請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92133
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 閔明源 | zh_TW |
dc.contributor.advisor | Ming-Yuan Min | en |
dc.contributor.author | 鄭淵仁 | zh_TW |
dc.contributor.author | Yuan Ren Cheng | en |
dc.date.accessioned | 2024-03-07T16:13:34Z | - |
dc.date.available | 2024-03-08 | - |
dc.date.copyright | 2024-03-07 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-02-17 | - |
dc.identifier.citation | 1. Driscoll, M. and M. Chalfie, The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature, 1991. 349(6310): p. 588-93.
2. Lai, C.C., et al., Sequence and transmembrane topology of MEC-4, an ion channel subunit required for mechanotransduction in Caenorhabditis elegans. J Cell Biol, 1996. 133(5): p. 1071-81. 3. O''Hagan, R., M. Chalfie, and M.B. Goodman, The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci, 2005. 8(1): p. 43-50. 4. Chen, X. and M. Chalfie, Regulation of mechanosensation in C. elegans through ubiquitination of the MEC-4 mechanotransduction channel. J Neurosci, 2015. 35(5): p. 2200-12. 5. Katta, S., M. Krieg, and M.B. Goodman, Feeling force: physical and physiological principles enabling sensory mechanotransduction. Annu Rev Cell Dev Biol, 2015. 31: p. 347-71. 6. Chen, Y., et al., MEC-10 and MEC-19 Reduce the Neurotoxicity of the MEC-4(d) DEG/ENaC Channel in Caenorhabditis elegans. G3 (Bethesda), 2016. 6(4): p. 1121-30. 7. Savage, C., et al., mec-7 is a beta-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. Genes Dev, 1989. 3(6): p. 870-81. 8. Savage, C., et al., Mutations in the Caenorhabditis elegans beta-tubulin gene mec-7: effects on microtubule assembly and stability and on tubulin autoregulation. J Cell Sci, 1994. 107 ( Pt 8): p. 2165-75. 9. Sanfeliu-Cerdan, N., et al., A MEC-2/stomatin condensate liquid-to-solid phase transition controls neuronal mechanotransduction during touch sensing. Nat Cell Biol, 2023. 25(11): p. 1590-1599. 10. Chelur, D.S., et al., The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature, 2002. 420(6916): p. 669-73. 11. Goodman, M.B., et al., MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature, 2002. 415(6875): p. 1039-42. 12. Lapatsina, L., et al., Regulation of ASIC channels by a stomatin/STOML3 complex located in a mobile vesicle pool in sensory neurons. Open Biol, 2012. 2(6): p. 120096. 13. Agostinelli, E., et al., A Role for STOML3 in Olfactory Sensory Transduction. eNeuro, 2021. 8(2). 14. Morgan, M., et al., Stomatin-like protein 3 modulates the responses of Adelta, but not C fiber bone afferent neurons to noxious mechanical stimulation in an animal model of acute experimental bone pain. Mol Pain, 2023. 19: p. 17448069231222407. 15. Duggan, A., J. Garcia-Anoveros, and D.P. Corey, The PDZ domain protein PICK1 and the sodium channel BNaC1 interact and localize at mechanosensory terminals of dorsal root ganglion neurons and dendrites of central neurons. J Biol Chem, 2002. 277(7): p. 5203-8. 16. Kurschner, C., et al., CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins. Mol Cell Neurosci, 1998. 11(3): p. 161-72. 17. Coste, B., et al., Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science, 2010. 330(6000): p. 55-60. 18. Ranade, S.S., et al., Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature, 2014. 516(7529): p. 121-5. 19. Woo, S.H., E.A. Lumpkin, and A. Patapoutian, Merkel cells and neurons keep in touch. Trends Cell Biol, 2015. 25(2): p. 74-81. 20. Waldmann, R., et al., A proton-gated cation channel involved in acid-sensing. Nature, 1997. 386(6621): p. 173-7. 21. Baron, A., et al., Venom toxins in the exploration of molecular, physiological and pathophysiological functions of acid-sensing ion channels. Toxicon, 2013. 75: p. 187-204. 22. Baron, A. and E. Lingueglia, Pharmacology of acid-sensing ion channels - Physiological and therapeutical perspectives. Neuropharmacology, 2015. 94: p. 19-35. 23. Jasti, J., et al., Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature, 2007. 449(7160): p. 316-23. 24. Noel, J., et al., Current perspectives on acid-sensing ion channels: new advances and therapeutic implications. Expert Rev Clin Pharmacol, 2010. 3(3): p. 331-46. 25. Lin, S.H., W.H. Sun, and C.C. Chen, Genetic exploration of the role of acid-sensing ion channels. Neuropharmacology, 2015. 94: p. 99-118. 26. Page, A.J., et al., Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut, 2005. 54(10): p. 1408-15. 27. Ugawa, S., et al., Acid-sensing ion channel-1b in the stereocilia of mammalian cochlear hair cells. Neuroreport, 2006. 17(12): p. 1235-9. 28. Hughes, P.A., et al., Localization and comparative analysis of acid-sensing ion channel (ASIC1, 2, and 3) mRNA expression in mouse colonic sensory neurons within thoracolumbar dorsal root ganglia. J Comp Neurol, 2007. 500(5): p. 863-75. 29. Wemmie, J.A., R.J. Taugher, and C.J. Kreple, Acid-sensing ion channels in pain and disease. Nat Rev Neurosci, 2013. 14(7): p. 461-71. 30. Richter, T.A., et al., Acid-sensitive two-pore domain potassium (K2P) channels in mouse taste buds. J Neurophysiol, 2004. 92(3): p. 1928-36. 31. Kobayashi, H., et al., Sex differences in the expression profile of acid-sensing ion channels in the mouse urinary bladder: a possible involvement in irritative bladder symptoms. BJU Int, 2009. 104(11): p. 1746-51. 32. Chung, W.S., et al., Extracellular acidosis activates ASIC-like channels in freshly isolated cerebral artery smooth muscle cells. Am J Physiol Cell Physiol, 2010. 298(5): p. C1198-208. 33. Dong, X., et al., Expression of acid-sensing ion channels in intestinal epithelial cells and their role in the regulation of duodenal mucosal bicarbonate secretion. Acta Physiol (Oxf), 2011. 201(1): p. 97-107. 34. Swain, S.M., et al., Proton-gated ion channels in mouse bone marrow stromal cells. Stem Cell Res, 2012. 9(2): p. 59-68. 35. Chen, C.C., et al., A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci U S A, 1998. 95(17): p. 10240-5. 36. Diochot, S., et al., Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature, 2012. 490(7421): p. 552-5. 37. Price, M.P., P.M. Snyder, and M.J. Welsh, Cloning and expression of a novel human brain Na+ channel. J Biol Chem, 1996. 271(14): p. 7879-82. 38. Waldmann, R., et al., The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J Biol Chem, 1996. 271(18): p. 10433-6. 39. Price, M.P., et al., The mammalian sodium channel BNC1 is required for normal touch sensation. Nature, 2000. 407(6807): p. 1007-11. 40. Peng, B.G., et al., Acid-sensing ion channel 2 contributes a major component to acid-evoked excitatory responses in spiral ganglion neurons and plays a role in noise susceptibility of mice. J Neurosci, 2004. 24(45): p. 10167-75. 41. Montano, J.A., et al., The expression of ENa(+)C and ASIC2 proteins in Pacinian corpuscles is differently regulated by TrkB and its ligands BDNF and NT-4. Neurosci Lett, 2009. 463(2): p. 114-8. 42. Lu, Y., et al., The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron, 2009. 64(6): p. 885-97. 43. Gannon, K.P., et al., Impaired pressure-induced constriction in mouse middle cerebral arteries of ASIC2 knockout mice. Am J Physiol Heart Circ Physiol, 2008. 294(4): p. H1793-803. 44. Rahman, F., et al., Detection of acid-sensing ion channel 3 (ASIC3) in periodontal Ruffini endings of mouse incisors. Neurosci Lett, 2011. 488(2): p. 173-7. 45. Wu, W.L., et al., Targeting ASIC3 for pain, anxiety, and insulin resistance. Pharmacol Ther, 2012. 134(2): p. 127-38. 46. Wu, W.L., et al., Mice lacking Asic3 show reduced anxiety-like behavior on the elevated plus maze and reduced aggression. Genes Brain Behav, 2010. 9(6): p. 603-14. 47. Price, M.P., et al., The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron, 2001. 32(6): p. 1071-83. 48. Molliver, D.C., et al., ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons. Mol Pain, 2005. 1: p. 35. 49. Lin, S.H., et al., Evidence for the involvement of ASIC3 in sensory mechanotransduction in proprioceptors. Nat Commun, 2016. 7: p. 11460. 50. Tong, J., et al., Acid-sensing ion channels contribute to the effect of acidosis on the function of dendritic cells. J Immunol, 2011. 186(6): p. 3686-92. 51. Ikeuchi, M., et al., Role of ASIC3 in the primary and secondary hyperalgesia produced by joint inflammation in mice. Pain, 2008. 137(3): p. 662-669. 52. Akopian, A.N., et al., A new member of the acid-sensing ion channel family. Neuroreport, 2000. 11(10): p. 2217-22. 53. Lin, S.H., et al., Genetic mapping of ASIC4 and contrasting phenotype to ASIC1a in modulating innate fear and anxiety. Eur J Neurosci, 2015. 41(12): p. 1553-68. 54. Feldman, D.H., et al., Characterization of acid-sensing ion channel expression in oligodendrocyte-lineage cells. Glia, 2008. 56(11): p. 1238-49. 55. Xiong, Z.G., et al., Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell, 2004. 118(6): p. 687-98. 