Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92124
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊永裕zh_TW
dc.contributor.advisorYung-Yu Chuangen
dc.contributor.author李澤諺zh_TW
dc.contributor.authorTse-Yan Leeen
dc.date.accessioned2024-03-05T16:24:00Z-
dc.date.available2024-03-06-
dc.date.copyright2024-03-05-
dc.date.issued2024-
dc.date.submitted2024-02-16-
dc.identifier.citation[1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. ArXiv, abs/1701.07875, 2017.
[2] V.Bychkovsky, S.Paris, E.Chan, and F.Durand. Learning photographic global tonal adjustment with a database of input / output image pairs. In The Twenty-Fourth IEEE Conference on Computer Vision and Pattern Recognition, 2011.
[3] Y.-S. Chen, Y.-C. Wang, M.-H. Kao, and Y.-Y. Chuang. Deep photo enhancer: Unpaired learning for image enhancement from photographs with gans. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2018), pages 6306–6314, June 2018.
[4] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio. Generative adversarial nets. In Neural Information Processing Systems, 2014.
[5] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of wasserstein gans. In Neural Information Processing Systems, 2017.
[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2015.
[7] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5967–5976, 2016.
[8] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adversarial networks. ArXiv, abs/1802.05957, 2018.
[9] O.Ronneberger, P.Fischer, and T.Brox. U-net: Convolutional networks for biomedical image segmentation. ArXiv, abs/1505.04597, 2015.
[10] J. Tao, J. Wang, P. Zhang, J. Zhang, K. Yung, and W. Ip. Legan: A low-light image enhancement generative adversarial network for industrial internet of smart-cameras. Internet of Things, page 101054, 2023.
[11] C. Yu, C. Gao, J. Wang, G. Yu, C. Shen, and N. Sang. Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation. International Journal of Computer Vision, 129:3051 – 3068, 2020.
[12] H. Zeng, J. Cai, L. Li, Z. Cao, and L. Zhang. Learning image-adaptive 3d lookup tables for high performance photo enhancement in real-time. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44:2058–2073, 2020.
[13] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. 2017 IEEE International Conference on Computer Vision (ICCV), pages 2242–2251, 2017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92124-
dc.description.abstract隨著深度學習技術之發展,現在可使用深度學習模型來取代人工對影像進行調整、美化之過程,進而減少人工修圖所需之人力成本,以及修圖需要大量領域知識之挑戰。過往使用深度學習模型進行影像美化之方法雖已取得很大的成果,然而其大多未考慮到影像的語義資訊,亦即目前不少的方法皆是對整張影像進行同一種風格之美化,然而在一張影像中,我們可能會期望不同語義區域會有不同的調整方向,因此,我們希望能透過將語意分割模型之輸出引入至影像增強模型之中,讓影像增強模型在獲得語意資訊之後,能夠在各個語意區域上做出不同方向的調整與美化,使得整體影像獲得更好的美化效果。除了模型修改之外,我們也針對欲美化之語意收集了資料集,期望模型能透過我們自己所收集的資料集,學習到我們認為各個語意在怎樣的外觀或風格下是好看的。經實驗表明我們所提出的模型與方法確實能達成針對語意進行影像美化之目標。zh_TW
dc.description.abstractWith the advancement of deep learning techniques, it is now possible to replace the manual process of adjusting and beautifying images with deep learning models. This approach helps reduce the manpower cost associated with manual retouching and addresses the challenges of requiring extensive domain knowledge in image editing. While many deep learning-based methods have achieved significant success in image enhancement, most of them do not consider semantic information in the images. In other words, many existing methods focus on uniformly enhancing the entire image with a single style.

However, in a given image, it is often desirable to have different adjustment directions for various semantic regions. Therefore, by incorporating the output of a semantic segmentation model into the image enhancement model, we aim to enable the image enhancement model to make different adjustments and beautifications in different semantic regions. This allows the model to achieve better overall aesthetic improvements. In addition to modifying the model, we have collected datasets specific to the semantics we aim to beautify. We hope the model can learn from our collected datasets the desirable appearances or styles for different semantics. Experimental results indicate that our proposed model and approach can indeed achieve the goal of semantically guided image enhancement.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-05T16:24:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-05T16:24:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements ..................................... i
摘要 .................................................. iii
Abstract ............................................. v
Contents ............................................. vii
List of Figures ...................................... ix
List of Tables ....................................... xi
Denotation ........................................... xiii
Chapter 1. Introduction .............................. 1
Chapter 2. Related Work .............................. 3
2.1 Deep Photo Enhancer .......................... 3
Chapter 3. Methodology .............................. 9
3.1 Generator .................................... 9
3.1.1 Semantic Information Integration ....... 9
3.1.2 Weight Sharing ......................... 10
3.1.3 Channel Attention ...................... 11
3.2 Discriminator ................................ 13
3.2.1 SN-GAN ................................. 13
3.2.2 Semantic Information Integration ....... 14
3.2.3 Weight Sharing ......................... 16
Chapter 4. Experiments .............................. 17
4.1 Dataset. .................................... 17
4.2 Model Pretraining and Data Augmentation ...... 19
4.3 Implementation Details ....................... 20
4.4 Results ...................................... 21
Chapter 5. Conclusion ............................... 23
Reference ........................................... 25
-
dc.language.isoen-
dc.subject電腦視覺zh_TW
dc.subject深度學習zh_TW
dc.subject生成對抗式模型zh_TW
dc.subject影像增強zh_TW
dc.subject無監督式學習zh_TW
dc.subjectunsupervised learningen
dc.subjectGANen
dc.subjectimage enhancementen
dc.subjectcomputer visionen
dc.subjectdeep learningen
dc.title使用生成對抗式網路進行基於語義之影像增強zh_TW
dc.titleSemantic-based Image Enhancement Using GANsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee葉正聖;吳賦哲zh_TW
dc.contributor.oralexamcommitteeJeng-Sheng Yeh;Fu-Che Wuen
dc.subject.keyword深度學習,電腦視覺,影像增強,生成對抗式模型,無監督式學習,zh_TW
dc.subject.keyworddeep learning,computer vision,image enhancement,GAN,unsupervised learning,en
dc.relation.page26-
dc.identifier.doi10.6342/NTU202400618-
dc.rights.note未授權-
dc.date.accepted2024-02-16-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
12.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved