請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92220| 標題: | 使用自適應性離散動作空間的基於模型強化學習 Adaptive Discretized Action Space Approach for Model-Based Reinforcement Learning |
| 作者: | 沈郁鈞 Yu-Chun Shen |
| 指導教授: | 陳銘憲 Ming-Syan Chen |
| 關鍵字: | 強化學習,連續動作控制,離散化, Reinforcement Learning,Continuous Control,Discretization, |
| 出版年 : | 2024 |
| 學位: | 碩士 |
| 摘要: | 連續動作控制是強化學習中其中一個主要的研究議題。在連續控制任務中,智能體通過從連續動作空間中決定精確的最佳動作值以採取接下來的行動,這相對於具有離散動作空間的決策任務更爲複雜且具挑戰性。因此,連續動作空間離散化是減少應對連續控制任務複雜性的其中一種可行直觀方式。然而,固定的離散化連續動作空間可能會在不同的離散程度遇到不同的問題。本研究提出了一種適應性連續動作空間離散化方法,在初始階段離散化後的連續動作空間集會較小且間距較稀疏,在智能體訓練中期時,此離散化連續動作空間集合會進行擴展,透過增加集合內的元素來獲得更緊密的離散化連續動作空間集合。我們更近一步一致性和適應性離散化連續動作取樣方法應用於最先進的基於模型的強化學習(model-based reinforcement learning)演算法,並在多個連續控制任務上進行評估,並在大部分任務中和原先方法相比取得較優或相近的結果。除此之外,我們提出的方法在計算時間效率上也優於原始的連續動作取樣方法。 Continuous control has emerged as a prominent area of focus within reinforcement learning. The agent takes action by determining the action value from a continuous action space for continuous control tasks, which is more challenging than decision-making tasks with discrete action space. Hence, continuous action space discretization is an intuitive approach to reduce the complexity of dealing with continuous control tasks. However, consistent action space discretization may encounter different problems depending on different fixed granularity. The present study introduces an adaptive continuous action space discretization approach, initializing with coarse discretization and then expanding the discretized action space set with denser granularity. We also apply both consistent and adaptive discretization methods to the state-of-the-art model-based reinforcement learning algorithm and benchmark several continuous control tasks. Our method achieves better or comparable results over the original action sampling method with superior computation time efficiency. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92220 |
| DOI: | 10.6342/NTU202400390 |
| 全文授權: | 未授權 |
| 顯示於系所單位: | 電機工程學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 7.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
