showers as a method for cosmic-ray detection, Physics of Atomic Nuclei 73 (2010) 1191–1202.
[51] I. Kawrakow, E. Mainegra-Hing, D. W. O. Rogers, et al., The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport, NRCC Report PIRS701, National Research Council, Ottawa, Canada, 2010. http://www.irs.inms.nrc.ca/EGSnrc/EGSnrc.html.
[52] C. W. James, H. Falcke, T. Huege, M. Ludwig, General description of electromagnetic radiation processes based on instantaneous charge acceleration in “endpoints”, Phys. Rev. E 84 (2011) 056602.
[53] D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, T. Thouw, CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers, FZKA Report 6019, Forschungszentrum Karlsruhe, 1998.
[54] CORSIKA 8 collaboration, J.-M. Alameddine et al., “CORSIKA 8 – Contributions to the 37th International Cosmic Ray Conference in Berlin Germany (ICRC 2021)”, 2021. 10.48550/ARXIV.2112.61.
[55] E. Zas, F. Halzen, T. Stanev, Electromagnetic pulses from high-energy showers: Implications for neutrino detection, Phys. Rev. D 45 (1992) 362–376.
[56] J. Alvarez-Muniz, A. Romero-Wolf, E. Zas, Cerenkov radio ˜ pulses from electromagnetic showers in the time domain, Phys. Rev. D 81 (2010) 123009.
[57] J. Alvarez-Muniz, W. R. Carvalho Jr., E. Zas, Monte Carlo ˜ simulations of radio pulses in atmospheric showers using ZHAireS, Astropart. Phys. 35 (2012) 325 –341.
[58] M. Ludwig, T. Huege, REAS3: Monte Carlo simulations of radio emission from cosmic ray air showers using an “end-point” formalism, Astropart. Phys. 34 (2011) 438–446.
[59] E. Zas, F. Halzen, T. Stanev, Electromagnetic pulses from high-energy showers: Implications for neutrino detection, Phys. Rev. D 45 (1992) 362–376.
[60] K. Belov, Radio emission from Air Showers. Comparison of theoretical approaches., AIP Conf. Proc. 1535 (2013) 157.
[61] V. Marin, B. Revenu, Simulation of radio emission from cosmic ray air shower with SELFAS2, Astropart. Phys. 35 (2012) 733 – 741.
[62] S. Lafebre, R. Engel, H. Falcke, et al., Universality of electron- ` positron distributions in extensive air showers, Astropart. Phys. 31 (2009) 243–254.
[63] Shih-Hao W. (2023) Radio Detection of Ultra-High Energy Cosmic Rays and Earth Skimming Tau Neutrinos with TAROGE Antenna Arrays on High Mountains [Doctoral dissertation, National Taiwan University], NTU Theses and Dissertations Repository https://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87423
[64] Schellart, P., et al. (2013). "Detecting cosmic rays with the LOFAR radio telescope." Astronomy & Astrophysics, 560, A98.
[65] Markvart, T., & Castañer, L. (Eds.). (2003). "Solar Cells: Materials, Manufacture and Operation." Elsevier Science. ISBN: 978-1-85617-457-2.
[66] Esram, T., & Chapman, P. L. (2007). "Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques." IEEE Transactions on Energy Conversion, 11622(2), 439-449. DOI: 10.1109/TEC.2006.874230.
[67] The Pierre Auger Collaboration. (2015). "The Pierre Auger Cosmic Ray Observatory." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 798, 172-213. https://doi.org/10.1016/j.nima.2015.06.058
[68] The Pierre Auger Collaboration. (2016). "A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory." Astroparticle Physics, 33, 108-129. https://doi.org/10.1016/j.astropartphys.2009.12.005
[69] Bezyazeekov, P. A., et al. (2015). "Measurement of cosmic-ray air showers with the Tunka Radio Extension (Tunka-Rex)." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 802, 89-96. https://doi.org/10.1016/j.nima.2015.08.061
[70] Ardouin, D., et al. (2005). "Radio detection of cosmic ray extensive air showers by the CODALEMA experiment." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 555(1-2), 148-163. https://doi.org/10.1016/j.nima.2005.08.096
[71] World''s Largest Radio Telescope (SKA). Official website for updates and details: https://www.skatelescope.org
[72] Alvarez-Muñiz, J., et al. (2020). "The Giant Radio Array for Neutrino Detection (GRAND): Science and Design." Science China Physics, Mechanics & Astronomy, 63, 219501. https://doi.org/10.1007/s11433-018-9385-7
[73] Gorham, P. W., et al. (2009). "Observations of the Askaryan Effect in Ice." Physical Review Letters, 103, 051103. https://doi.org/10.1103/PhysRevLett.103.051103
[74] The ANITA Collaboration. (2016). "Observation of Ultra-high-energy Cosmic Rays with the ANITA Balloon-borne Radio Interferometer." Physical Review Letters, 117(7), 071101. DOI: 10.1103/PhysRevLett.117.071101.