56. Yin, T., et al., Loss of Acid sensing ion channel-1a and bicarbonate administration attenuate the severity of traumatic brain injury. PLoS One, 2013. 8(8): p. e72379. 57. Friese, M.A., et al., Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med, 2007. 13(12): p. 1483-9. 58. Du, J., et al., Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala. Proc Natl Acad Sci U S A, 2014. 111(24): p. 8961-6. 59. Coryell, M.W., et al., Targeting ASIC1a reduces innate fear and alters neuronal activity in the fear circuit. Biol Psychiatry, 2007. 62(10): p. 1140-8. 60. Ziemann, A.E., et al., The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell, 2009. 139(5): p. 1012-21. 61. Kreple, C.J., et al., Acid-sensing ion channels contribute to synaptic transmission and inhibit cocaine-evoked plasticity. Nat Neurosci, 2014. 17(8): p. 1083-91. 62. Ziemann, A.E., et al., Seizure termination by acidosis depends on ASIC1a. Nat Neurosci, 2008. 11(7): p. 816-22. 63. Walder, R.Y., et al., ASIC1 and ASIC3 play different roles in the development of Hyperalgesia after inflammatory muscle injury. J Pain, 2010. 11(3): p. 210-8. 64. Roza, C., et al., Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, visceral mechanonociception and hearing. J Physiol, 2004. 558(Pt 2): p. 659-69. 65. Chen, C.C. and C.W. Wong, Neurosensory mechanotransduction through acid-sensing ion channels. J Cell Mol Med, 2013. 17(3): p. 337-49. 66. Omerbasic, D., et al., ASICs and mammalian mechanoreceptor function. Neuropharmacology, 2015. 94: p. 80-6. 67. Lin, Y.W., et al., Identification and characterization of a subset of mouse sensory neurons that express acid-sensing ion channel 3. Neuroscience, 2008. 151(2): p. 544-57. 68. Deval, E., et al., ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J, 2008. 27(22): p. 3047-55. 69. Su, Y.S., et al., Peripheral 5-HT(3) mediates mirror-image pain by a cross-talk with acid-sensing ion channel 3. Neuropharmacology, 2018. 130: p. 92-104. 70. Chen, W.N. and C.C. Chen, Acid mediates a prolonged antinociception via substance P signaling in acid-induced chronic widespread pain. Mol Pain, 2014. 10: p. 30. 71. Sluka, K.A., et al., Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain, 2003. 106(3): p. 229-239. 72. Lin, C.C., et al., An antinociceptive role for substance P in acid-induced chronic muscle pain. Proc Natl Acad Sci U S A, 2012. 109(2): p. E76-83. 73. Sluka, K.A., et al., ASIC3 in muscle mediates mechanical, but not heat, hyperalgesia associated with muscle inflammation. Pain, 2007. 129(1-2): p. 102-12. 74. Yen, Y.T., et al., Role of acid-sensing ion channel 3 in sub-acute-phase inflammation. Mol Pain, 2009. 5: p. 1. 75. Cheng, C.F., et al., Acid-sensing ion channel 3, but not capsaicin receptor TRPV1, plays a protective role in isoproterenol-induced myocardial ischemia in mice. Circ J, 2011. 75(1): p. 174-8. 76. Deval, E., et al., Acid-sensing ion channels in postoperative pain. J Neurosci, 2011. 31(16): p. 6059-66. 77. Hsieh, W.S., et al., TDAG8, TRPV1, and ASIC3 involved in establishing hyperalgesic priming in experimental rheumatoid arthritis. Sci Rep, 2017. 7(1): p. 8870. 78. Chen, C.C., et al., A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc Natl Acad Sci U S A, 2002. 99(13): p. 8992-7. 79. Borzan, J., et al., A role for acid-sensing ion channel 3, but not acid-sensing ion channel 2, in sensing dynamic mechanical stimuli. Anesthesiology, 2010. 113(3): p. 647-54. 80. Jones, R.C., 3rd, L. Xu, and G.F. Gebhart, The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci, 2005. 25(47): p. 10981-9. 81. Bielefeldt, K. and B.M. Davis, Differential effects of ASIC3 and TRPV1 deletion on gastroesophageal sensation in mice. Am J Physiol Gastrointest Liver Physiol, 2008. 294(1): p. G130-8. 82. Lee, C.H., et al., Role of the acid-sensing ion channel 3 in blood volume control. Circ J, 2011. 75(4): p. 874-83. 83. Fromy, B., et al., Asic3 is a neuronal mechanosensor for pressure-induced vasodilation that protects against pressure ulcers. Nat Med, 2012. 18(8): p. 1205-7. 84. Hildebrand, M.S., et al., Characterisation of DRASIC in the mouse inner ear. Hear Res, 2004. 190(1-2): p. 149-60. 85. Wu, W.L., et al., Asic3(-/-) female mice with hearing deficit affects social development of pups. PLoS One, 2009. 4(8): p. e6508. 86. Donier, E., et al., Regulation of ASIC activity by ASIC4--new insights into ASIC channel function revealed by a yeast two-hybrid assay. Eur J Neurosci, 2008. 28(1): p. 74-86. 87. Kang, S., et al., Simultaneous disruption of mouse ASIC1a, ASIC2 and ASIC3 genes enhances cutaneous mechanosensitivity. PLoS One, 2012. 7(4): p. e35225. 88. Bewick, G.S., et al., Autogenic modulation of mechanoreceptor excitability by glutamate release from synaptic-like vesicles: evidence from the rat muscle spindle primary sensory ending. J Physiol, 2005. 562(Pt 2): p. 381-94. 89. Simon, A., et al., Amiloride-sensitive channels are a major contributor to mechanotransduction in mammalian muscle spindles. J Physiol, 2010. 588(Pt 1): p. 171-85. 90. Woo, S.H., et al., Piezo2 is the principal mechanotransduction channel for proprioception. Nat Neurosci, 2015. 18(12): p. 1756-62. 91. Drew, L.J., et al., High-threshold mechanosensitive ion channels blocked by a novel conopeptide mediate pressure-evoked pain. PLoS One, 2007. 2(6): p. e515. 92. Corey, D.P. and A.J. Hudspeth, Mechanical stimulation and micromanipulation with piezoelectric bimorph elements. J Neurosci Methods, 1980. 3(2): p. 183-202. 93. Malpass, C.A., et al., Immobilization of an oxalate-degrading enzyme on silicone elastomer. J Biomed Mater Res, 2002. 63(6): p. 822-9. 94. Vogel, V. and M. Sheetz, Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol, 2006. 7(4): p. 265-75. 95. Sanchez, D., et al., Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy. J Neurosci Methods, 2007. 159(1): p. 26-34. 96. Zimmermann, K., et al., Phenotyping sensory nerve endings in vitro in the mouse. Nat Protoc, 2009. 4(2): p. 174-96. 97. Balgude, A.P., et al., Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials, 2001. 22(10): p. 1077-84. 98. Cho, H., et al., Mechanosensitive ion channels in cultured sensory neurons of neonatal rats. J Neurosci, 2002. 22(4): p. 1238-47. 99. Welsh, M.J., M.P. Price, and J. Xie, Biochemical basis of touch perception: mechanosensory function of degenerin/epithelial Na+ channels. J Biol Chem, 2002. 277(4): p. 2369-72. 100. Weibel, D.B., P. Garstecki, and G.M. Whitesides, Combining microscience and neurobiology. Curr Opin Neurobiol, 2005. 15(5): p. 560-7. 101. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-89. 102. Park, J.W., et al., Microfluidic culture platform for neuroscience research. Nat Protoc, 2006. 1(4): p. 2128-36. 103. Kubicek, J.D., et al., Integrated lithographic membranes and surface adhesion chemistry for three-dimensional cellular stimulation. Langmuir, 2004. 20(26): p. 11552-6. 104. Drew, L.J. and J.N. Wood, FM1-43 is a permeant blocker of mechanosensitive ion channels in sensory neurons and inhibits behavioural responses to mechanical stimuli. Mol Pain, 2007. 3: p. 1. 105. McDonald, J.C. and G.M. Whitesides, Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res, 2002. 35(7): p. 491-9. 106. Bao, G. and S. Suresh, Cell and molecular mechanics of biological materials. Nat Mater, 2003. 2(11): p. 715-25. 107. Khalsa, P.S., et al., Integrin alpha2beta1 affects mechano-transduction in slowly and rapidly adapting cutaneous mechanoreceptors in rat hairy skin. Neuroscience, 2004. 129(2): p. 447-59. 108. Bellin, R.M., et al., Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches. Proc Natl Acad Sci U S A, 2009. 106(52): p. 22102-7. 109. Chalfie, M., Neurosensory mechanotransduction. Nat Rev Mol Cell Biol, 2009. 10(1): p. 44-52. 110. Yu, Y.S. and Y.P. Zhao, Deformation of PDMS membrane and microcantilever by a water droplet: comparison between Mooney-Rivlin and linear elastic constitutive models. J Colloid Interface Sci, 2009. 332(2): p. 467-76. 111. Wang, H.B., et al., Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci U S A, 2001. 98(20): p. 11295-300. 112. Dib-Hajj, S.D., et al., Transfection of rat or mouse neurons by biolistics or electroporation. Nat Protoc, 2009. 4(8): p. 1118-26. 113. Cheng, K.I., et al., BK(Ca) Channel Inhibition by Peripheral Nerve Injury Is Restored by the Xanthine Derivative KMUP-1 in Dorsal Root Ganglia. Cells, 2021. 10(4). 114. Beenhakker, M.P., M.S. Kirby, and M.P. Nusbaum, Mechanosensory gating of proprioceptor input to modulatory projection neurons. J Neurosci, 2007. 27(52): p. 14308-16. 115. Douris, P.C., et al., Fatiguing upper body aerobic exercise impairs balance. J Strength Cond Res, 2011. 25(12): p. 3299-305. 116. Kroger, S., Proprioception 2.0: novel functions for muscle spindles. Curr Opin Neurol, 2018. 31(5): p. 592-598. 117. Lyle, M.A. and T.R. Nichols, Evaluating intermuscular Golgi tendon organ feedback with twitch contractions. J Physiol, 2019. 597(17): p. 4627-4642. 118. Proske, U., Exercise, fatigue and proprioception: a retrospective. Exp Brain Res, 2019. 237(10): p. 2447-2459. 119. Moon, K.M., et al., Proprioception, the regulator of motor function. BMB Rep, 2021. 54(8): p. 393-402. 120. Proske, U. and S.C. Gandevia, The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev, 2012. 92(4): p. 1651-97. 121. Zampieri, N. and J.C. de Nooij, Regulating muscle spindle and Golgi tendon organ proprioceptor phenotypes. Curr Opin Physiol, 2021. 19: p. 204-210. 122. Macefield, V.G. and T.P. Knellwolf, Functional properties of human muscle spindles. J Neurophysiol, 2018. 120(2): p. 452-467. 123. Wu, D., et al., A Role for Sensory end Organ-Derived Signals in Regulating Muscle Spindle Proprioceptor Phenotype. J Neurosci, 2019. 39(22): p. 4252-4267. 124. Oliver, K.M., et al., Molecular correlates of muscle spindle and Golgi tendon organ afferents. Nat Commun, 2021. 12(1): p. 1451. 125. Dietrich, S., et al., Molecular identity of proprioceptor subtypes innervating different muscle groups in mice. Nat Commun, 2022. 13(1): p. 6867. 126. Santuz, A. and T. Akay, Muscle spindles and their role in maintaining robust locomotion. J Physiol, 2023. 601(2): p. 275-285. 127. Nilius, B. and E. Honore, Sensing pressure with ion channels. Trends Neurosci, 2012. 35(8): p. 477-86. 128. Bewick, G.S. and R.W. Banks, Mechanotransduction in the muscle spindle. Pflugers Arch, 2015. 467(1): p. 175-90. 129. Drew, L.J., et al., Acid-sensing ion channels ASIC2 and ASIC3 do not contribute to mechanically activated currents in mammalian sensory neurones. J Physiol, 2004. 556(Pt 3): p. 691-710. 130. Lechner, S.G., et al., Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development. EMBO J, 2009. 28(10): p. 1479-91. 131. Gautam, M. and C.J. Benson, Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits. FASEB J, 2013. 27(2): p. 793-802. 132. Connor, M., L.A. Naves, and E.W. McCleskey, Contrasting phenotypes of putative proprioceptive and nociceptive trigeminal neurons innervating jaw muscle in rat. Mol Pain, 2005. 1: p. 31. 133. Lo, C.M., et al., Cell movement is guided by the rigidity of the substrate. Biophys J, 2000. 79(1): p. 144-52. 134. Cullen, D.K., M.C. Lessing, and M.C. LaPlaca, Collagen-dependent neurite outgrowth and response to dynamic deformation in three-dimensional neuronal cultures. Ann Biomed Eng, 2007. 35(5): p. 835-46. 135. Bhattacharya, M.R., et al., Radial stretch reveals distinct populations of mechanosensitive mammalian somatosensory neurons. Proc Natl Acad Sci U S A, 2008. 105(50): p. 20015-20. 136. Lin, Y.W., et al., Understanding sensory nerve mechanotransduction through localized elastomeric matrix control. PLoS One, 2009. 4(1): p. e4293. 137. Wetzel, C., et al., A stomatin-domain protein essential for touch sensation in the mouse. Nature, 2007. 445(7124): p. 206-9. 138. Malin, S.A., B.M. Davis, and D.C. Molliver, Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity. Nat Protoc, 2007. 2(1): p. 152-60. 139. Diochot, S., et al., A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO J, 2004. 23(7): p. 1516-25. 140. Hesselager, M., D.B. Timmermann, and P.K. Ahring, pH Dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits. J Biol Chem, 2004. 279(12): p. 11006-15. 141. Boscardin, E., et al., The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19. Br J Pharmacol, 2016. 173(18): p. 2671-701. 142. Deval, E., et al., Effects of neuropeptide SF and related peptides on acid sensing ion channel 3 and sensory neuron excitability. Neuropharmacology, 2003. 44(5): p. 662-71. 143. Gonzales, E.B., T. Kawate, and E. Gouaux, Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature, 2009. 460(7255): p. 599-604. 144. Salinas, M., M. Lazdunski, and E. Lingueglia, Structural elements for the generation of sustained currents by the acid pain sensor ASIC3. J Biol Chem, 2009. 284(46): p. 31851-9. 145. Li, W.G. and T.L. Xu, ASIC3 channels in multimodal sensory perception. ACS Chem Neurosci, 2011. 2(1): p. 26-37. 146. Smith, E.S., H. Cadiou, and P.A. McNaughton, Arachidonic acid potentiates acid-sensing ion channels in rat sensory neurons by a direct action. Neuroscience, 2007. 145(2): p. 686-98. 147. Osmakov, D.I., et al., Endogenous Isoquinoline Alkaloids Agonists of Acid-Sensing Ion Channel Type 3. Front Mol Neurosci, 2017. 10: p. 282. 148. Osmakov, D.I., et al., Proton-independent activation of acid-sensing ion channel 3 by an alkaloid, lindoldhamine, from Laurus nobilis. Br J Pharmacol, 2018. 175(6): p. 924-937. 149. Yagi, J., et al., Sustained currents through ASIC3 ion channels at the modest pH changes that occur during myocardial ischemia. Circ Res, 2006. 99(5): p. 501-9. 150. Murthy, S.E., A.E. Dubin, and A. Patapoutian, Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat Rev Mol Cell Biol, 2017. 18(12): p. 771-783. 151. Qi, Y., et al., Membrane stiffening by STOML3 facilitates mechanosensation in sensory neurons. Nat Commun, 2015. 6: p. 8512. 152. Dubin, A.E., et al., Inflammatory signals enhance piezo2-mediated mechanosensitive currents. Cell Rep, 2012. 2(3): p. 511-7. 153. Arnadottir, J., et al., The DEG/ENaC protein MEC-10 regulates the transduction channel complex in Caenorhabditis elegans touch receptor neurons. J Neurosci, 2011. 31(35): p. 12695-704. 154. Florez-Paz, D., et al., A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons. Sci Rep, 2016. 6: p. 25923. 155. Anderson, E.O., E.R. Schneider, and S.N. Bagriantsev, Piezo2 in Cutaneous and Proprioceptive Mechanotransduction in Vertebrates. Curr Top Membr, 2017. 79: p. 197-217. 156. Rook, M.L., et al., beta11-12 linker isomerization governs acid-sensing ion channel desensitization and recovery. Elife, 2020. 9. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92133 | - |
dc.description.abstract | 背景: 受Martin Chalfie 對觸覺接受器神經元(TRNs)和機械活化通道研究的啟發,本研究聚焦於酸敏感離子通道(ASICs),特別是ASIC3,在背根神經節(DRG)內表達Parvalbumin的本體感受神經元中的機械轉導作用。有別於Piezo channel 在背根神經節中的直接接觸模式,本研究將「牽引力模型」來研究神經元機械感應。
方法: 本研究採用先進的機械力控制膜片鉗電生理技術、條件性基因敲除實驗,深入研究ASIC3在本體感知中的功能。引入使用聚二甲基矽氧烷(PDMS)覆蓋玻片的新方法模擬生理彈性,以準確研究這些特定DRG神經元的機械敏感性。 結果: 本研究結果中顯示了ASIC3在酸性條件下在機械轉導中的重要作用。在表達Parvalbumin的本體感受神經元中,ASIC3的基因敲除導致本體感知受損,以及因神經突伸長牽引的機械轉導受到破壞。同時使用ASIC3專一性抑制劑APETx2的應用凸顯了ASIC3通道的功能細節。APETx2的處理改變了這些神經元的機械敏感性,強調了ASIC3在牽引力模型機械感應中的關鍵作用,以及受到環境音子影響的調控能力,並指出ASIC家族內的多樣性功能。 結論: 本研究確立了ASIC3作為本體感受神經元中機械轉導的核心元素。APETx2的研究不僅強調了ASIC3在本體感知中的關鍵作用,還揭示了ASIC家族的異質性和廣泛的功能範疇。這種異質性表明ASIC通道在各種生理和病理條件下的複雜相互作用,突顯了它們作為感覺處理障礙治療的潛力。,考慮到ASIC通道多樣且細膩的角色這些發現為針對性介入機械感應轉導打開了新的視角。 關鍵字:酸敏感離子通道第三型、機械力傳導、本體感覺 | zh_TW |
dc.description.abstract | Background: Inspiring by Martin Chalfie’s study of touch receptor neurons (TRNs) and mechanically activated ion channels, this research focuses on the role of Acid-Sensing Ion Channels (ASICs), especially ASIC3, in mechanotransduction within parvalbumin-expressing proprioceptive neurons in the dorsal root ganglia (DRG). The study contrasts the ''tether model'' of mechanosensation with the bilayer model represented by Piezo channels.
Methods: Employing advanced electrophysiological techniques, genetic axonal tracing, and conditional knockout experiments, the research scrutinizes ASIC3''s function in proprioception. Introducing a novel method using polydimethylsiloxane (PDMS) coverslips simulates physiological elasticity, facilitating an accurate study of the mechanosensitivi6ty of these specific DRG neurons. Results: The study reveals ASIC3''s substantial role in mechanotransduction under acidotic conditions. In parvalbumin-expressing proprioceptors, ASIC3 knockout results in impaired proprioception and disrupted neurite stretch-induced mechanotransduction. The application of APETx2, an ASIC3 inhibitor, highlighted the functional nuances of ASIC3 channels. Treatment with APETx2 modified the mechanosensitivity of these neurons, emphasizing ASIC3''s critical role in the tether model of mechanosensation, regulation of acidosis in the microenvironment, and indicating the diverse functionality within the ASIC family. Conclusion: This research establishes ASIC3 as a central element in mechanotransduction within proprioceptive neurons. The APETx2 study not only underscores ASIC3''s pivotal role in proprioception but also reveals the ASIC family''s heterogeneity and broad functional spectrum. This heterogeneity suggests a complex interplay of ASIC channels in various physiological and pathophysiological conditions, highlighting their potential as therapeutic targets for sensory processing disorders. The findings open new perspectives for targeted interventions in mechanosensory transduction, considering ASIC channels'' diverse and nuanced roles. Keywords: ASIC3, mechanotransduction, proprioception | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-07T16:13:34Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-03-07T16:13:34Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii Abstract iv Abbreviation vi Chapter 1. General Introduction 1 Preface : The basis of tethered model mechanotransduction 2 1. Molecular Mechanisms Involved in Neurosensory Mechanotransduction 3 1.1 Discovery of Piezo Channels and Deficiency of Piezo Gene Knockout 3 1.2 Acid-Sensing Ion Channels (ASICs) and their relative physiological function 5 1.2.1 ASICs member and their expression patterns in mice 5 1.2.2 Phenotyping ASIC-Knockout Mice 8 2. Controversial results and limitation of current methods 11 2.1 Unexpected mechanotransduction phenotype in ASIC subtype knockout mice 11 2.2 Effect of amiloride and its analogues in stretch evoke afferent discharge 12 2.3 The methods demonstrate Piezo 2 as a mechanotransducer channel 13 2.4 Discrepancy of previous study indicates the limitation of current methods 15 2.5 Proprioceptive DRG neurons could be an ideal cellular model 17 2.6 Potential roles of ASIC3 in proprioceptive neurosensory mechanotransduction 18 3. Central Hypothesis 19 Chapter 2. Materials and Methods 22 1. Preparation of elastomeric substrate 23 1.1. PDMS Preparation (3 days before DRG culture) 23 1.2. Drying and Storage 23 1.3. Sterilization 23 1.4. Ethanol Sterilization and Washing 24 1.5. Fibronectin Coating (2 hours, one day before cell culture) 24 1.6. Washing of PDMS Coverslips (1 hour, one day before cell culture) 24 2. Preparation of dorsal root ganglion primary culture 24 2.1. Preparation and Harvesting (20–30 minutes) 24 2.2. Primary Culture (~5 hours) 25 2.3. Trituration and Seeding 25 2.4. Incubation and Neurite Growth 25 3. Whole-cell Mechano-Patch Clamp equipment settings 26 3.1 Recording Chamber 26 3.2 Perfusion System 26 3.3 Recording Electrode 27 3.4 Indentation electrode 27 3.5 Grounding for Noise Reduction 28 3.6 PDMS Coated Coverslip and Neurite-Bearing Primary Culture 28 3.7 Whole-cell Mechano-Patch Clamp Process 28 3.7.1 Preparation of Recording Electrode 29 3.7.2 Bath Perfusion 29 3.7.3 Mechanical Stretching Setup 29 3.7.4 Recording Chamber Setup 29 3.7.5 Microscope Visualization 29 3.7.6 Whole-Cell Recording 30 3.7.7 Action Potential Recording 30 3.7.8 Indentation Procedure 30 3.7.9 Multiple Indentations 30 3.2.1 Animal Procedures: 31 3.2.2 Generation of Asic3-Knockout/eGFP-f-Knockin Mice: 31 4. Generation of Asic3f/f Mice 32 5. Immunostaining Methodology 32 6. Single-cell RT–PCR Procedure 34 7. Electrophysiology and Whole-cell Patch-clamp Recordings 35 8. Rheobase Analysis of AP Threshold 36 9. Mechanically Activated Current Recording 36 9.1 Mechanically Activated Currents during Acidosis 37 9.2 ASIC3 Dependency with Pharmacological Testing 37 10. Grid-Walking Task 37 11. Balance Beam Walking Task 38 12. Statistical Analysis 38 Chapter 3. Results 40 1 Develop a software to control the indentation process and motorize micro-manipulator 41 1.1 Serial Port Communication 41 1.2 Command Handling 41 1.3 Operational Logic 41 1.4 Main Application Flow 42 2. Precise timing control and consistence of substrate deformation neurite stretch (SDNS) 42 2.1 Potential failure mode of mechanical stimulus 43 2.2 Repeatable localized mechanical stimulation 43 2.3 Membrane potential changes evokes SDNS 45 2.4 Mechanical activated action potential threshold of SDNS 45 2.5 Summary of SDNS control 46 3. Heterogeneous Expression of ASIC3 in DRG and its involvement in proprioception 47 3.1 Widespread ASIC3 Expression in Parvalbumin-Positive DRG Neurons 48 3.2 Characterizing Acid-Sensing Ion Channel 3 (ASIC3) Knockout in Pv+ DRG Neurons 49 3.3 Tether Mode Sensing Role of ASIC3 in Proprioceptive DRG Neurons 51 3.4 ASIC3 KO Impairs Grid and Balance Beam Walking: 54 3.5 Brief summary of ASIC3 in proprioception 56 4. Probing the Effect of Acidosis on ASIC3 related Tether-Mode Mechanotransduction 57 4.1 Detailed Analysis of Pv+ DRG Neurons in MSs and GTOs 57 4.2 Impact of Acidic Environment on Mechanically Activated Currents by SDNS 58 4.3 ASIC3's Influence in Tether-Mode Mechanotransduction under Acidic Conditions 59 4.4 Summary of ASIC3 in Acidic Modulation of Proprioceptive Mechanotransduction 60 Chapter 4. Discussion 62 1. Molecular Basis of Chemo-Sensing and Mechano-Sensing in ASICs: 63 1.1 Chemo-Sensing in ASICs: 63 1.2 Non-acid Chemo-Sensing in ASICs 65 1.3 Lactate Sensing in ASICs 65 1.4 Mechano-Sensing in ASICs 66 1.5 ASICs as tunable somato-sensory transducers 67 2 The Mechano-Sensing Apparatus: Tether Mode Neurosensory Mechanostransduction 69 2.1 Distribution of ASIC3 in mechanosensory organs and DRG neurons 69 2.3 The conditional knockout ASIC3 in proprioceptive neurons results in dysfunction in neurosensory mechanotransduction 70 2.4 Tentative role of ASIC3 in tether mode mechanotransduction 71 3 Unraveling the Impact of Acidosis and Environmental Factors on Tether Mode Mechanotransduction: Insights from Proprioceptive Neurons 73 3.1 Evidence of ASIC3 Involvement in Alternative Environmental Factors: Acidosis in Proprioceptive Neurosensory Mechanotransduction 73 3.2 Tentative mechanisms of Acidosis-Induced Structural Changes in ASIC3 involved heteromeric channels and their impact on proprioceptive mechanosensory function 75 Chapter 5. Conclusion 78 Chapter 6. Reference 80 Chapter 7. Figures 98 Figure 1 PDMS with surface modification 100 Figure 2 Main Application Flow Control: Central hub for managing operational processes 102 Figure 3 Software Control Logic Overview 104 Figure 4 Analysis of Indentation Failure Scenarios 106 Figure 5 Monitoring of Localized Indentation-Induced Mechanical Disturbances in PDMS Using Fluorescent Beads 108 Figure 6 Analysis of GFP Expression in ASIC3-Expressing DRG Neurons of Asic3-KO/eGFP-f-KI (Asic3▵EGFPf/EGFPf) Mice 110 Figure 7 Distribution of ASIC3-Expressing DRG Neurons in Muscular and Proprioceptive Systems 112 Figure 8. PvCre-CAG reporter indicating parvalbumin expression DRG neurons and it’s distinct with Nav1.8 Cre-CAG nociceptive neurons. 114 Figure 9 Impact of Asic3 Conditional Knockout in DRG Pv+ Neurons 116 Figure 10. The presence of ASIC and Piezo gene expressions in mouse DRG neurons. 118 Figure 11 Role of ASIC3 in Neurite Stretch-Induced Firing in Pv+ DRG Neurons 119 Figure 12 Neurite Stretch Responses in Wildtype and Asic3-Null Pv+ DRG Neurons 122 Figure 13 Impact of ASIC3 Blockade on SDNS-Induced Action Potentials in Wild-Type Pv+ DRG Neurons 124 Figure 14 Comparative Rheobase Analysis of Action Potential Threshold in Wildtype and Asic3-Null Pv+ DRG Neurons 126 Figure 15 Behavioral Assessment of Proprioception in Mice with Asic3 Deficiency 128 Figure 16 Identification of Parvalbumin+ Proprioceptive Muscle Afferents with Neurofilament Heavy Chain Immunoreactivity and Specialized Mechanosensing Structures 130 Figure 17 Overview of the SDNS Technique with acidosis perfusion 132 Figure 18. Mild Acidosis Effect on SDNS Currents: An Experimental Analysis 134 Figure 19. Acidic Perfusion's effect on SDNS Currents in Response to Force 136 Figure 20. pH-Dependent Modulation of SDNS-Induced Currents in Pv+ DRG Proprioceptors Under Mild Acidosis 139 Figure 21. Role of ASIC3 in SDNS-Induced Currents Across Proprioceptor Subtypes" 142 Figure 22. Influence of APETX2 and Mild Acidosis (pH 6.8) on SDNS-Induced Currents in Distinct Pv+ DRG Neuron Subtypes 145 Figure 23. Classification of Pv+ DRG Neurons Based on SDNS-Induced and Acid-Induced Currents 148 Figure 24. Theoretical Models on ASIC3's Role in Mild Acidosis-Induced Attenuation of SDNS Currents 151 Table 1. Sequence of single cell RT-PCR nested primers 152 Table 2. AP Profile of ISDNS recording Parvalbumin expression DRG neurons 153 APPENDIX 1. Acid-sensing ion channels: dual function proteins for chemo-sensing and mechano- sensing 155 Appendix 2. Probing localized neural mechanotransduction through surface-modified elastomeric matrices and electrophysiology 170 Appendix 3. Evidence for the involvement of ASIC3 in sensory mechanotransduction in proprioceptors 180 Appendix 4. Probing the Effect of Acidosis on Tether-Mode Mechanotransduction of Proprioceptors 196 | - |
dc.language.iso | en | - |
dc.title | 探討組織酸化對本體感覺神經元中牽引力學傳導的影響 | zh_TW |
dc.title | Probing the Effect of Acidosis on Tether-Mode Mechanotransduction of Proprioceptors | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.coadvisor | 陳志成 | zh_TW |
dc.contributor.coadvisor | Chih-Cheng Chen | en |
dc.contributor.oralexamcommittee | 潘建源;湯志永;徐經倫;林以文 | zh_TW |
dc.contributor.oralexamcommittee | Chien-Yuan Pan;Chih-Yung Tang;Ching-Lung Hsu;Yi-Wen Lin | en |
dc.subject.keyword | 酸敏感離子通道第三型,機械力傳導,本體感覺, | zh_TW |
dc.subject.keyword | ASIC3,mechanotransduction,proprioception, | en |
dc.relation.page | 218 | - |
dc.identifier.doi | 10.6342/NTU202400632 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-02-17 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生命科學系 | - |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf | 30.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。