Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92215
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳銘憲zh_TW
dc.contributor.advisorMing-Syan Chenen
dc.contributor.author楊秉蒼zh_TW
dc.contributor.authorBing-Cang Yangen
dc.date.accessioned2024-03-08T16:20:38Z-
dc.date.available2024-03-09-
dc.date.copyright2024-03-08-
dc.date.issued2024-
dc.date.submitted2024-02-18-
dc.identifier.citation[1] Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon Oh. Learning de-biased representations with biased representations. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 528–539. PMLR, 13–18 Jul 2020.
[2] David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang, and Colin Raffel. Remixmatch: Semi-supervised learning with distribution matching and augmentation anchoring. In International Conference on Learning Representations, 2020.
[3] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A holistic approach to semi-supervised learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.
[4] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning. IEEE Transactions on Neural Networks, 20(3):542–542, 2009.
[5] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He. Bias and debias in recommender system: A survey and future directions. ACM Trans. Inf. Syst., 41(3), feb 2023.
[6] Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. Don’t take the easy way out: Ensemble based methods for avoiding known dataset biases. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4069–4082, Hong Kong, China, November 2019. Association for Computational Linguistics.
[7] Yue Fan, Dengxin Dai, Anna Kukleva, and Bernt Schiele. Cossl: Co-learning of representation and classifier for imbalanced semi-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 14574–14584, June 2022.
[8] Qian Gui, Hong Zhou, Na Guo, and Baoning Niu. A survey of class-imbalanced semi-supervised learning. Machine Learning, pages 1–30, 2023.
[9] Lan-Zhe Guo and Yu-Feng Li. Class-imbalanced semi-supervised learning with adaptive thresholding. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 8082–8094. PMLR, 17–23 Jul 2022.
[10] He He, Sheng Zha, and Haohan Wang. Unlearn dataset bias in natural language inference by fitting the residual. In Colin Cherry, Greg Durrett, George Foster, Reza Haffari, Shahram Khadivi, Nanyun Peng, Xiang Ren, and Swabha Swayamdipta, editors, Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019), pages 132–142, Hong Kong, China, November 2019. Association for Computational Linguistics.
[11] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.
[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
[13] Inwoo Hwang, Sangjun Lee, Yunhyeok Kwak, Seong Joon Oh, Damien Teney, Jin-Hwa Kim, and Byoung-Tak Zhang. Selecmix: Debiased learning by contradicting-pair sampling. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages 14345–14357. Curran Associates, Inc., 2022.
[14] Taeuk Jang and Xiaoqian Wang. Difficulty-based sampling for debiased contrastive representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 24039–24048, June 2023.
[15] Jaehyung Kim, Youngbum Hur, Sejun Park, Eunho Yang, Sung Ju Hwang, and Jinwoo Shin. Distribution aligning refinery of pseudo-label for imbalanced semi-supervised learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 14567–14579. Curran Associates, Inc., 2020.
[16] Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer retraining is sufficient for robustness to spurious correlations. In The Eleventh International Conference on Learning Representations, 2023.
[17] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.
[18] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. Available: http://yann.lecun.com/exdb/mnist, 2010.
[19] Dong-Hyun Lee. Pseudo-label : The simple and efficient semi-supervised learning method for deep neural networks. ICML 2013 Workshop : Challenges in Representation Learning (WREPL), 2013.
[20] Hyuck Lee, Seungjae Shin, and Heeyoung Kim. Abc: Auxiliary balanced classifier for class-imbalanced semi-supervised learning. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages 7082–7094. Curran Associates, Inc., 2021.
[21] Jungsoo Lee, Eungyeup Kim, Juyoung Lee, Jihyeon Lee, and Jaegul Choo. Learning debiased representation via disentangled feature augmentation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages 25123–25133. Curran Associates, Inc., 2021.
[22] Jungsoo Lee, Jeonghoon Park, Daeyoung Kim, Juyoung Lee, Edward Choi, and Jaegul Choo. Revisiting the Importance of Amplifying Bias for Debiasing. Proceedings of the AAAI Conference on Artificial Intelligence, 37(12):14974–14981, June 2023. Number: 12.
[23] Yi Li and Nuno Vasconcelos. Repair: Removing representation bias by dataset resampling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.
[24] Jongin Lim, Youngdong Kim, Byungjai Kim, Chanho Ahn, Jinwoo Shin, Eunho Yang, and Seungju Han. Biasadv: Bias-adversarial augmentation for model debiasing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 3832–3841, June 2023.
[25] J. Lin. Divergence measures based on the shannon entropy. IEEE Transactions on Information Theory, 37(1):145–151, 1991.
[26] Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa, Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training group information. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 6781–6792. PMLR, 18–24 Jul 2021.
[27] Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning from failure: De-biasing classifier from biased classifier. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 20673–20684. Curran Associates, Inc., 2020.
[28] Junhyun Nam, Jaehyung Kim, Jaeho Lee, and Jinwoo Shin. Spread spurious attribute: Improving worst-group accuracy with spurious attribute estimation. In International Conference on Learning Representations, 2022.
[29] Youngtaek Oh, Dong-Jin Kim, and In So Kweon. Daso: Distribution-aware semantics-oriented pseudo-label for imbalanced semi-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 9786–9796, June 2022.
[30] Shikai Qiu, Andres Potapczynski, Pavel Izmailov, and Andrew Gordon Wilson. Simple and fast group robustness by automatic feature reweighting. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages 28448–28467. PMLR, 23–29 Jul 2023.
[31] Khaled Saab, Sarah Hooper, Mayee Chen, Michael Zhang, Daniel Rubin, and Christopher Re. Reducing reliance on spurious features in medical image classification with spatial specificity. In Zachary Lipton, Rajesh Ranganath, Mark Sendak, Michael Sjoding, and Serena Yeung, editors, Proceedings of the 7th Machine Learning for Healthcare Conference, volume 182 of Proceedings of Machine Learning Research, pages 760–784. PMLR, 05–06 Aug 2022.
[32] Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization. In International Conference on Learning Representations, 2020.
[33] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 596–608. Curran Associates, Inc., 2020.
[34] Enzo Tartaglione, Carlo Alberto Barbano, and Marco Grangetto. End: Entangling and disentangling deep representations for bias correction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 13508–13517, June 2021.
[35] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weightaveraged consistency targets improve semi-supervised deep learning results. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
[36] Antonio Torralba and Alexei A. Efros. Unbiased look at dataset bias. In CVPR 2011, pages 1521–1528, 2011.
[37] Haohan Wang, Zexue He, and Eric P. Xing. Learning robust representations by projecting superficial statistics out. In International Conference on Learning Representations, 2019.
[38] Chen Wei, Kihyuk Sohn, Clayton Mellina, Alan Yuille, and Fan Yang. Crest: A class-rebalancing self-training framework for imbalanced semi-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 10857–10866, June 2021.
[39] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmentation for consistency training. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 6256–6268. Curran Associates, Inc., 2020.
[40] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V. Le. Self-training with noisy student improves imagenet classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.
[41] Xiangli Yang, Zixing Song, Irwin King, and Zenglin Xu. A survey on deep semi-supervised learning. IEEE Transactions on Knowledge and Data Engineering, 35(9):8934–8954, 2023.
[42] Bowen Zhang, Yidong Wang, Wenxin Hou, HAO WU, Jindong Wang, Manabu Okumura, and Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages 18408–18419. Curran Associates, Inc., 2021.
[43] Michael Zhang, Nimit S Sohoni, Hongyang R Zhang, Chelsea Finn, and Christopher Re. Correct-n-contrast: a contrastive approach for improving robustness to spurious correlations. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 26484–26516. PMLR, 17–23 Jul 2022.
