請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92188完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡璧合 | zh_TW |
| dc.contributor.advisor | Pi-Ho Hu | en |
| dc.contributor.author | 劉杰 | zh_TW |
| dc.contributor.author | Jay Liu | en |
| dc.date.accessioned | 2024-03-08T16:12:42Z | - |
| dc.date.available | 2024-03-09 | - |
| dc.date.copyright | 2024-03-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-19 | - |
| dc.identifier.citation | [1]J. Ajayan et al., “Ferroelectric Field Effect Transistors (FeFETs): Advancements, challenges and exciting prospects for next generation Non-Volatile Memory (NVM) applications,” Materials Today Communications, vol. 35. 2023. doi: 10.1016/j.mtcomm.2023.105591.
[2]D. P. Chu, “A novel ferroelectric FET based memory cell of minimum size and non-destructive reading,” Integrated Ferroelectrics, vol. 61, 2004, doi: 10.1080/10584580490458829. [3]K. J. Kuhn, “Moore’s law past 32nm: Future challenges in device scaling,” in Proceedings - 2009 13th International Workshop on Computational Electronics, IWCE 2009, 2009. doi: 10.1109/IWCE.2009.5091124. [4]IRDS, “International Roadmap for Devices and Systems (IRDS),” IEEE. [5]T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, “Ferroelectricity in hafnium oxide thin films,” Appl Phys Lett, vol. 99, no. 10, 2011, doi: 10.1063/1.3634052. [6]T. Francois et al., “Ferroelectric HfO2 for memory applications: Impact of Si doping technique and bias pulse engineering on switching performance,” in 2019 IEEE 11th International Memory Workshop, IMW 2019, 2019. doi: 10.1109/IMW.2019.8739664. [7]R. Batra et al., “Search for Ferroelectric Binary Oxides: Chemical and Structural Space Exploration Guided by Group Theory and Computations,” Chemistry of Materials, vol. 32, no. 9, 2020, doi: 10.1021/acs.chemmater.9b05324. [8]Z. Weng, L. Zhao, C. Lee, and Y. Zhao, “Phase Transitions and Anti-Ferroelectric Behaviors in Hf1-xZrxO2Films,” IEEE Electron Device Letters, vol. 44, no. 10, 2023, doi: 10.1109/LED.2023.3311316. [9]D. Fischer and A. Kersch, “The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles,” Appl Phys Lett, vol. 92, no. 1, 2008, doi: 10.1063/1.2828696. [10]S. S. Cheema et al., “Enhanced ferroelectricity in ultrathin films grown directly on silicon,” Nature, vol. 580, no. 7804, 2020, doi: 10.1038/s41586-020-2208-x. [11]L. Jin, F. Li, and S. Zhang, “Decoding the fingerprint of ferroelectric loops: Comprehension of the material properties and structures,” Journal of the American Ceramic Society, vol. 97, no. 1, 2014, doi: 10.1111/jace.12773. [12]A. Toriumi et al., “Material perspectives of HfO2-based ferroelectric films for device applications,” in Technical Digest - International Electron Devices Meeting, IEDM, 2019. doi: 10.1109/IEDM19573.2019.8993464. [13]The Ferroelectric Company, Ferroelectric hafnium oxide FE-HfO2: The ideal memory material. [14]J. Muller et al., “Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories,” in Technical Digest - International Electron Devices Meeting, IEDM, 2013. doi: 10.1109/IEDM.2013.6724605. [15]L. Zhang, L. Li, J. He, and M. Chan, “Modeling short-channel effect of elliptical gate-all-around MOSFET by effective radius,” IEEE Electron Device Letters, vol. 32, no. 9, 2011, doi: 10.1109/LED.2011.2159358. [16]M. J. H. Van Dal et al., “Highly manufacturable FinFETs with sub-10nm fin width and high aspect ratio fabricated with immersion lithography,” in Digest of Technical Papers - Symposium on VLSI Technology, 2007. doi: 10.1109/VLSIT.2007.4339747. [17]M. Hoffmann, S. Slesazeck, and T. Mikolajick, “Progress and future prospects of negative capacitance electronics: A materials perspective,” APL Materials, vol. 9, no. 2. 2021. doi: 10.1063/5.0032954. [18]S. Zhang et al., “Low Voltage Operating 2D MoS2 Ferroelectric Memory Transistor with Hf1-xZrxO2 Gate Structure,” Nanoscale Res Lett, vol. 15, no. 1, 2020, doi: 10.1186/s11671-020-03384-z. [19]Sanjoy Deb, “Analytical model of Threshold Voltage and Sub-threshold Slope of SOI and SON MOSFETs: A comparative study,” Journal of Electron Devices, vol. 8, pp. 300–309, 2010. [20]A. I. Khan, A. Keshavarzi, and S. Datta, “The future of ferroelectric field-effect transistor technology,” Nature Electronics, vol. 3, no. 10. 2020. doi: 10.1038/s41928-020-00492-7. [21]H. Mulaosmanovic, E. T. Breyer, T. Mikolajick, and S. Slesazeck, “Reconfigurable frequency multiplication with a ferroelectric transistor,” Nat Electron, vol. 3, no. 7, 2020, doi: 10.1038/s41928-020-0413-0. [22]T. Schenk and S. Mueller, “A New Generation of Memory Devices Enabled by Ferroelectric Hafnia and Zirconia,” in IEEE International Symposium on Applications of Ferroelectric, ISAF 2021, International Symposium on Integrated Functionalities, ISIF 2021 and Piezoresponse Force Microscopy Workshop, PFM 2021 - Proceedings, 2021. doi: 10.1109/ISAF51943.2021.9477377. [23]M. Tarkov, F. Tikhonenko, V. Popov, V. Antonov, A. Miakonkikh, and K. Rudenko, “Ferroelectric Devices for Content-Addressable Memory,” Nanomaterials, vol. 12, no. 24. 2022. doi: 10.3390/nano12244488. [24]S. Fujii and M. Saitoh, “Ferroelectric Tunnel Junction,” Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices, pp. 437–449, Jan. 2019, doi: 10.1016/B978-0-08-102430-0.00021-8. [25]S. Oh, H. Hwang, and I. K. Yoo, “Ferroelectric materials for neuromorphic computing,” APL Mater, vol. 7, no. 9, 2019, doi: 10.1063/1.5108562. [26]S. Dünkel et al., “A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond,” in Technical Digest - International Electron Devices Meeting, IEDM, 2018. doi: 10.1109/IEDM.2017.8268425. [27]T. Ali et al., “High Endurance Ferroelectric Hafnium Oxide-Based FeFET Memory Without Retention Penalty,” IEEE Trans Electron Devices, vol. 65, no. 9, 2018, doi: 10.1109/TED.2018.2856818. [28]W. Wei et al., “Deep insights into the failure mechanisms in field-cycled ferroelectric Hf0.5Zr0.5O2Thin Film: TDDB characterizations and first-principles calculations,” in Technical Digest - International Electron Devices Meeting, IEDM, 2020. doi: 10.1109/IEDM13553.2020.9371932. [29]H. Ryu, K. Xu, J. Kim, S. Kang, J. Guo, and W. Zhu, “Exploring New Metal Electrodes for Ferroelectric Aluminum-Doped Hafnium Oxide,” IEEE Trans Electron Devices, vol. 66, no. 5, 2019, doi: 10.1109/TED.2019.2907070. [30]J. Hur et al., “Direct comparison of ferroelectric properties in Hf0.5Zr0.5O2 between thermal and plasma-enhanced atomic layer deposition,” Nanotechnology, vol. 31, no. 50, 2020, doi: 10.1088/1361-6528/aba5b7. [31]H. Mulaosmanovic, P. D. Lomenzo, U. Schroeder, S. Slesazeck, T. Mikolajick, and B. Max, “Reliability aspects of ferroelectric hafnium oxide for application in non-volatile memories,” in IEEE International Reliability Physics Symposium Proceedings, 2021. doi: 10.1109/IRPS46558.2021.9405215. [32]M. Pešić et al., “Physical Mechanisms behind the Field-Cycling Behavior of HfO2-Based Ferroelectric Capacitors,” Adv Funct Mater, vol. 26, no. 25, 2016, doi: 10.1002/adfm.201600590. [33]E. Yurchuk et al., “Charge-Trapping Phenomena in HfO2-Based FeFET-Type Nonvolatile Memories,” IEEE Trans Electron Devices, vol. 63, no. 9, 2016, doi: 10.1109/TED.2016.2588439. [34]G. Choe and S. Yu, “Variability Analysis for Ferroelectric Field-Effect Transistors,” in 2021 5th IEEE Electron Devices Technology and Manufacturing Conference, EDTM 2021, 2021. doi: 10.1109/EDTM50988.2021.9420980. [35]H. Mulaosmanovic, E. Chicca, M. Bertele, T. Mikolajick, and S. Slesazeck, “Mimicking biological neurons with a nanoscale ferroelectric transistor,” Nanoscale, vol. 10, no. 46, 2018, doi: 10.1039/c8nr07135g. [36]C. Garg et al., “Impact of Random Spatial Fluctuation in Non-Uniform Crystalline Phases on the Device Variation of Ferroelectric FET,” IEEE Electron Device Letters, vol. 42, no. 8, 2021, doi: 10.1109/LED.2021.3087335. [37]M. C. Chun et al., “Effect of wake-up on the polarization switching dynamics of Si doped HfO2 thin films with imprint,” J Alloys Compd, vol. 823, 2020, doi: 10.1016/j.jallcom.2020.153777. [38]C. Ma et al., “Sub-nanosecond memristor based on ferroelectric tunnel junction,” Nat Commun, vol. 11, no. 1, 2020, doi: 10.1038/s41467-020-15249-1. [39]C. Alessandri, P. Pandey, A. Abusleme, and A. Seabaugh, “Switching Dynamics of Ferroelectric Zr-Doped HfO2,” IEEE Electron Device Letters, vol. 39, no. 11, 2018, doi: 10.1109/LED.2018.2872124. [40]H. Mulaosmanovic et al., “Impact of Read Operation on the Performance of HfO2-Based Ferroelectric FETs,” IEEE Electron Device Letters, vol. 41, no. 9, 2020, doi: 10.1109/LED.2020.3007220. [41]E. Covi, H. Mulaosmanovic, B. Max, S. Slesazeck, and T. Mikolajick, “Ferroelectric-based synapses and neurons for neuromorphic computing,” Neuromorphic Computing and Engineering, vol. 2, no. 1, 2022, doi: 10.1088/2634-4386/ac4918. [42]C. Y. Liao et al., “Multibit Ferroelectric FET Based on Nonidentical Double HfZrO2for High-Density Nonvolatile Memory,” IEEE Electron Device Letters, vol. 42, no. 4, 2021, doi: 10.1109/LED.2021.3060589. [43]K. Ni, S. Thomann, O. Prakash, Z. Zhao, S. Deng, and H. Amrouch, “On the Channel Percolation in Ferroelectric FET Towards Proper Analog States Engineering,” in Technical Digest - International Electron Devices Meeting, IEDM, 2021. doi: 10.1109/IEDM19574.2021.9720631. [44]Y. S. Liu and P. Su, “Variability Analysis for Ferroelectric FET Nonvolatile Memories Considering Random Ferroelectric-Dielectric Phase Distribution,” IEEE Electron Device Letters, vol. 41, no. 3, 2020, doi: 10.1109/LED.2020.2967423. [45]Y. J. Lin, C. Y. Teng, C. Hu, C. J. Su, and Y. C. Tseng, “Impacts of surface nitridation on crystalline ferroelectric phase of Hf1-xZrxO2 and ferroelectric FET performance,” Appl Phys Lett, vol. 119, no. 19, 2021, doi: 10.1063/5.0062475. [46]G. Assat, D. Foix, C. Delacourt, A. Iadecola, R. Dedryvère, and J. M. Tarascon, “Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes,” Nat Commun, vol. 8, no. 1, 2017, doi: 10.1038/s41467-017-02291-9. [47]Y. Zhou et al., “The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle,” Comput Mater Sci, vol. 167, 2019, doi: 10.1016/j.commatsci.2019.05.041. [48]Jay Liu et al., “Comparative Study of Variability in FeFET Memories with Different Erase Voltages,” in International Conference on Solid State Devices and Materials, 2023. [49]S. Oh et al., “HfZrOx-based ferroelectric synapse device with 32 levels of conductance states for neuromorphic applications,” IEEE Electron Device Letters, vol. 38, no. 6, 2017, doi: 10.1109/LED.2017.2698083. [50]K. T. Chen et al., “Double Layers Omega FETs with Ferroelectric HfZrO2 for One-Transistor Memory,” in IEEE International Reliability Physics Symposium Proceedings, 2020. doi: 10.1109/IRPS45951.2020.9129088. [51]Chouprik et al., “WakeUp in a Hf0.5Zr0.5O2 Film: A CyclebyCycle Emergence of the Remnant Polarization via the Domain Depinning and the Vanishing of the Anomalous Polarization Switching,” ACS Appl Electron Mater, vol. 1, pp. 1092–1095, 2019. [52]M. Trentzsch et al., “A 28nm HKMG super low power embedded NVM technology based on ferroelectric FETs,” in Technical Digest - International Electron Devices Meeting, IEDM, 2017. doi: 10.1109/IEDM.2016.7838397. [53]K. Y. Hsiang et al., “FeRAM Recovery up to 200 Periods with Accumulated Endurance 1012 Cycles and an Applicable Array Circuit toward Unlimited eNVM Operations,” in Digest of Technical Papers - Symposium on VLSI Technology, 2023. doi: 10.23919/VLSITechnologyandCir57934.2023.10185274. [54]Y. K. Chang et al., “The Field-dependence Endurance Model and Its Mutual Effect in Hf-based Ferroelectrics,” in IEEE International Reliability Physics Symposium Proceedings, 2022. doi: 10.1109/IRPS48227.2022.9764420. [55]C. Y. Liao et al., “Endurance > 1011 Cycling of 3D GAA Nanosheet Ferroelectric FET with Stacked HfZrO2 to Homogenize Corner Field Toward Mitigate Dead Zone for High-Density eNVM,” in Digest of Technical Papers - Symposium on VLSI Technology, 2022. doi: 10.1109/VLSITechnologyandCir46769.2022.9830345. [56]P. J. Liao et al., “Characterization of Fatigue and Its Recovery Behavior in Ferroelectric HfZrO,” in Digest of Technical Papers - Symposium on VLSI Technology, 2021. [57]T. Gong et al., “105× Endurance Improvement of FE-HZO by an Innovative Rejuvenation Method for 1z Node NV-DRAM Applications,” in Digest of Technical Papers - Symposium on VLSI Technology, 2021. [58]C. Y. Chan, K. Y. Chen, H. K. Peng, and Y. H. Wu, “FeFET Memory Featuring Large Memory Window and Robust Endurance of Long-Pulse Cycling by Interface Engineering Using High-k AlON,” in Digest of Technical Papers - Symposium on VLSI Technology, 2020. doi: 10.1109/VLSITechnology18217.2020.9265103. [59]K. T. Chen et al., “Non-Volatile Ferroelectric FETs Using 5-nm Hf0.5Zr0.5O2 with High Data Retention and Read Endurance for 1T Memory Applications,” IEEE Electron Device Letters, vol. 40, no. 3, 2019, doi: 10.1109/LED.2019.2896231. [60]J. H. Bae et al., “Highly Scaled, High Endurance, Ω-Gate, Nanowire Ferroelectric FET Memory Transistors,” IEEE Electron Device Letters, vol. 41, no. 11, 2020, doi: 10.1109/LED.2020.3028339. [61]S. C. Yan et al., “High Speed and Large Memory Window Ferroelectric HfZrO2 FinFET for High-Density Nonvolatile Memory,” IEEE Electron Device Letters, 2021, doi: 10.1109/LED.2021.3097777. [62]Z. Wang et al., “Standby Bias Improvement of Read after Write Delay in Ferroelectric Field Effect Transistors,” in Technical Digest - International Electron Devices Meeting, IEDM, 2021. doi: 10.1109/IEDM19574.2021.9720502. [63]R. Ichihara et al., “Re-examination of Vth Window and Reliability in HfO2 FeFET Based on the Direct Extraction of Spontaneous Polarization and Trap Charge during Memory Operation,” in Digest of Technical Papers - Symposium on VLSI Technology, 2020. doi: 10.1109/VLSITechnology18217.2020.9265055. [64]K. Florent et al., “Vertical Ferroelectric HfO2 FET based on 3-D NAND Architecture: Towards Dense Low-Power Memory,” in Technical Digest - International Electron Devices Meeting, IEDM, 2018. doi: 10.1109/IEDM.2018.8614710. [65]M. Pesic et al., “Root cause of degradation in novel HfO2-based ferroelectric memories,” in IEEE International Reliability Physics Symposium Proceedings, 2016. doi: 10.1109/IRPS.2016.7574619. [66]C.-H. Wu and J. Liu et al., “Robust Recovery Scheme for MFIS-FeFETs at Optimal Timing with Prolonged Endurance: Fast-Unipolar Pulsing (100 ns), Nearly Zero Memory Window Loss (0.02 %), and Self-Tracking Circuit Design,” in International Electronic Devices Meeting, 2023. [67]Mark Bohr, “Intel’s Revolutionary 22 nm Transistor Technology,” Intel, May 2011. [68]M. D. Ko, C. W. Sohn, C. K. Baek, and Y. H. Jeong, “Study on a scaling length model for tapered tri-gate FinFET based on 3-D simulation and analytical analysis,” IEEE Trans Electron Devices, vol. 60, no. 9, 2013, doi: 10.1109/TED.2013.2272789. [69]B. S. Doyle et al., “High performance fully-depleted tri-gate CMOS transistors,” IEEE Electron Device Letters, vol. 24, no. 4. 2003. doi: 10.1109/LED.2003.810888. [70]M. J. H. Van Dal et al., “Demonstration of scaled Ge p-channel FinFETs integrated on Si,” in Technical Digest - International Electron Devices Meeting, IEDM, 2012. doi: 10.1109/IEDM.2012.6479089. [71]N. Waldron et al., “An InGaAs/InP quantum well finfet using the replacement fin process integrated in an RMG flow on 300mm Si substrates,” in Digest of Technical Papers - Symposium on VLSI Technology, 2014. doi: 10.1109/VLSIT.2014.6894349. [72]M. Poljak, V. Jovanović, and T. Suligoj, “Improving bulk FinFET DC performance in comparison to SOI FinFET,” Microelectron Eng, vol. 86, no. 10, 2009, doi: 10.1016/j.mee.2009.01.066. [73]C. L. Lin et al., “Effects of fin width on device performance and reliability of double-gate n-type finfets,” IEEE Trans Electron Devices, vol. 60, no. 11, 2013, doi: 10.1109/TED.2013.2281296. [74]D. Ha et al., “Molybdenum-gate HfO2 CMOS FinFET technology,” in Technical Digest - International Electron Devices Meeting, IEDM, 2004. doi: 10.1109/iedm.2004.1419248. [75]X. He et al., “Impact of aggressive fin width scaling on FinFET device characteristics,” in Technical Digest - International Electron Devices Meeting, IEDM, 2018. doi: 10.1109/IEDM.2017.8268427. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92188 | - |
| dc.description.abstract | 這項研究全面分析了基於二氧化鉿(HfO2)的鐵電場效電晶體(ferroelectric field-effect transistor, FeFET)在元件和元件之間的變異度和耐久度問題。首先,我們研究了抹除電壓(erase voltage)對鐵電場效電晶體的變異度之影響。我們採用了系統性的脈衝方法進行分析,從結果可以發現鐵電場效電晶體的變異度與偶極子的切換和捕獲行為密切相關。因此,透過調整抹除電壓可以有效抑制鐵電場效電晶體的變異度。結果證明了在適當的抹除電壓下操作可以有效地降低高閾值電壓變異度(σHVT),進而從128 mV降低到119 mV。除了改變操作電壓外,我們還透過in-situ NH3探討了元件界面優化對其變異度的影響。結果顯示界面優化有效地減少了TiN和HZO界面之間的氧空缺,從而降低了變異度。此外,對於記憶體應用而言,耐久性是一個關鍵且重要的指標。我們研究恢復技術啟用的最佳時機,以增強鐵電場效電晶體的耐久性,結果顯示使用恢復技術可以使耐久性週期延長100 倍。最後為了實現更高密度的鐵電記憶體,我們製造10奈米HZO的鰭式鐵電場效電晶體(FE-FinFET)。鰭式鐵電場效電晶體製造過程包括利用乾式蝕刻的方式定義主動區(active area)。乾式蝕刻定義主動區的過程會造成通道的側壁粗糙度上升,我們在相同的鐵電面積下,比較鰭式鐵電場效電晶體和平面鐵電場效電晶體之間的側壁數量差異,來評估蝕刻所引起的鰭式鐵電場效電晶體側壁損傷的影響。從量測的結果得知當通道寬度縮減並導致側壁損傷的比例增加時,捕獲行為會嚴重影響鐵電性的發揮,造成鰭式鐵電場效電晶體無法看到記憶視窗。當透過合成氣體退火(forming gas annealing)後,雖然鰭式鐵電場效電晶體依然無法看到記憶視窗,但從萃取出的閾值電壓(VTH) 和次臨界擺幅(SS)的變化幅度結果說明了合成氣體退火可以有效減少電子捕獲效應。此外,透過界面優化後,鰭式鐵電場效電晶體通道數量為50的時候,次臨界擺幅改善了33% 並且明顯優於電晶體通道數為5 和20 的條件,這個結果顯示隨著側壁數量的增加,次臨界擺幅改善的趨勢更為明顯。以上兩個結果意味著合成氣體退火能夠有效修復界面處的陷阱。 | zh_TW |
| dc.description.abstract | This study comprehensively analyzes HfO2-based ferroelectric Metal Ferroelectric Insulator Semiconductors (MFIS), considering the device-to-device variability and endurance issues. First, we investigate the impact of erase voltage on the variability of ferroelectric field effect transistor (FeFET) devices. We employed a systematic pulsing methodology and demonstrated that the variability of FeFET devices is closely linked to the dipole switching and trapping behavior. Therefore, the variability of FeFET can be effectively controlled by adjusting the erase voltage. Our results indicate that operating at an appropriate voltage effectively reduced the threshold voltage variation (σHVT) from 128 mV to 119 mV. In addition to altering the operation voltage, we also explored the impact of device interface optimization on its variability via in-situ NH3 treatment. The results demonstrated that interface optimization effectively mitigates oxygen vacancies between the TiN and HZO surface, thereby reducing variation.
Furthermore, endurance is a crucial indicator, especially for memory applications. We conducted a study to determine the recovery process to enhance the endurance of FeFETs. We applied a recovery treatment, resulting in a remarkable extension of endurance cycles by 102 times. Finally, we fabricated ferroelectric FinFET (FE-FinFET) based on 10 nm HZO to achieve higher-density ferroelectric memory. The manufacturing process of FE-FinFET included defining the active area through dry etching. We evaluated the impact of etching-induced damage on the sidewalls of FE-FinFETs by comparing sidewall numbers between FE-FinFET and planar FeFET structures with the same ferroelectric dimensions. Results from the measurements revealed that as the channel width decreases, leading to a higher proportion of sidewall damage, trapping effect behavior starts to influence the ferroelectric performance. Consequently, FE-FinFET becomes unable to exhibit a memory window. Even after forming gas annealing, FE-FinFET still failed to show a memory window. However, the extracted changes in threshold voltage (VTH) and subthreshold swing (SS) indicated that forming gas annealing effectively mitigates electron trapping effects. Furthermore, during interface optimization, especially when the channel number of FE-FinFETs was 50, the subthreshold swing improved by 33%, which is obviously better than the conditions where the number of transistor channels was 5 and 20. This result suggests that with an increase in sidewall numbers, the trend of improving subthreshold swing becomes more pronounced. Both outcomes imply that forming gas annealing excels in repairing traps at the interface. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-08T16:12:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-08T16:12:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 II
摘要 IV Abstract VI Contents VIII List of Figures X List of Tables XVIII Chapter 1. Introduction 1 1.1 Background and Motivation 1 1.2 Development of HfO2-Based Ferroelectric Materials 4 1.3 Application of HfO2-Based Ferroelectric Materials 6 1.4 Operation Methodology and Important Indicator on FeFETs 12 1.5 Reliability Issues in Ferroelectric Devices 15 1.6 Organization of This Study 17 Chapter 2. Comparative Study on FeFET Memories with Different Erase Voltages Combined with in-situ Plasma Treatment 18 2.1 Introduction 18 2.2 Device Fabrication and Structure 21 2.3 Comparative Study of Different Erase Voltages 23 2.3.1 Reasons for Higher Variability in HVT State 23 2.3.2 Measurement Procedure and Analysis Method 27 2.3.3 Utilizing Appropriate Erase Voltages to Reduce HVT Variability 31 2.4 Impact of NH3 Treatment on FeFETs 34 2.5 Influence of NH3 Treatment on Variability of FeFETs 37 2.5.1 The Impact of Variability on VTH 37 2.5.2 Impact of NH3 Treatment on the Memory Window of FeFETs 42 2.6 Conclusion 45 Chapter 3. Recovery Techniques on FeFETs 47 3.1 Introduction 47 3.2 Switching Dynamics on FeFETs 48 3.3 Fatigue Behaviors and Single Recovery Mechanism 53 3.4 Conclusion 60 Chapter 4. Impact of Etching Damage on Sidewalls for FE-FinFETs 62 4.1 Introduction 62 4.2 Device Fabrication and Structure 64 4.3 Method for Analyzing Sidewall Damage 69 4.4 Suppression of Sidewall-Induced Damage by Forming Gas Annealing 70 4.5 Conclusion 76 Chapter 5. Conclusion and Future Work 78 5.1 Conclusion 78 5.2 Future Work 79 Reference 81 | - |
| dc.language.iso | en | - |
| dc.subject | 鐵電場效電晶體 | zh_TW |
| dc.subject | 二氧化鉿薄膜 | zh_TW |
| dc.subject | 變異度 | zh_TW |
| dc.subject | 操作電壓 | zh_TW |
| dc.subject | 界面處理 | zh_TW |
| dc.subject | 耐久性 | zh_TW |
| dc.subject | 恢復技術 | zh_TW |
| dc.subject | 鰭式場效電晶體 | zh_TW |
| dc.subject | 蝕刻損傷 | zh_TW |
| dc.subject | 合成氣體退火 | zh_TW |
| dc.subject | etching damage | en |
| dc.subject | forming gas annealing | en |
| dc.subject | FeFETs | en |
| dc.subject | hafnium-based thin film | en |
| dc.subject | variability | en |
| dc.subject | operation voltage | en |
| dc.subject | interface treatment | en |
| dc.subject | endurance | en |
| dc.subject | recovery technique | en |
| dc.subject | FinFET | en |
| dc.title | 鐵電場效電晶體變異度及耐久性之分析 | zh_TW |
| dc.title | Investigation of Variability and Endurance for FeFET Memory | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 胡振國;蘇俊榮 | zh_TW |
| dc.contributor.oralexamcommittee | Jenn-Gwo Hwu;Chun-Jung Su | en |
| dc.subject.keyword | 鐵電場效電晶體,二氧化鉿薄膜,變異度,操作電壓,界面處理,耐久性,恢復技術,鰭式場效電晶體,蝕刻損傷,合成氣體退火, | zh_TW |
| dc.subject.keyword | FeFETs,hafnium-based thin film,variability,operation voltage,interface treatment,endurance,recovery technique,FinFET,etching damage,forming gas annealing, | en |
| dc.relation.page | 91 | - |
| dc.identifier.doi | 10.6342/NTU202400717 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-02-19 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 10.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