[75] Gorham, P. W., et al. (2018). "Observation of an Unusual Upward-going Cosmic ray-like Event in the Third Flight of ANITA." Physical Review Letters, 121(16), 161102. DOI: 10.1103/PhysRevLett.121.161102.
[76] Aartsen, M. G., et al. (2020). "Design and Sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G)." Journal of Instrumentation, 15, P08039. https://doi.org/10.1088/1748-221/15/08/P08039
[77] J. Nam, Taiwan Astroparticle Radiowave Observatory for Geo-synchrotron Emissions (TAROGE), PoS ICRC2015 (2016) 663 [INSPIRE].
[78] Taiwan Cement Corporation. (2024). https://www.taiwancement.com
[79] Shih-Hao Wang et al., TAROGE-M: Radio Antenna Array on Antarctic High Mountain for Detecting Near-horizontal Ultra-high Energy Air Showers.JCAP11(2022)022
[80] Ostapchenko, S. (2011). "Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: QGSJET-II model." Physical Review D, 83(1), 014018. DOI: 10.1103/PhysRevD.83.014018
[81] Fesefeldt, H. (1985). "The Simulation of Hadronic Showers: Physics and Applications." Report PITHA-85/02, RWTH Aachen University.
[82] Nelson, W. R., Hirayama, H., & Rogers, D. W. O. (1985). "The EGS4 Code System." SLAC Report 265, Stanford Linear Accelerator Center.
[83] Jackson, J. D. (1999). Classical Electrodynamics (3rd ed.). Wiley.
[84] M. Ludwig, T. Huege, REAS3: Monte Carlo simulations of radio emission from cosmic ray air showers using an “end-point” formalism, Astropart. Phys. 34 (2011) 438–446
[85] PIERRE AUGER COLLABORATION, Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy, Phys. Rev. Lett. (2016) 241101.
[86] A. Nelles, S. Buitink, H. Falcke, J.R. Hörandel, T. Huege and P. Schellart, A parameterization for the radio emission of air showers as predicted by coreas simulations and applied to lofar measurements, Astroparticle Physics 60 (2015) 13.
[87] F. Schlüter and T. Huege, Signal model and event reconstruction for the radio detection of inclined air showers, 2022. 10.48550/ARXIV.2203.04364.
[88] PIERRE AUGER COLLABORATION, Observation of inclined EeV air showers with the radio detector of the Pierre Auger Observatory, Journal of Cosmology and Astroparticle Physics 2018 (2018) 026.
[89] NOAA National centers for environmental information (NCEI) geomagnetic modeling team and british geological survey, World magnetic model 2020. http://www.doi.org/10.25921/ 11v3-da71 (2020).
[90] LeCosPA wiki, https://wiki.tir.tw/index.php
[91] Pico Technology Ltd. https://www.picotech.com/
[92] ANSYS, https://www.ansys.com/products/electronics/ansys-hfss
[93] ANALOG DEVICES, https://www.analog.com/en/index.html
[94] F. Schröder, Radio detection of cosmic-ray air showers and high-energy neutrinos, Prog. Part. Nucl. Phys. 93 (2017) 1
[95] T. Huege and D. Besson, Radiowave Detection of Ultra-High Energy Neutrinos and Cosmic Rays, [astro-ph/1701.02987]
[96] T. Huege, M. Ludwig, C. W. James, Simulating radio emission from air showers with CoREAS, AIP Conf. Proc. (2013) 128– 132
[97] A. Romero-Wolf et al., An Interferometric Analysis Method for Radio Impulses from Ultra-high Energy Particle Showers, Astropar. Phys. 60 (2015) 72 [astro ph/1304.5663].
[98] Weisstein, Eric W. "Blackman Function". mathworld.wolfram.com. Retrieved 2016-04-13.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92224-
dc.description.abstract台灣天文粒子地磁同步輻射電波觀測站(TAROGE)是台灣首個旨在探測由超高能宇宙射線(UHECR)的大氣簇射所引起的脈衝同步輻射電波信號。TAROGE 天線陣列設置於面向太平洋的高山上,使其能進行近地平線觀測。本研究聚焦於 TAROGE-3 站點,旨在展示其 UHECR 探測能力。通過分析 TAROGE-3數據,我們已成功探測到 UHECR 候選事件。
TAROGE-3陣列包括 12個雙堆疊的對數週期偶極天線(LPDA),工作頻段為180-333 MHz。TAROGE-3 的關鍵組件之一是其觸發系統,該系統利用多頻帶共振技術來抑制熱噪聲和周圍連續波(CW)噪聲。觸發系統採用了現場可編程閘陣列(FPGA),處理信息,決定何時為數據獲取(DAQ)系統發起觸發信號。
為了降低人為背景噪聲,已實施軟件過濾技術來識別 UHECR 候選者。此外,還採用了模板匹配技術來確認 UHECR 候選者。TAROGE-3 自 2018 年 7 月運行至今,五年間的工作週期達到了 0.6。在首年數據收集期間,TAROGE-3 每週大約探測到 0.2 個 UHECR 候選事件。從 2018 年開始的五年運行期間,基於首年數據分析,該站點已探測到 5 個 UHECR 候選事件。此外,通過對 TAROGE-3 數據的持續分析,仍有更多 UHECR 候選事件有待揭示。
zh_TW
dc.description.abstractThe Taiwan Astro-particle Radiowave Observatory for Geo-synchrotron Emissions(TAROGE) is the first experimental project in Taiwan aimed at detecting impulsive Geosynchrotron radio signals induced from extensive air shower by ultra-high energy cosmicrays (UHECR). The TAROGE antenna arrays are placed on high mountains facing thePacific Ocean which enables near-horizon observations. This study focuses on TAROGE3 Station and aims to display its UHECR detection capabilities. We have successfully detected UHECR candidates through the analysis of TAROGE-3 data.
The TAROGE-3 array comprises 12 dual-stacked Logarithmic Periodic Dipole Antennas(LPDA) operating within the passband of 180-333 MHz. One of the critical components of TAROGE-3 is its trigger system, which utilizes a multi-frequency band coincidence technique to suppress thermal noise and ambient continuous wave (CW) noise. The trigger system, implemented with a field programmable gate array (FPGA), that processes coincidence information, determines when to initiate a trigger signal for the data acquisition (DAQ) system.
To reduce anthropogenic backgrounds, software filtering techniques have been implemented to identify UHECR candidates. Additionally, a template matching has been employed to provide final confirmation of UHECR candidates. TAROGE-3 has been in operation since July 2018. It achieves a duty cycle of 0.6 over the five-year time span. TAROGE-3 detected approximately 0.2 UHECR candidate per week during the first year of data collection. Over the course of its five-year operation since 2018, the station has detected 5 UHECR candidates based on the analysis of the initial year''s data. Furthermore, there remain additional UHECR candidates to be unveiled through continued analysis of TAROGE-3 data.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-17T16:14:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-17T16:14:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
ABSTRACT ii
CONTENTS iv
Chapter 1 Introduction 1
1.1 Overview of Cosmic Rays Physics 1
1.1.1 History 2
1.1.2 Origin of Cosmic Ray 4
1.1.3 Detection Techniques of Cosmic Ray 6
1.2 Spectrum of Cosmic rays 9
1.2.1 Features of Cosmic Ray Spectrum 11
1.2.2 Ultra-High-Energy Neutrinos 13
1.3 Extensive Air Shower 16
1.3.1 The Longitudinal Profile of EAS 19
1.3.2 Radio emissions from EAS 22
1.3.3 Simulation of Radio Emission from EAS 24
1.3.4 Radio Detection of EAS 27
1.4 TAROGE experiment 33
1.4.1 TAROGE-3 simulation 35
Chapter 2 TAROGE-3 system 37
2.1 Overall design 37
2.1.1 TAROGE-3 operation 43
2.2 The System Response 46
2.2.1 Effective Height of Antenna 48
2.2.2 Front-end electronics Gain 50
2.2.3 Dual Stacked Antenna 52
2.2.4 Digitizer Gain 54
2.2.5 Overall System Response 55
2.3 Trigger System 56
2.3.1 Temporal Coincidence 60
2.3.2 The dynamic threshold 65
2.3.3 Power detector response 68
2.4 Trigger Efficiency of TAROGE-3 71
2.4.1 Trigger Efficiency Modeling 71
2.4.2 Trigger Efficiency Estimation 72
2.4.3 Verification of Trigger Efficiency Model 73
2.5 Acceptance of TAROGE-3 77
2.5.1 Effective Exposure 80
2.6 The number of UHECR candidates 82
Chapter 3 Cosmic Ray Candidate Searching 84
3.1 CW Filter & Angular Reconstruction 86
3.1.1 CW Filter 86
3.1.2 Angular Reconstruction 87
3.2 Impulsive Noise 90
3.3 UHECR Event Selection 94
3.4 UHECR Candidates 99
3.5 Number of UHECR Candidates 103
3.6 Uncertainty 104
Chapter 4 Conclusion 108
REFERENCE 109
-
dc.language.isoen-
dc.subject大氣簇射zh_TW
dc.subject天線觀測站zh_TW
dc.subject宇宙射線zh_TW
dc.subjectcosmic rayen
dc.subjectextensive air showeren
dc.subjectradio observatoryen
dc.title以TAROGE-3天線陣列尋找極高能宇宙射線zh_TW
dc.titleSearching Ultra-high Cosmic Ray with TAROGE-3en
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee南智祐;黃明輝;王名儒;劉宗哲zh_TW
dc.contributor.oralexamcommitteeJiwoo Nam;Ming-Hway Huang;Min-Zu Wang;Tsung-Che Liuen
dc.subject.keyword宇宙射線,大氣簇射,天線觀測站,zh_TW
dc.subject.keywordcosmic ray,extensive air shower,radio observatory,en
dc.relation.page120-
dc.identifier.doi10.6342/NTU202400744-
dc.rights.note未授權-
dc.date.accepted2024-02-21-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
4.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved