Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92213
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林致廷zh_TW
dc.contributor.advisorChih-Ting Linen
dc.contributor.author吳晢勤zh_TW
dc.contributor.authorChe-Chin Wuen
dc.date.accessioned2024-03-08T16:20:05Z-
dc.date.available2024-03-09-
dc.date.copyright2024-03-08-
dc.date.issued2024-
dc.date.submitted2024-02-19-
dc.identifier.citation[1] A. Allagui, H. Benaoum, and O. Olendski. On the gouy–chapman–stern model of the electrical double-layer structure with a generalized boltzmann factor. Physica A: Statistical Mechanics and its Applications, 582:126252, 2021.
[2] W. Arnold and U. Zimmermann. Electro-rotation: development of a technique for dielectric measurements on individual cells and particles. Journal of Electrostatics, 21(2):151–191, 1988.
[3] S. ArshavskyGraham and E. Segal. Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics, pages 247–265. Springer International Publishing, Cham, 2022.
[4] M. A. Brown, G. V. Bossa, and S. May. Emergence of a stern layer from the incorporation of hydration interactions into the gouy–chapman model of the electrical double layer. Langmuir, 31(42):11477–11483, 2015. PMID: 26474036.
[5] I. F. Cheng, T. Y. Chen, and H. C. Chang. Electrokinetics-based microfluidic technology for the rapid separation and concentration of bacteria/cells/biomolecules. In Advanced Materials Research, volume 911, pages 347–351. Trans Tech Publications, Ltd, 2014.
[6] R. J. Clausius. Die mechanische Wärmetheorie: Die mechanische Behandlung der Electricität, volume 2. Vieweg, 1879.
[7] D. Gray and C. Chen. The electric slide: dielectrophoresis for high precision cell patterning. In Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology, volume 2, pages 1686–1687 vol.2, 2002.
[8] N. G. Green and H. Nili. Dielectrophoresis, pages 534–543. Springer Netherlands, Dordrecht, 2012.
[9] M. Hashimoto, H. Kaji, and M. Nishizawa. Selective capture of a specific cell type from mixed leucocytes in an electrode-integrated microfluidic device. Biosensors and Bioelectronics, 24(9):2892–2897, 2009.
[10] H. v. Helmholtz. Studien über electrische grenzschichten. Annalen der Physik, 243(7):337–382, 1879.
[11] Y. Huang, R. Hölzel, R. Pethig, and X. B. Wang. Differences in the ac electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Physics in Medicine and Biology, 37(7):1499–1517, July 1992.
[12] Y. Huang, X. B. Wang, J. A. Tame, and R. Pethig. Electrokinetic behaviour of colloidal particles in travelling electric fields: studies using yeast cells. Journal of Physics D: Applied Physics, 26(9):1528, sep 1993.
[13] M. Javanmard, S. Emaminejad, R. W. Dutton, and R. W. Davis. Use of negative dielectrophoresis for selective elution of protein-bound particles. Analytical Chemistry, 84(3):1432–1438, 2012.
[14] M. Javanmard, S. Emaminejad, C. Gupta, J. Provine, R. Davis, and R. Howe. Depletion of cells and abundant proteins from biological samples by enhanced dielectrophoresis. Sensors and Actuators B: Chemical, 193:918–924, 2014.
[15] T. Jones. Basic theory of dielectrophoresis and electrorotation. IEEE Engineering in Medicine and Biology Magazine, 22(6):33–42, 2003.
[16] T. B. Jones. Dielectrophoretic force calculation. Journal of Electrostatics, 6:69–82, 1979.
[17] T. B. Jones. Electromechanics of Particles. Cambridge University Press, 1995.
[18] Kayaku Advanced Materials, Inc. Su-8 2000 permanent negative epoxy photoresist: Technical data sheet. Technical Data Sheet, May 2020. Available from Kayaku Advanced Materials, Inc. website.
[19] K. Khoshmanesh, S. Nahavandi, S. Baratchi, A. Mitchell, and K. Kalantar-zadeh. Dielectrophoretic platforms for bio-microfluidic systems. Biosensors and Bioelectronics, 26(5):1800–1814, 2011.
[20] K. Khoshmanesh, C. Zhang, S. Nahavandi, F. Tovar-Lopez, S. Baratchi, A. Mitchell, and K. Kalantar-zadeh. Size based separation of microparticles using a dielectrophoretic activated system. Journal of Applied Physics, 108:034904–034904, 08 2010.
[21] U. Lei, C. Huang, J. Chen, C. Yang, Y. Lo, A. Wo, C. Chen, and T. Fung. A travelling wave dielectrophoretic pump for blood delivery. Lab on a chip, 9:1349–56, 06 2009.
[22] S.-C. Lin, J.-C. Lu, Y. Sung, C.-T. Lin, and Y.-C. Tung. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis. Lab on a chip, 13, 06 2013.
[23] A. Manz, N. Graber, and H. Widmer. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1(1):244–248, 1990.
[24] C. McDonald and G. Whitesides. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts of Chemical Research, 35:491–499, 07 2002.
[25] Mjones1984. Diagram showing the ionic concentration and potential difference as a function of distance from the charged surface of a particle suspended in a dispersion medium, 2012.
[26] H. Morgan, N. G. Green, et al. Ac electrokinetics: colloids and nanoparticles. Technical report, Research Studies Press, 2003.
[27] A. Mortadi, A. E. Melouky, E. ghaouti Chahid, R. E. Moznine, and O. Cherkaoui. Studies of the clausius–mossotti factor. Journal of Physical Studies, 2016.
[28] O. Mossotti. Analytical discussion on the influence that the action of a dielectric medium has on the distribution of electricity to the surface of more electric bodies scattered in it. Mem. Math. Fis. Modena, 24:49–74, 1850.
[29] T. Murata, T. Yasukawa, H. Shiku, and T. Matsue. Electrochemical single-cell gene-expression assay combining dielectrophoretic manipulation with secreted alkaline phosphatase reporter system. Biosensors and Bioelectronics, 25(4):913–919, 2009.
[30] A. Nakano and A. Ros. Protein dielectrophoresis: Advances, challenges, and applications. ELECTROPHORESIS, 34(7):1085–1096, 2013.
[31] N. Pamme. Continuous flow separations in microfluidic devices. Lab on a chip, 7:1644–59, 01 2008.
[32] H. A. Pohl. The motion and precipitation of suspensoids in divergent electric fields. Journal of applied Physics, 22(7):869–871, 1951.
[33] H. A. Pohl and J. S. Crane. Dielectrophoretic force. Journal of Theoretical Biology, 37(1):1–13, 1972.
[34] C. Qian, H. Huang, L. Chen, X. Li, Z. Ge, T. Chen, Z. Yang, and L. Sun. Dielectrophoresis for bioparticle manipulation. International Journal of Molecular Sciences, 15(10):18281–18309, 2014.
[35] A. Ramos, H. Morgan, N. Green, A. González, and A. Castellanos. Pumping of liquids with traveling-wave electroosmosis. j appl phys 97(8):084906/1-084906/8. Journal of Applied Physics, 97:084906–084906, 04 2005.
[36] A. Salari and M. Thompson. Recent advances in ac electrokinetic sample enrichment techniques for biosensor development. Sensors and Actuators B: Chemical, 255:3601–3615, 2018.
[37] S. Sang, Q. Feng, A. Jian, H. Li, J. Ji, Q. Duan, W. Zhang, and T. Wang. Portable microsystem integrates multifunctional dielectrophoresis manipulations and a surface stress biosensor to detect red blood cells for hemolytic anemia. Scientific Reports, 6:33626, 09 2016.
[38] H. Song, J. M. Rosano, Y. Wang, C. J. Garson, B. Prabhakarpandian, K. Pant, G. J. Klarmann, A. Perantoni, L. M. Alvarez, and E. Lai. Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis. Lab Chip, 15:1320–1328, 2015.
[39] S. Terry, J. Jerman, and J. Angell. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Transactions on Electron Devices, 26(12):1880–1886, 1979.
[40] S. Velugotla, S. Pells, H. K. Mjoseng, C. R. Duffy, S. Smith, P. De Sousa, and R. Pethig. Dielectrophoresis based discrimination of human embryonic stem cells from differentiating derivatives. Biomicrofluidics, 6(4):44113, 2012.
[41] C.-C. Wang, K.-C. Lan, M.-K. Chen, M.-H. Wang, and L.-S. Jang. Adjustable trapping position for single cells using voltage phase-controlled method. Biosensors and Bioelectronics, 49:297–304, 2013.
[42] X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne. A unified theory of dielectrophoresis and travelling wave dielectrophoresis. Journal of Physics D: Applied Physics, 27(7):1571, jul 1994.
[43] Y. Xia and G. M. Whitesides. Soft lithography. Annual Review of Materials Science, 28(1):153–184, 1998.
[44] C. Y. Yang and U. Lei. Quasistatic force and torque on ellipsoidal particles under generalized dielectrophoresis. Journal of Applied Physics, 102(9):094702, 11 2007.
[45] 鍾佩珊. 利用電流特性觀察微奈米濃縮晶片之作用機制及其應用. Master’s thesis, 國立臺灣大學, Jan 2013.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92213-
dc.description.abstract本研究透過數學模型方法與實驗室晶片技術,分析微米級粒子在放射狀多相位電極作用下的運動現象。必揭示了粒子繞行電極旋轉之行為為一進動現象,且詳細分析了粒子在電場中的自轉與公轉,以及這些運動現象如何受到電場強度及粒子大小關係的影響。粒子以平行電極方向為自轉軸自轉,通過重力與傳統介電泳力提供角加速度,繞行電極中心公轉。當粒子在環形電極外圍時,電極間距寬於粒子大小,粒子主要受正旋度場加速;而在靠近中心電極時粒子大小大於電極間距,集中於電極表面的負旋度場主宰旋轉方向,開始出現與外圍相反的旋轉方向。
此外,研究進一步發現旅波介電泳力的本質是一種純旋度場,該力場可以持續傳輸能量提供粒子動能。在 3kHz 的螢光珠實驗中,我們觀測到粒子的動能持續增加至其旋轉速度超過每秒 30 幀的感光元件的捕捉頻率,我們應該以旋度場的角度去理解旅波介電泳現象。這種能量傳輸現象的發現,對於粒子動能的轉換提供了新的理解角度。
應用這一發現,我們成功地在實驗室晶片上展示了旋轉分離少量血球檢體的可行性,血球的分離效果在3kHz 時可以取得最好的應用。
zh_TW
dc.description.abstractThis research delves into the dynamics of particles subjected to radial multi-phase electrode array, employing numerical simulations to elucidate the precessional movement of particles around electrodes. A detailed investigation into the particles' rotational and orbital behaviors under electric fields reveals the influence of electric field strength and particle size on these motions. Specifically, the study highlights the distinct rotational directions exhibited by particles when located at the electrode periphery versus near the electrode center, attributed to the differential field acceleration and reverse field dominance, respectively.
A significant finding is the identification of the traveling wave dielectrophoretic force as a solenoidal field, allowing continuous energy transmission to augment the kinetic energy of particles. From the experiment with 3kHz fluorescent beads, we observed that the particles' motion speed continuously increased beyond the capture capability of the imaging sensors at 30 frames per second. The discovery provides a new perspective on the conversion of particle kinetic energy, and also reveals that traveling wave dielectrophoresis still has strong application potential compared to traditional dielectrophoresis.
This insight paved the way for demonstrating blood cell rotational separation on a lab chip, with optimal separation effects achieved at 3kHz, showcasing potential applications in small sample diagnostics.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-08T16:20:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-08T16:20:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xiii
Denotation xvii
Chapter 1 Introduction 1
1.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Chapter 2 Literature Review 7
2.1 Lab-on-a-Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Dielectrophoresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Conventional Dielectrophoresis . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Traveling-Wave Dielectrophoresis . . . . . . . . . . . . . . . . . . 15
2.3.3 Clausius-Mossotti Factor . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Electrical Double Layer . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Electroosmosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Chapter 3 Experimental System Setup and Methodology 27
3.1 Theory Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.1 Helmholtz Decomposition . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Mathematical Simulation . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Design and Fabrication of Circular Electrode Array . . . . . . . . . . 35
3.3.1 PCB Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Fabrication of Glass Electrode Chips . . . . . . . . . . . . . . . . . 36
3.3.2.1 Electrode Design and Mask Production . . . . . . . . . 36
3.3.2.2 Surface Preparation of Glass Substrate . . . . . . . . . 37
3.3.2.3 Application of S1813 Photoresist . . . . . . . . . . . . 38
3.3.2.4 Exposure Using Karl Suss Aligner . . . . . . . . . . . 39
3.4 Microchannel Design and Fabrication Process . . . . . . . . . . . . . 39
3.4.1 Microfluidic Channel Design . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Silicon Wafer Master Mold Fabrication . . . . . . . . . . . . . . . . 40
3.4.3 PDMS Replication . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Packaging Technology . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5.1 Bonding Printed Circuit Board and Glass Electrode Chips . . . . . . 46
3.5.2 Bonding PDMS with Glass Chips . . . . . . . . . . . . . . . . . . 47
3.5.3 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Experimental Equipment . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.1 Signal Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.2 Upright Microscope . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.7 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7.1 Solution Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7.1.1 D-Mannitol Preparation . . . . . . . . . . . . . . . . . 51
3.7.1.2 Blood Preparation . . . . . . . . . . . . . . . . . . . . 51
3.7.1.3 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7.2 Operating Procedures . . . . . . . . . . . . . . . . . . . . . . . . . 52
Chapter 4 Results and Discussion 53
4.1 Fluorescent Polystyrene Beads . . . . . . . . . . . . . . . . . . . . . 53
4.1.1 Observation under 3kHz, 3V . . . . . . . . . . . . . . . . . . . . . 53
4.1.2 Observation under 10kHz, 3V . . . . . . . . . . . . . . . . . . . . 54
4.1.3 Observation under 70kHz, 3V . . . . . . . . . . . . . . . . . . . . 54
4.1.4 Observation under 80kHz, 3V . . . . . . . . . . . . . . . . . . . . 55
4.1.5 Observation under 90kHz, 3V . . . . . . . . . . . . . . . . . . . . 55
4.1.6 Observation under 100kHz, 3V . . . . . . . . . . . . . . . . . . . . 56
4.2 Red Blood Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.1 Observation under 1kHz, 3V . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Observation under 2kHz, 3V . . . . . . . . . . . . . . . . . . . . . 57
4.2.3 Observation under 3kHz, 3V . . . . . . . . . . . . . . . . . . . . . 57
4.2.4 Observation under 5kHz, 3V . . . . . . . . . . . . . . . . . . . . . 58
4.2.5 Observation under 10kHz, 3V . . . . . . . . . . . . . . . . . . . . 58
4.2.6 Observation under 50kHz, 3V. . . . . . . . . . . . . . . . . . . . 59
4.2.7 Summery of the Observation . . . . . . . . . . . . . . . . . . . . . 59
Chapter 5 Conclusion and Future Work 61
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
References 67
Appendix A — Formula 73
A.1 Expression of Mathematical Simulation . . . . . . . . . . . . . . . . 73
Appendix B — Source Code 75
B.1 Clausius-Mossoti Factor . . . . . . . . . . . . . . . . . . . . . . . . 75
B.2 Closed-Form of U and Z . . . . . . . . . . . . . . . . . . . . . . . . 76
B.3 Curl of TWDEP Plot . . . . . . . . . . . . . . . . . . . . . . . . . . 78
B.4 Unified DEP Simulation Plot . . . . . . . . . . . . . . . . . . . . . . 82
-
dc.language.isoen-
dc.subject電動力學zh_TW
dc.subject介電泳zh_TW
dc.subject旅波介電泳zh_TW
dc.subject電旋轉zh_TW
dc.subject微流道zh_TW
dc.subject血球分離zh_TW
dc.subject實驗室晶片zh_TW
dc.subjectElectrorotationen
dc.subjectElectrodynamicsen
dc.subjectDielectrophoresisen
dc.subjectLab-on-a-chip Technologyen
dc.subjectBlood Cell Separationen
dc.subjectMicrofluidic Channelen
dc.subjectTraveling Wave Dielectrophoresisen
dc.title探討旅波介電泳對於介電溶液中粒子運動之影響zh_TW
dc.titleExploring the Influence of Traveling-wave Dielectrophoresis on Particle Dynamics in Dielectric Solutionsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.coadvisor范育睿zh_TW
dc.contributor.coadvisorYu-Jui Fanen
dc.contributor.oralexamcommittee李雨;張子璿;林詳淇zh_TW
dc.contributor.oralexamcommitteeU Lei;Tzu-Hsuan Chang;Shiang-Chi Linen
dc.subject.keyword電動力學,介電泳,旅波介電泳,電旋轉,微流道,血球分離,實驗室晶片,zh_TW
dc.subject.keywordElectrodynamics,Dielectrophoresis,Traveling Wave Dielectrophoresis,Electrorotation,Microfluidic Channel,Blood Cell Separation,Lab-on-a-chip Technology,en
dc.relation.page86-
dc.identifier.doi10.6342/NTU202400726-
dc.rights.note未授權-
dc.date.accepted2024-02-19-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
10.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved