請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92161完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何率慈 | zh_TW |
| dc.contributor.advisor | Shuay-Tsyr Ho | en |
| dc.contributor.author | 蕭雲豪 | zh_TW |
| dc.contributor.author | Yun-Hao Hsiao | en |
| dc.date.accessioned | 2024-03-07T16:22:01Z | - |
| dc.date.available | 2024-03-08 | - |
| dc.date.copyright | 2024-03-07 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-09-12 | - |
| dc.identifier.citation | 丁介郁、邱貿凱、官俊榮 (2014)。氣候條件對於臺灣蔬菜批發價格之影響。台灣農會學報,15(4),442-448。
中央氣象局全球資訊網,2023。颱風資料庫,2002-2021。https://rdc28.cwb.gov.tw/TDB/public/warning_typhoon_list/ 行政院農業委員會 ,2023 。農產品批發市場交易行情站,2002-2021。https://amis.afa.gov.tw/main/About.aspx。 交通部中央氣象局 ,2023。農業氣象觀測網監測系統,2002-2021。https://agr.cwb.gov.tw/NAGR/history/station_day。 李慎恩 (2021) 。優化臺灣鳳梨供應體系拓展國際市場的關鍵。豐年雜誌,71(9),P90 - 95 唐佳惠、官青杉 (2022)。淺談當前鳳梨鮮果輸銷日本市場面臨之瓶頸。技術服務,33(4),1-5。 高君逸 (2022)。ECFA回顧與展望。經濟前瞻,204,45-51。 陳思如 (2021)。外銷鳳梨集貨場果實品質自主檢核。高雄區農技報導,159, 3-15。 黃世嫻 (2016)。臺灣主要水果產業出口結構與競爭力實證分析。臺中科技大學企業管理系碩士班學位論文。 黃聖茹、蕭清仁 (2011)。加入WTO後進口果品價格替代關係之估計。亞太經濟管理評論,15(1),41-58。 楊壹婷 (2016)。臺灣水果價量關係之研究。臺灣大學農業經濟學研究所學位論文。 葉敬軒、魯真 (2000)。臺灣水果價格之平穩性測定。農業經濟半年刊,68,57-90。 魯眞、王策玄 (2005)。臺灣水果需求及消費型態分析。農業經濟叢刊,10(2),125-162。 譚偉恩 (2022)。貿易爭執現象之研究:以臺灣的牛肉、豬肉和鳳梨貿易事件為 例。遠景基金會季刊,23(2),115-169。 Baaken, D., & Hess, S. (2021). Forecasting Regional Milk Production Quantity: A Comparison of Regression Models and Machine Learning. Bhandari, H. N., Rimal, B., Pokhrel, N. R., Rimal, R., Dahal, K. R., & Khatri, R. K. (2022). Predicting stock market index using LSTM. Machine Learning with Applications, 9, 100320. Cao, A. N., Gebrekidan, B. H., Heckelei, T., & Robe, M. A. (2022). County-level USDA Crop Progress and Condition data, machine learning, and commodity market surprises. Chen, Z., Goh, H. S., Sin, K. L., Lim, K., Chung, N. K. H., & Liew, X. Y. (2021). Automated agriculture commodity price prediction system with machine learning techniques. arXiv preprint arXiv:2106.12747. Dharavath, R., & Khosla, E. (2019, December). Seasonal ARIMA to forecast fruits and vegetable agricultural prices. In 2019 IEEE International Symposium on Smart Electronic Systems (iSES)(Formerly iNiS) (pp. 47-52). IEEE.. Hegazy, O., Soliman, O. S., & Salam, M. A. (2014). A machine learning model for stock market prediction. arXiv preprint arXiv:1402.7351. Jadhav, V., CHINNAPPA, R. B., & Gaddi, G. M. (2017). Application of ARIMA model for forecasting agricultural prices. Li, J., Zhang, T., Shao, Y., & Ju, Z. (2023). Comparing Machine Learning Algorithms for Soil Salinity Mapping Using Topographic Factors and Sentinel-1/2 Data: A Case Study in the Yellow River Delta of China. Remote Sensing, 15(9), 2332. PARK, T. S., KEUM, J., KIM, H., KIM, Y. R., & MIN, Y. (2022). PREDICTING KOREAN FRUIT PRICES USING LSTM ALGORITHM. Journal of the Korean Society for Industrial and Applied Mathematics, 26(1), 23-48. Rahman, N. M. F. (2010). Forecasting of boro rice production in Bangladesh: An ARIMA approach. Journal of the Bangladesh Agricultural University, 8(452-2016-35761). Zoabi, Y., Deri-Rozov, S., & Shomron, N. (2021). Machine learning-based prediction of COVID-19 diagnosis based on symptoms. npj digital medicine, 4(1), 3. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92161 | - |
| dc.description.abstract | 臺灣自古享有“水果王國”的美譽。然而,臺灣的水果價格波動較大。了解未來的價格趨勢和影響價格的因素,將為買家和賣家以及政策制定者提供更大的保證,並有助於製定有效的政策來減輕變化。本研究以臺灣前三大出口水果釋迦、鳳梨、芒果為研究對象,建立相應的價格預測模型。該研究涵蓋臺灣北部、中部和南部三個市場。本研究使用LSTM(長短期記憶)模型,對2002年至2021年的價格數據進行預測。結果表明,該模型準確捕捉了價格趨勢的波動,鳳梨和芒果的價格預測更加準確。本研究展示了預測農作物價格的一個有前景的工具。 | zh_TW |
| dc.description.abstract | Taiwan has enjoyed the reputation of “fruit kingdom” for a historically long time. However, the prices of fruits in Taiwan fluctuate greatly. Understanding the future price trends and factors influencing prices, it would provide greater assurance for both buyers and sellers, as well as policymakers, and help inform effective policies mitigating variation. This study focuses on the top three exporting fruit in Taiwan, pineapple, custard apple, and mango, and establishes corresponding price prediction models. The research covers three markets in northern, central, and southern Taiwan. This research uses the LSTM (Long Short-Term Memory) model, to predict price data for 2002 to 2021.Results show that the models accurately capture the fluctuations of price trend. Price prediction for pineapple and mango are more accurate. This study show case a promising tool for predicting price of agricultural crops. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-07T16:22:01Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-07T16:22:01Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝...........................................................................i
中文摘要......................................................................ii 英文摘要......................................................................iii 目錄..........................................................................iv 圖目錄........................................................................vi 表目錄.......................................................................viii 第一章 緒論...................................................................1 第二章 文獻回顧...............................................................6 2.1 ARIMA模型相關研究....................................................6 2.2 機器學習相關研究.......................................................7 2.3 臺灣蔬果價格相關研究...................................................8 第三章 數據處理...............................................................10 3.1 資料集的形成..........................................................10 3.2 資料處理..............................................................11 3.3 資料集拆分為訓練集與測試集............................................12 3.4 敘述統計..............................................................12 第四章 研究方法 ..............................................................13 4.1 數理模型..............................................................13 4.2 模型評估方法..........................................................19 第五章 結果...................................................................21 5.1 ARIMA...............................................................21 5.2 LSTM................................................................23 5.2.1 鳳梨............................................................23 5.2.2 芒果............................................................27 5.2.3 釋迦............................................................32 5.3 相關係數矩陣..........................................................36 5.3.1 鳳梨相關係數矩陣................................................37 5.3.2 芒果相關係數矩陣................................................39 5.3.3 釋迦相關係數矩陣................................................42 5.3.4 模型誤差比較....................................................45 第六章 討論與建議.............................................................47 6.1 討論..................................................................47 6.2 建議..................................................................47 參考文獻......................................................................49 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 臺灣水果 | zh_TW |
| dc.subject | 價格預測 | zh_TW |
| dc.subject | 神經網路 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 長短期記憶模型 | zh_TW |
| dc.subject | machine learning | en |
| dc.subject | Taiwanese fruits | en |
| dc.subject | price prediction | en |
| dc.subject | LSTM | en |
| dc.subject | neural networks | en |
| dc.title | 臺灣水果價格之預測 ─ 機器學習之應用 | zh_TW |
| dc.title | Price prediction of fruit crops in Taiwan : An application of machine learning | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊豐安;林巧涵 | zh_TW |
| dc.contributor.oralexamcommittee | Feng-An Yang;Chiao-Han Lin | en |
| dc.subject.keyword | 價格預測,臺灣水果,機器學習,神經網路,長短期記憶模型, | zh_TW |
| dc.subject.keyword | price prediction,Taiwanese fruits,machine learning,neural networks,LSTM, | en |
| dc.relation.page | 50 | - |
| dc.identifier.doi | 10.6342/NTU202304227 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-09-13 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農業經濟學系 | - |
| 顯示於系所單位: | 農業經濟學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