[44] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks with noisy labels. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92215-
dc.description.abstract神經網絡在訓練過程中往往會因為偏頗的訓練資料而導致準確率下降。現有的研究緩解這個問題的方法是利用偏差衝突樣本(bias-conflicting sample)──即不包含偏差特徵的樣本──來鼓勵模型學習任務相關特徵,從而提高無偏差測試環境下模型的表現。然而,這些方法在辨識偏差衝突樣本的過程需要使用標籤,而標籤工作昂貴且耗時。為解決此問題,我們提出了一種兩階段去偏差框架:基於偏差衝突分數之損失重新加權(Bias-conflicting Score for Loss Reweighting, BSLR),旨在通過利用少量標記資料來評估無標記樣本中的偏差衝突程度並以此進行去偏差。在第一階段,我們從無標記資料中檢測偏差衝突樣本。此階段首先在標記資料上訓練一個有偏差和一個無偏差的分類器,並通過這兩個分類器推論無標記資料。我們測量輸出之間的差異作為衡量偏差衝突程度的指標,稱為「偏差衝突分數」,因為較高的分數代表樣本的偏差程度較低。在第二階段,我們利用前一階段獲得的偏差衝突分數重新調整損失以在訓練無偏差的分類器的過程中強調偏差衝突樣本。實驗結果表明 BSLR 通過利用無標記資料的資訊,使其表現優於最先進的方法,特別是在具有較大偏差和較少標籤的資料集上。zh_TW
dc.description.abstractNeural networks usually receive significant performance deterioration when trained on biased datasets. Existing research addresses this issue by utilizing samples without bias features (i.e., bias-conflicting samples) to encourage the model to learn task-relevant characteristics, thereby improving unbiased testing performance. However, they identify such samples heavily relying on label information, whereas data labeling is time-consuming. To address this issue, in this paper, we propose a two-stage debiasing framework, named Bias-conflicting Score for Loss Reweighting (BSLR), aiming to evaluate the degree of bias-conflicting in unlabeled samples for debiasing by leveraging only a small amount labeled data. In the first stage, we detect the bias-conflicting samples from unlabeled data. The process begins with pre-training a biased and a debiased classifier on the labeled data. Subsequently, the unlabeled data are inferenced through the two classifiers. We measure the difference between the outputs as a score, named Bias-conflicting Score, since a higher score indicates a lower bias degree within the sample. In the second stage, we reweight the loss to place more emphasis on bias-conflicting samples for retraining the debiased classifier by leveraging the Bias-conflicting Scores obtained from the previous stage. Experimental results show that BSLR exhibits superior performance over the state-of-the-art methods by incorporating information from unlabeled data, especially on the dataset with a large bias and few labels.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-08T16:20:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-08T16:20:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 ii
Abstract iii
Contents v
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
Chapter 2 Related Works 5
2.1 Debias with bias annotations 5
2.2 Debias without bias annotation 6
2.3 Semi-supervised learning 7
Chapter 3 Methodology 8
3.1 Problem setup 8
3.2 Importance of the number of bias-conflicting samples 9
3.3 Stage 1: Calculation of bias-conflicting score 10
3.4 Stage 2: Pseudo-labeling with the bias-conflicting score 13
Chapter 4 Experiments 16
4.1 Experimental setup 16
4.1.1 Datasets 16
4.1.2 Baselines 17
4.1.3 Implementation details 18
4.2 Main results 20
4.3 Analysis regarding improvements in different datasets 21
Chapter 5 Ablation study 24
5.1 Ablation study on loss reweighting for unlabeled data 24
5.2 Robustness to the choice of distance metrics 25
5.3 Hyperparameter sensitivity 26
Chapter 6 Conclusion 28
References 29
-
dc.language.isoen-
dc.subject去偏差zh_TW
dc.subject半監督學習zh_TW
dc.subjectSemi-supervised learningen
dc.subjectDebiasen
dc.title基於挖掘未標記偏差衝突樣本和損失重新加權之半監督去偏差zh_TW
dc.titleSemi-supervised Debiasing via Unlabeled Bias-conflicting Samples Discovering and Loss Reweightingen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳祝嵩;彭文志;高宏宇zh_TW
dc.contributor.oralexamcommitteeChu-Song Chen;Wen-Chih Peng;Hung-Yu Kaoen
dc.subject.keyword去偏差,半監督學習,zh_TW
dc.subject.keywordDebias,Semi-supervised learning,en
dc.relation.page37-
dc.identifier.doi10.6342/NTU202400683-
dc.rights.note未授權-
dc.date.accepted2024-02-18-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
1.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved